Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.412
Filtrar
1.
Aquat Toxicol ; 227: 105586, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32882451

RESUMO

Estrogenic effects triggered by androgens have been previously shown in a few studies. Aromatization and direct binding to estrogen receptors (ERs) are the most proposed mechanisms. For example, previously, a modulation of vitellogenin A (VtgA) by testosterone (T), an aromatizable androgen, was reported in brown trout primary hepatocytes. The effect was reversed by an ER antagonist. In this study, using the same model the disruption caused by T and by the non-aromatizable androgen - dihydrotestosterone (DHT), was assessed in selected estrogenic targets. Hepatocytes were exposed (96 h) to six concentrations of each androgen. The estrogenic targets were VtgA, ERα, ERß1 and two zona pellucida genes, ZP2.5 and ZP3a.2. The aromatase CYP19a1 gene and the androgen receptor (AR) were also included. Modulation of estrogenic targets was studied by quantitative real-time PCR and immunohistochemistry, using an HScore system. VtgA and ERα were up-regulated by DHT (1, 10, 100 µM) and T (10, 100 µM). In contrast, ERß1 was down-regulated by DHT (10, 100 µM), and T (100 µM). ZP2.5 mRNA levels were increased by DHT and T (1, 10, 100 µM), while ZP3a.2 was up-regulated by DHT (100 µM) and T (10, 100 µM). Positive correlations were found between VtgA and ERα mRNA levels and ZPs and ERα, after exposure to both androgens. The mRNA levels of CYP19a1 were not changed, while AR expression tended to increase after micromolar DHT exposures. HScores for Vtg and ZPs corroborated the molecular findings. Both androgens triggered estrogen signaling through direct binding to ERs, most probably ERα.


Assuntos
Androgênios/toxicidade , Di-Hidrotestosterona/toxicidade , Estrogênios/metabolismo , Hepatócitos/efeitos dos fármacos , Testosterona/toxicidade , Truta/metabolismo , Poluentes Químicos da Água/toxicidade , Androgênios/metabolismo , Animais , Células Cultivadas , Di-Hidrotestosterona/metabolismo , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Receptor beta de Estrogênio/genética , Receptor beta de Estrogênio/metabolismo , Estrogênios/genética , Expressão Gênica/efeitos dos fármacos , Hepatócitos/metabolismo , Masculino , Cultura Primária de Células , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , Testosterona/metabolismo , Vitelogeninas/genética , Vitelogeninas/metabolismo , Poluentes Químicos da Água/metabolismo
2.
Nat Commun ; 11(1): 4642, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32934200

RESUMO

Epigenetic regulation plays an important role in governing stem cell fate and tumorigenesis. Lost expression of a key DNA demethylation enzyme TET2 is associated with human cancers and has been linked to stem cell traits in vitro; however, whether and how TET2 regulates mammary stem cell fate and mammary tumorigenesis in vivo remains to be determined. Here, using our recently established mammary specific Tet2 deletion mouse model, the data reveals that TET2 plays a pivotal role in mammary gland development and luminal lineage commitment. We show that TET2 and FOXP1 form a chromatin complex that mediates demethylation of ESR1, GATA3, and FOXA1, three key genes that are known to coordinately orchestrate mammary luminal lineage specification and endocrine response, and also are often silenced by DNA methylation in aggressive breast cancers. Furthermore, Tet2 deletion-PyMT breast cancer mouse model exhibits enhanced mammary tumor development with deficient ERα expression that confers tamoxifen resistance in vivo. As a result, this study elucidates a role for TET2 in governing luminal cell differentiation and endocrine response that underlies breast cancer resistance to anti-estrogen treatments.


Assuntos
Diferenciação Celular , Proteínas de Ligação a DNA/metabolismo , Estradiol/metabolismo , Estrogênios/metabolismo , Glândulas Mamárias Animais/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/fisiopatologia , Linhagem da Célula , Metilação de DNA , Proteínas de Ligação a DNA/genética , Sistema Endócrino/metabolismo , Epigênese Genética , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Feminino , Humanos , Glândulas Mamárias Animais/fisiopatologia , Camundongos , Camundongos Knockout , Proteínas Proto-Oncogênicas/genética
3.
Life Sci ; 258: 118030, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32739470

RESUMO

The risk of atherosclerosis (AS) ascends among post-menopausal women, while current hormone replacement therapy exerts several adverse effects. Alisol B 23-acetate (AB23A), a tetracyclic triterpenoid isolated from the rhizome of Alisma orientale, was reported to show multiple physiological activities, including regulating lipid metabolism. According to molecular docking analysis, it was predicted to bind with estrogen receptor α (ERα). In this study, we aimed to observe the effect of AB23A on preventing post-menopausal AS and explore whether the mechanism was mediated by ERα. In vitro, free fatty acid (FFA) was applied to induce the abnormal lipid metabolism of L02 cells. In vivo, the ApoE-/- mice were ovariectomized to mimic the cessation of estrogen. The high-fat diet was also given to induce post-menopausal AS. We demonstrated AB23A attenuated the accumulation of total cholesterol and triglyceride induced by free fatty acids in hepatocytes. In high-fat diet-ovariectomy-treated ApoE-/- mice, AB23A eliminated lipids in blood and liver. AB23A not only reduced the synthesis of proprotein convertase subtilisin/kexin type 9 (PCSK9) through sterol-regulatory element binding proteins (SREBPs) but also suppressed the secretion of PCSK9 through silent information regulator 1 (SIRT1). Notably, AB23A promoted the expression of ERα in vivo and in vitro. The both ERα inhibitor and ERα siRNA were also applied in confirming whether the hepatic protective effect of AB23A was mediated by ERα. We found that AB23A significantly promoted the expression of ERα. AB23A could inhibit the synthesis and secretion of PCSK9 through ERα, lower the accumulation of triglyceride and cholesterol, and prevent post-menopausal AS.


Assuntos
Aterosclerose/patologia , Colestenonas/farmacologia , Receptor alfa de Estrogênio/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Pós-Menopausa/efeitos dos fármacos , Animais , Aterosclerose/genética , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Colestenonas/química , Dieta Hiperlipídica , Ácidos Graxos/metabolismo , Feminino , Lipoproteínas LDL/metabolismo , Camundongos , Ovariectomia , Regiões Promotoras Genéticas/genética , Pró-Proteína Convertase 9/genética , Pró-Proteína Convertase 9/metabolismo , Receptores de LDL/genética , Receptores de LDL/metabolismo , Sirtuína 1/metabolismo , Proteínas de Ligação a Elemento Regulador de Esterol/genética , Proteínas de Ligação a Elemento Regulador de Esterol/metabolismo , Regulação para Cima/efeitos dos fármacos
4.
Life Sci ; 258: 118195, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32781073

RESUMO

AIMS: The estrogen-ERα axis participates in osteoblast maturation. This study was designed to further evaluated the roles of the estrogen-ERα axis in bone healing and the possible mechanisms. MAIN METHODS: Female ICR mice were created a metaphyseal bone defect in the left femurs and administered with methylpiperidinopyrazole (MPP), an inhibitor of ERα. Bone healing was evaluated using micro-computed tomography. Colocalization of ERα with alkaline phosphatase (ALP) and ERα translocation to mitochondria were determined. Levels of ERα, ERß, PECAM-1, VEGF, and ß-actin were immunodetected. Expression of chromosomal Runx2, ALP, and osteocalcin mRNAs and mitochondrial cytochrome c oxidase (COX) I and COXII mRNAs were quantified. Angiogenesis was measured with immunohistochemistry. KEY FINDINGS: Following surgery, the bone mass was time-dependently augmented in the bone-defect area. Simultaneously, levels of ERα were specifically upregulated and positively correlated with bone healing. Administration of MPP to mice consistently decreased levels of ERα and bone healing. As to the mechanisms, osteogenesis was enhanced in bone healing, but MPP attenuated osteoblast maturation. In parallel, expressions of osteogenesis-related ALP, Runx2, and osteocalcin mRNAs were induced in the injured zone. Treatment with MPP led to significant inhibition of the alp, runx2, and osteocalcin gene expressions. Remarkably, administration of MPP lessened translocation of ERα to mitochondria and expressions of mitochondrial energy production-related coxI and coxII genes. Furthermore, exposure to MPP decreased levels of PECAM-1 and VEGF in the bone-defect area. SIGNIFICANCE: The present study showed the contributions of the estrogen-ERα axis to bone healing through stimulation of energy production, osteoblast maturation, and angiogenesis.


Assuntos
Regeneração Óssea , Diferenciação Celular , Metabolismo Energético , Receptor alfa de Estrogênio/metabolismo , Neovascularização Fisiológica , Osteoblastos/citologia , Transdução de Sinais , Fosfatase Alcalina/metabolismo , Animais , Peso Corporal/efeitos dos fármacos , Regeneração Óssea/efeitos dos fármacos , Calo Ósseo/efeitos dos fármacos , Calo Ósseo/patologia , Diferenciação Celular/efeitos dos fármacos , Cromossomos de Mamíferos/metabolismo , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/genética , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Metabolismo Energético/efeitos dos fármacos , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Camundongos Endogâmicos ICR , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Neovascularização Fisiológica/efeitos dos fármacos , Tamanho do Órgão/efeitos dos fármacos , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Osteocalcina/metabolismo , Osteogênese/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Pirazóis/administração & dosagem , Pirazóis/farmacologia , Regulação para Cima/efeitos dos fármacos , Cicatrização/efeitos dos fármacos
5.
Anticancer Res ; 40(7): 3669-3683, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32620606

RESUMO

BACKGROUND/AIM: Triple negative cancer (TNBC) is a subtype of breast cancer that is highly aggressive, with poor prognosis and responds differently to treatments. This study investigated the role of vorinostat and indole-3-carbinol (I3C) on regulating critical receptors that are not normally expressed in TNBC. MATERIALS AND METHODS: Using real-time PCR, immunostaining, and western blots, the re-expression of estrogen receptor α (ER), progesterone receptor (PR) and human epidermal growth factor receptor-2 (HER2) receptors was examined in four different TNBC cell types. RESULTS: ERα was re-expressed in three subtypes using vorinostat and I3C. Re-expression of the PR by vorinostat was also detected. Neither vorinostat nor I3C resulted in re-expression of the HER2 receptor. A significant decrease in growth and sensitivity to tamoxifen was also noted. CONCLUSION: The results of this study show that vorinostat and I3C modulate the re-expression of critical receptors in certain subtypes of TNBC through several pathways and these effects can be influenced by the molecular profiles of TNBCs.


Assuntos
Antineoplásicos/farmacologia , Receptor alfa de Estrogênio/metabolismo , Indóis/farmacologia , Receptores de Progesterona/metabolismo , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/metabolismo , Vorinostat/farmacologia , Linhagem Celular Tumoral , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Células MCF-7 , Receptor ErbB-2/metabolismo
6.
Proc Natl Acad Sci U S A ; 117(29): 17166-17176, 2020 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-32632016

RESUMO

Signaling of 17ß-estradiol (estrogen) through its two nuclear receptors, α and ß (ERα, ERß), is an important mechanism of transcriptional regulation. Although ERs are broadly expressed by cells of the immune system, the mechanisms by which they modulate immune responses remain poorly understood. ERß-specific signaling is reduced in patients with chronic inflammatory diseases, including systemic lupus erythematosus and inflammatory bowel disease, and our previous work suggests that dysregulation of ERß-specific signaling contributes to enhanced intestinal inflammation in female SAMP/YitFC mice, a spontaneous model of Crohn's disease-like ileitis. The present study builds on these prior observations to identify a nonredundant, immunoprotective role for ERß-specific signaling in TGF-ß-dependent regulatory T cell (Treg) differentiation. Using a strain of congenic SAMP mice engineered to lack global expression of ERß, we observed dramatic, female-specific exacerbation of intestinal inflammation accompanied by significant reductions in intestinal Treg frequency and function. Impaired Treg suppression in the absence of ERß was associated with aberrant overexpression of Tsc22d3 (GILZ), a glucocorticoid-responsive transcription factor not normally expressed in mature Tregs, and ex vivo data reveal that forced overexpression of GILZ in mature Tregs inhibits their suppressive function. Collectively, our findings identify a pathway of estrogen-mediated immune regulation in the intestine, whereby homeostatic expression of ERß normally functions to limit Treg-specific expression of GILZ, thereby maintaining effective immune suppression. Our data suggest that transcriptional cross-talk between glucocorticoid and steroid sex hormone signaling represents an important and understudied regulatory node in chronic inflammatory disease.


Assuntos
Receptor beta de Estrogênio/metabolismo , Estrogênios/metabolismo , Inflamação/imunologia , Intestinos/imunologia , Transdução de Sinais/fisiologia , Linfócitos T Reguladores/imunologia , Adolescente , Adulto , Animais , Doença de Crohn/imunologia , Modelos Animais de Doenças , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Receptor beta de Estrogênio/genética , Feminino , Glucocorticoides/metabolismo , Humanos , Ileíte/patologia , Doenças Inflamatórias Intestinais/imunologia , Intestinos/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Fatores de Transcrição/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Adulto Jovem
7.
Oncol Res Treat ; 43(7-8): 346-353, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32645702

RESUMO

INTRODUCTION: Mammary Paget's disease (MPD) is a rare cutaneous manifestation. Epidemiologically, more than half of the MPD patients concurrently have underlying invasive ductal carcinoma (MPD-IDC), and their prognosis remains poor despite multimodal treatments of breast cancer have markedly improved patients' survival. Accordingly, it is crucial to seek out novel therapeutic targets of MPD-IDC. As an emerging biological marker, the value of androgen receptor (AR) in MPD-IDC is inconsistent. Our objectives were to investigate the associations between AR and clinicopathological factors, and to explore its prognostic value in MPD-IDC. METHODS: We retrospectively analyzed data from 103 MPD-IDC patients, and immunohistochemical staining was used to determine their AR statuses. RESULTS: AR was expressed in 44 patients (42.7%), and AR expression was significantly correlated with body mass index (BMI) (p = 0.038) and axillary lymph node (ALN) status (p = 0.025). Kaplan-Meier curves showed that AR positivity was significantly associated with better overall survival (OS) in MPD-IDC patients (p = 0.019) and estrogen receptor-negative MPD-IDC patients (p = 0.039). Multivariate Cox regression analysis revealed that AR was not an independent prognostic indicator of disease-free survival (DFS) or OS in MPD-IDC patients (p = 0.395 and p = 0.073, respectively). CONCLUSIONS: In contrast to AR-negative tumors, patients with AR-positive ones were more likely to have lower BMI, no ALN metastasis, and better OS. AR-targeted treatments for MPD-IDC may add to existing therapeutic approaches to improve their effectiveness.


Assuntos
Neoplasias da Mama/patologia , Carcinoma Ductal de Mama/patologia , Receptor alfa de Estrogênio/metabolismo , Linfonodos/patologia , Doença de Paget Mamária/patologia , Receptores Androgênicos/metabolismo , Adulto , Idoso , Axila , Neoplasias da Mama/metabolismo , Carcinoma Ductal de Mama/metabolismo , Feminino , Humanos , Linfonodos/metabolismo , Metástase Linfática , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Doença de Paget Mamária/metabolismo , Prognóstico , Estudos Retrospectivos , Taxa de Sobrevida
8.
Arterioscler Thromb Vasc Biol ; 40(9): 2143-2158, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32640903

RESUMO

OBJECTIVE: ERα (estrogen receptor alpha) exerts nuclear genomic actions and also rapid membrane-initiated steroid signaling. The mutation of the cysteine 451 into alanine in vivo has recently revealed the key role of this ERα palmitoylation site on some vasculoprotective actions of 17ß-estradiol (E2) and fertility. Here, we studied the in vivo role of the arginine 260 of ERα which has also been described to be involved in its E2-induced rapid signaling with PI-3K (phosphoinositide 3-kinase) as well as G protein in cultured cell lines. Approach and Results: We generated a mouse model harboring a point mutation of the murine counterpart of this arginine into alanine (R264A-ERα). In contrast to the C451A-ERα, the R264A-ERα females are fertile with standard hormonal serum levels and normal control of hypothalamus-pituitary ovarian axis. Although R264A-ERα protein abundance was normal, the well-described membrane ERα-dependent actions of estradiol, such as the rapid dilation of mesenteric arteries and the acceleration of endothelial repair of carotid, were abrogated in R264A-ERα mice. In striking contrast, E2-regulated gene expression was highly preserved in the uterus and the aorta, revealing intact nuclear/genomic actions in response to E2. Consistently, 2 recognized nuclear ERα-dependent actions of E2, namely atheroma prevention and flow-mediated arterial remodeling were totally preserved. CONCLUSIONS: These data underline the exquisite role of arginine 264 of ERα for endothelial membrane-initiated steroid signaling effects of E2 but not for nuclear/genomic actions. This provides the first model of fertile mouse with no overt endocrine abnormalities with specific loss-of-function of rapid ERα signaling in vascular functions.


Assuntos
Lesões das Artérias Carótidas/tratamento farmacológico , Endotélio Vascular/efeitos dos fármacos , Estradiol/farmacologia , Receptor alfa de Estrogênio/agonistas , Terapia de Reposição de Estrogênios , Estrogênios/farmacologia , Fertilidade/efeitos dos fármacos , Artérias Mesentéricas/efeitos dos fármacos , Mutação Puntual , Animais , Aterosclerose/metabolismo , Aterosclerose/patologia , Aterosclerose/prevenção & controle , Lesões das Artérias Carótidas/metabolismo , Lesões das Artérias Carótidas/patologia , Lesões das Artérias Carótidas/fisiopatologia , Proliferação de Células/efeitos dos fármacos , Endotélio Vascular/lesões , Endotélio Vascular/metabolismo , Endotélio Vascular/fisiopatologia , Ativação Enzimática , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Ciclo Estral/efeitos dos fármacos , Feminino , Masculino , Artérias Mesentéricas/metabolismo , Artérias Mesentéricas/fisiopatologia , Camundongos Endogâmicos C57BL , Óxido Nítrico Sintase Tipo III/metabolismo , Ovariectomia , Reepitelização/efeitos dos fármacos , Transdução de Sinais , Fatores de Tempo , Útero/efeitos dos fármacos , Útero/metabolismo , Remodelação Vascular/efeitos dos fármacos , Vasodilatação/efeitos dos fármacos
9.
Proc Natl Acad Sci U S A ; 117(24): 13447-13456, 2020 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-32482854

RESUMO

Precisely controlling the activation of transcription factors is crucial for physiology. After a transcription factor is activated and carries out its transcriptional activity, it also needs to be properly deactivated. Here, we report a deactivation mechanism of HIF-1 and several other oncogenic transcription factors. HIF-1 promotes the transcription of an ADP ribosyltransferase, TiPARP, which serves to deactivate HIF-1. Mechanistically, TiPARP forms distinct nuclear condensates or nuclear bodies in an ADP ribosylation-dependent manner. The TiPARP nuclear bodies recruit both HIF-1α and an E3 ubiquitin ligase HUWE1, which promotes the ubiquitination and degradation of HIF-1α. Similarly, TiPARP promotes the degradation of c-Myc and estrogen receptor. By suppressing HIF-1α and other oncogenic transcription factors, TiPARP exerts strong antitumor effects both in cell culture and in mouse xenograft models. Our work reveals TiPARP as a negative-feedback regulator for multiple oncogenic transcription factors, provides insights into the functions of protein ADP-ribosylation, and suggests activating TiPARP as an anticancer strategy.


Assuntos
Núcleo Celular/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Poli(ADP-Ribose) Polimerases/metabolismo , Proteínas Supressoras de Tumor/metabolismo , ADP-Ribosilação , Animais , Linhagem Celular Tumoral , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Receptor alfa de Estrogênio/metabolismo , Retroalimentação Fisiológica , Regulação Neoplásica da Expressão Gênica , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Camundongos , Poli(ADP-Ribose) Polimerases/química , Poli(ADP-Ribose) Polimerases/genética , Domínios e Motivos de Interação entre Proteínas , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas Supressoras de Tumor/química , Proteínas Supressoras de Tumor/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
10.
Chemosphere ; 258: 127304, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32559490

RESUMO

Humans are exposed to numerous endocrine disruptors on a daily basis, which may interfere with endogenous estrogens, with Di-(2-ethylhexyl) phthalate (DEHP) being one of the most employed. The anterior pituitary gland is a target of 17ß-estradiol (E2) through the specific estrogen receptors (ERs) α and ß, whose expression levels fluctuate in the gland under different contexts, and the ERα/ß index is responsible for the final E2 effect. The aim of the present study was to evaluate in vivo and in vitro the DEHP effects on ERα and ß expression in the pituitary cell population, and also its impact on lactotroph and somatotroph cell growth. Our results revealed that perinatal exposure to DEHP altered the ERα and ß expression pattern in pituitary glands from prepubertal and adult female rats and increased the percentage of lactotroph cells in adulthood. In the in vitro system, DEHP down-regulated ERα and ß expression, and as a result increased the ERα/ß ratio and decreased the percentages of lactotrophs and somatotrophs expressing ERα and ß. In addition, DEHP increased the S + G2M phases, Ki67 index and cyclin D1 in vitro, leading to a rise in the lactotroph and somatotroph cell populations. These results showed that DEHP modified the pituitary ERα and ß expression in lactotrophs and somatotrophs from female rats and had an impact on the pituitary cell growth. These changes in ER expression may be a mechanism underlying DEHP exposure in the pituitary gland, leading to cell growth deregulation.


Assuntos
Dietilexilftalato/toxicidade , Ácidos Ftálicos/toxicidade , Receptores Estrogênicos/metabolismo , Animais , Proliferação de Células/efeitos dos fármacos , Dietilexilftalato/metabolismo , Disruptores Endócrinos/metabolismo , Estradiol/metabolismo , Receptor alfa de Estrogênio/metabolismo , Estrogênios/farmacologia , Feminino , Lactotrofos/efeitos dos fármacos , Lactotrofos/metabolismo , Hipófise/efeitos dos fármacos , Ratos
11.
Oncol Res Treat ; 43(7-8): 362-371, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32512573

RESUMO

INTRODUCTION: Our understanding of the granularity of breast cancer (BC) clinical outcomes by biologic subtype may be impaired by limited study follow-up times. OBJECTIVE: We evaluated the impact of modern immunohistochemistry (IHC)-based BC subtypes on long-term mortality. METHOD: We used a cohort of 200 women diagnosed with stage I-III BC in the period 1985-1990. Surgical samples underwent centralized pathology review. Multivariate models assessed associations of subtype with overall survival (OS) and BC-related survival (BCRS). RESULT: 42.0% women had luminal A-like, 32.5% luminal B-like/human epidermal growth factor receptor (HER)2-negative, 8.5% had HER2-positive, and 17.0% had triple-negative BC. 53.0% had tumor size (T) >2 cm and 47.5% had a positive nodal status (N). Over 18.7 years of median follow-up (range 0.3-32.0 years),140 deaths were recorded (75 BC-related). Median OS was longest for patients with luminal A-like tumors (21.2 years; 95% confidence interval [CI] 17.4-24.9]). The luminal B-like/HER2-negative subtype was significantly associated with worse BCRS (adjusted hazard ratio [HR] = 1.86; 95% CI 1.09-3.16). After multivariable analysis, T >2 cm (HR [vs. ≤2 cm] = 1.71 [95% CI 1.03-2.84]) and positive N (HR [vs. negative] = 2.19 [95% CI 1.03-4.65]) impacted BCRS. CONCLUSION: IHC-defined subtype will continue informing treatment algorithms for BC, until more precise tools like molecular profiling become widely available. Although confirmation in larger and adequately powered studies is warranted, modern surrogate subtype definitions produced a valid long-term prognostic stratification in this mature cohort.


Assuntos
Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/mortalidade , Receptor alfa de Estrogênio/metabolismo , Receptor ErbB-2/metabolismo , Receptores de Progesterona/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Neoplasias da Mama/cirurgia , Feminino , Seguimentos , Humanos , Metástase Linfática , Pessoa de Meia-Idade , Gradação de Tumores , Estadiamento de Neoplasias , Estudos Retrospectivos , Taxa de Sobrevida
12.
Arch Biochem Biophys ; 689: 108458, 2020 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-32524997

RESUMO

Our previous studies showed that silibinin promoted activation of caspases to induce apoptosis in human breast cancer MCF-7 cells by down-regulating the protein expression level of estrogen receptor (ER) α and up-regulating ERß. Recently, it has been reported that silibinin-induced apoptosis also involved nuclear translocation of apoptosis-inducing factor (AIF). Here we report that silibinin induces nuclear translocation of AIF through the down-regulation of ERα and up-regulation of ERß in a concentration dependent manner in MCF-7 cells. AIF knockdown with siRNA significantly reverses silibinin-induced apoptosis. The nuclear translocation of AIF is enhanced by treatment with MPP, an ERα antagonist, and blocked with PPT, an ERα agonist. In contrast to ERα activity, the nuclear AIF is increased with an ERß agonist, DPN and blocked with an ERß antagonist, PHTPP. Autophagy, negatively regulated by ERα, positively controls AIF-mediated apoptosis, as evidenced by the preventive effect of autophagy inhibitor 3-MA and siRNA targeting LC3, on the nuclear translocation of AIF and cell death induced by silibinin co-treatment with or without MPP. In sum we conclude that AIF in nuclei is involved in silibinin-induced apoptosis, and the nuclear translocation of AIF is increased by down-regulated ERα pathway and/or up-regulated ERß pathway in MCF-7 cells, accompanying up-regulation of autophagy.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Fator de Indução de Apoptose/metabolismo , Neoplasias da Mama/tratamento farmacológico , Receptor alfa de Estrogênio/metabolismo , Receptor beta de Estrogênio/metabolismo , Silibina/farmacologia , Transporte Ativo do Núcleo Celular/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Neoplasias da Mama/metabolismo , Feminino , Humanos , Células MCF-7
13.
Nanotoxicology ; 14(6): 740-756, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32401081

RESUMO

Despite numerous studies on the environmental health and safety (EHS) of silver nanoparticles (AgNPs), most studies looked into their gross toxicities with rather limited understanding on their labyrinthine implicit effects on the target sites, such as the endocrine system. Burgeoning evidence documents the disrupting effects of AgNPs on endocrine functions; however, little research has been invested to recognize the potential impacts on the mammary gland, a susceptible estrogen-responsive organ. Under this setting, we here aimed to scrutinize AgNP-induced effects on the development of pubertal mammary glands at various concentrations that bear significant EHS relevance. We unearthed that AgNPs could accumulate in mouse mammary glands and result in a decrease in the percentage of ducts and terminal ducts in the adult mice after chronic exposure. Strikingly, smaller sized AgNPs showed greater capability to alter the pubertal mammary development than larger sized particles. Intriguingly, mechanistic investigation revealed that the reduction of epithelial proliferation in response to AgNPs was ascribed to reduced ERα expression, which, at least partially, accounted for diseased epithelial morphology in mammary glands. Meanwhile, the decline in fibrous collagen deposition around the epithelium was found to contribute to the compromised development of mammary glands under the exposure of AgNPs. Moreover, as an extension of the mechanism, AgNPs diminished serum levels of estradiol in exposed animals. Together, these results uncovered a novel toxicity feature of AgNPs: compromised development of mouse pubertal mammary glands through the endocrine-disrupting actions. This study would open a new avenue to unveil the EHS impacts of AgNPs.


Assuntos
Disruptores Endócrinos/toxicidade , Estrogênios/metabolismo , Glândulas Mamárias Animais/efeitos dos fármacos , Nanopartículas Metálicas/toxicidade , Prata/toxicidade , Animais , Relação Dose-Resposta a Droga , Disruptores Endócrinos/farmacocinética , Epitélio/efeitos dos fármacos , Epitélio/crescimento & desenvolvimento , Epitélio/metabolismo , Receptor alfa de Estrogênio/metabolismo , Estrogênios/farmacologia , Feminino , Glândulas Mamárias Animais/crescimento & desenvolvimento , Glândulas Mamárias Animais/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Tamanho da Partícula , Transdução de Sinais , Prata/farmacocinética , Propriedades de Superfície , Distribuição Tecidual
14.
Mol Pharmacol ; 98(1): 24-37, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32362585

RESUMO

High-dose synthetic estrogen therapy was the standard treatment of advanced breast cancer for three decades until the discovery of tamoxifen. A range of substituted triphenylethylene synthetic estrogens and diethylstilbestrol were used. It is now known that low doses of estrogens can cause apoptosis in long-term estrogen deprived (LTED) breast cancer cells resistant to antiestrogens. This action of estrogen can explain the reduced breast cancer incidence in postmenopausal women over 60 who are taking conjugated equine estrogens and the beneficial effect of low-dose estrogen treatment of patients with acquired aromatase inhibitor resistance in clinical trials. To decipher the molecular mechanism of estrogens at the estrogen receptor (ER) complex by different types of estrogens-planar [17ß-estradiol (E2)] and angular triphenylethylene (TPE) derivatives-we have synthesized a small series of compounds with either no substitutions on the TPE phenyl ring containing the antiestrogenic side chain of endoxifen or a free hydroxyl. In the first week of treatment with E2 the LTED cells undergo apoptosis completely. By contrast, the test TPE derivatives act as antiestrogens with a free para-hydroxyl on the phenyl ring that contains an antiestrogenic side chain in endoxifen. This inhibits early E2-induced apoptosis if a free hydroxyl is present. No substitution at the site occupied by the antiestrogenic side chain of endoxifen results in early apoptosis similar to planar E2 The TPE compounds recruit coregulators to the ER differentially and predictably, leading to delayed apoptosis in these cells. SIGNIFICANCE STATEMENT: In this paper we investigate the role of the structure-function relationship of a panel of synthetic triphenylethylene (TPE) derivatives and a novel mechanism of estrogen-induced cell death in breast cancer, which is now clinically relevant. Our study indicates that these TPE derivatives, depending on the positioning of the hydroxyl groups, induce various conformations of the estrogen receptor's ligand-binding domain, which in turn produces differential recruitment of coregulators and subsequently different apoptotic effects on the antiestrogen-resistant breast cancer cells.


Assuntos
Neoplasias da Mama/metabolismo , Antagonistas de Estrogênios/síntese química , Receptor alfa de Estrogênio/química , Receptor alfa de Estrogênio/metabolismo , Estilbenos/síntese química , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Estradiol/química , Estradiol/farmacologia , Antagonistas de Estrogênios/química , Antagonistas de Estrogênios/farmacologia , Feminino , Humanos , Células MCF-7 , Modelos Moleculares , Simulação de Dinâmica Molecular , Estrutura Molecular , Estilbenos/química , Estilbenos/farmacologia , Relação Estrutura-Atividade
15.
Nat Commun ; 11(1): 2165, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32358493

RESUMO

Brain glucose-sensing neurons detect glucose fluctuations and prevent severe hypoglycemia, but mechanisms mediating functions of these glucose-sensing neurons are unclear. Here we report that estrogen receptor-α (ERα)-expressing neurons in the ventrolateral subdivision of the ventromedial hypothalamic nucleus (vlVMH) can sense glucose fluctuations, being glucose-inhibited neurons (GI-ERαvlVMH) or glucose-excited neurons (GE-ERαvlVMH). Hypoglycemia activates GI-ERαvlVMH neurons via the anoctamin 4 channel, and inhibits GE-ERαvlVMH neurons through opening the ATP-sensitive potassium channel. Further, we show that GI-ERαvlVMH neurons preferentially project to the medioposterior arcuate nucleus of the hypothalamus (mpARH) and GE-ERαvlVMH neurons preferentially project to the dorsal Raphe nuclei (DRN). Activation of ERαvlVMH to mpARH circuit and inhibition of ERαvlVMH to DRN circuit both increase blood glucose. Thus, our results indicate that ERαvlVMH neurons detect glucose fluctuations and prevent severe hypoglycemia in mice.


Assuntos
Receptor alfa de Estrogênio/metabolismo , Glucose/metabolismo , Neurônios/metabolismo , Animais , Eletrofisiologia , Endocrinologia , Feminino , Camundongos , Camundongos Transgênicos , Reação em Cadeia da Polimerase em Tempo Real
16.
Nat Cell Biol ; 22(6): 701-715, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32424275

RESUMO

Acquired therapy resistance is a major problem for anticancer treatment, yet the underlying molecular mechanisms remain unclear. Using an established breast cancer cellular model, we show that endocrine resistance is associated with enhanced phenotypic plasticity, indicated by a general downregulation of luminal/epithelial differentiation markers and upregulation of basal/mesenchymal invasive markers. Consistently, similar gene expression changes are found in clinical breast tumours and patient-derived xenograft samples that are resistant to endocrine therapies. Mechanistically, the differential interactions between oestrogen receptor α and other oncogenic transcription factors, exemplified by GATA3 and AP1, drive global enhancer gain/loss reprogramming, profoundly altering breast cancer transcriptional programs. Our functional studies in multiple culture and xenograft models reveal a coordinated role of GATA3 and AP1 in re-organizing enhancer landscapes and regulating cancer phenotypes. Collectively, our study suggests that differential high-order assemblies of transcription factors on enhancers trigger genome-wide enhancer reprogramming, resulting in transcriptional transitions that promote tumour phenotypic plasticity and therapy resistance.


Assuntos
Adaptação Fisiológica , Neoplasias da Mama/tratamento farmacológico , Reprogramação Celular , Resistencia a Medicamentos Antineoplásicos , Fator de Transcrição GATA3/metabolismo , Regulação Neoplásica da Expressão Gênica , Fator de Transcrição AP-1/metabolismo , Animais , Antineoplásicos Hormonais/farmacologia , Apoptose , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Proliferação de Células , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Feminino , Fator de Transcrição GATA3/genética , Humanos , Camundongos , Camundongos Nus , Tamoxifeno/farmacologia , Fator de Transcrição AP-1/genética , Ativação Transcricional , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
17.
J Surg Oncol ; 122(2): 144-154, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32346902

RESUMO

Over the past two decades, gene expression profiling of breast cancer has emerged as an important tool in early-stage breast cancer management. The approach provides important information on underlying biological mechanisms, breast cancer classification, future risk potential of developing recurrent metastatic disease, and provides beneficial clues for adjuvant chemotherapy in hormone receptor (HR) positive breast cancer. Of the commercially available genomic tests for breast cancer, the prognostic and predictive value of 21-gene recurrence score tests have been validated using both retrospective data and prospective clinical trials. In this paper, we reviewed the current evidence on 21-gene expression profiles for HR-positive HER2-negative early-stage breast cancer management. We show that current evidence supports endocrine therapy alone as an appropriate adjuvant systemic therapy for approximately 70% of women with HR-positive, HER2-negative, node-negative breast cancer. Evolving evidence also suggests that 21-gene recurrence scores have predictive values for node-positive breast cancer and that chemotherapy can be avoided in more than half of women with nodes 1 to 3 positive HR-positive breast cancer. Furthermore, retrospective data also supports the predictive role of 21-gene recurrence scores for adjuvant radiation therapy. A prospective trial in this area is ongoing.


Assuntos
Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Receptor alfa de Estrogênio/metabolismo , Recidiva Local de Neoplasia/genética , Receptores de Progesterona/metabolismo , Neoplasias da Mama/patologia , Feminino , Perfilação da Expressão Gênica , Testes Genéticos , Humanos , Recidiva Local de Neoplasia/metabolismo , Recidiva Local de Neoplasia/patologia , Estadiamento de Neoplasias , Valor Preditivo dos Testes
18.
Toxicol Appl Pharmacol ; 395: 114977, 2020 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-32234386

RESUMO

Plastic in the ocean degrades to microplastic, thereby enhancing the leaching of incorporated plasticizers due to the increased particle surface. The uptake of microplastic-derived plasticizers by marine animals and the subsequent entry in the food chain raises concerns for adverse health effects in human beings. Frequently used plasticizers as the organophosphate ester tri-o-cresyl phosphate (TOCP) are known to affect the male reproductive system. However, the overall endocrine potential of TOCP and the underlying molecular mechanisms remain elusive as yet. In this study, we investigated the molecular effects of TOCP on estrogen receptor α (ERα)-transfected HEK-ESR1 cells and the human breast cancer cell line MCF-7. Applying virtual screening and molecular docking, we identified TOCP as potent ligand of ERα in silico. Microscale thermophoresis confirmed the binding in vitro with similar intensity as the natural ligand 17-ß-estradiol. To identify the molecular mechanisms of TOCP-mediated effects, we used next-generation sequencing to analyze the gene expression pattern of TOCP-treated MCF-7 cells. RNA-sequencing revealed 22 differently expressed genes associated with ESR1 as upstream regulator: CYP1A1, SLC7A11, RUNX2, DDIT4, STC2, KLHL24, CCNG2, CEACAM5, SLC7A2, MAP1B, SLC7A5, IGF1R, CD55, FOSL2, VEGFA, and HSPA13 were upregulated and PRKCD, CCNE1, CEBPA, SFPQ, TNFAIP2, KRT19 were downregulated. The affected genes promote tumor growth by increasing angiogenesis and nutritional supply, favor invasion and metastasis, and interfere with the cell cycle. Based on the gene expression pattern, we conclude TOCP to mediate endocrine effects on MCF-7 cells by interacting with ERα.


Assuntos
Neoplasias da Mama/patologia , Receptor alfa de Estrogênio/efeitos dos fármacos , Plastificantes/toxicidade , Tritolil Fosfatos/toxicidade , Neoplasias da Mama/genética , Ciclo Celular/genética , Disruptores Endócrinos , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células HEK293 , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Células MCF-7 , Masculino , Modelos Moleculares , Simulação de Acoplamento Molecular , Invasividade Neoplásica/genética , Metástase Neoplásica/genética , Neovascularização Patológica/genética , RNA/química , Transfecção , Tritolil Fosfatos/metabolismo
19.
Toxicol Appl Pharmacol ; 396: 114995, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32251684

RESUMO

Currently, the environmental impact of ubiquitous plastic debris triggered quite some public attention. However, the global impact of microplastic on human health is by and large either unknown or neglected. By looking at the underlying biochemical mechanisms leading to the global health threat microplastic was discovered to carry persistent organic pollutants, such as polycyclic aromatic hydrocarbons (PAH), to marine life. The effect of microplastic-ingestion in the human body remains unfortunately somewhat elusive as of yet. For this reason, we screened for compounds binding to the human estrogen receptor α (ERα) and identified the PAH compounds indeno[1,2,3-cd]pyrene (Indpy) and picene (Pice) with a high binding affinity. We applied next generation sequencing to analyze the differentially expressed genes in MCF-7 cells after treatment with Indpy and Pice. We found 8 upregulated genes: ABCC5, CCNG2, CYP1A1, DDIT4, IER3, RUNX2, STC2, and SLC7A5 and 14 downregulated genes: ADORA1, CEBPB, CELSR2, CTSD, CXCL12, KRT19, PGR, PKIB, RARA, RET, SEMA3B, SIAH2, TFAP2C, and XBP1 induced by both ligands and associated with ESR1-regulation. The altered gene expression may influence cell proliferation and metastasis, favoring cancer development with a poor response to therapy. In addition, we confirmed the binding of Indpy and Pice to ERα using molecular docking and microscale thermophoresis. ERα activation was measured with ESR1-overexpressing HEK293 (HEK-ESR1) cells and confirmed for Indpy. In conclusion, we showed an ESR1-mediated influence of the PAH compounds Indpy and Pice on the gene expression pattern of MCF-7 cells, possibly also promoting breast cancer development in patients.


Assuntos
Crisenos/farmacologia , Receptor alfa de Estrogênio/metabolismo , Expressão Gênica/efeitos dos fármacos , Pirenos/farmacologia , Transdução de Sinais/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Células MCF-7/efeitos dos fármacos , Simulação de Acoplamento Molecular , Reação em Cadeia da Polimerase em Tempo Real
20.
Orv Hetil ; 161(14): 532-543, 2020 Apr.
Artigo em Húngaro | MEDLINE | ID: mdl-32223415

RESUMO

Colorectal cancer (CRC) is one of the most common types of cancers worldwide. The incidence of sporadic CRC is lower in individuals below 50 years and increases with age, furthermore, it shows typical clinical, macroscopic and molecular differences between females and males. According to the results of epidemiological and molecular biology studies, the estradiol-regulating signaling pathway plays an important role in the development and prognosis of CRC, predominantly through estrogen receptor beta (ERß), which is dominant in the colonic epithelium. Estradiol has multiple gastrointestinal effects, which were confirmed by in vitro and in vivo studies on histologically intact and cancerous cells as well. In contrast to estrogen receptor alpha (ERα), the activation of ERß inhibits cell proliferation and enhances apoptosis, nevertheless, the expression of estrogen receptor beta can change both during physiological ageing and in colorectal disorders. The ERß-mediated antitumour effects of estradiol may be exerted through inhibition of cell proliferation, stimulation of apoptosis, inhibition of metastasis formation and its anti-inflammatory activity. Based on the results of cell culture and animal studies, selective modulators of estrogen receptor beta (selective estrogen receptor modulator [SERM]) and phytoestrogens can be new, additional therapeutic options in the treatment of colorectal diseases characterized by chronic inflammation and uncontrolled cell proliferation. Orv Hetil. 2020; 161(14): 532-543.


Assuntos
Neoplasias Colorretais/metabolismo , Estrogênios/metabolismo , Estradiol/metabolismo , Receptor alfa de Estrogênio/metabolismo , Receptor beta de Estrogênio/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA