Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.896
Filtrar
1.
Life Sci ; 242: 117211, 2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-31891720

RESUMO

Ventricular hypertrophy is a risk factors for arrhythmias, ischemia and sudden death. It involves cellular modifications leading to a pathological remodeling and is associated with heart failure. The activation of the G protein-coupled estrogen receptor (GPER) mediates beneficial actions in the cardiovascular system. Our goal was to prevent and regress the hypertrophy by the activation of GPER in neonatal cardiac myocytes (NRCM) and SHR male rats. Aldosterone increased the neonatal cardiomyocytes cell surface area after 48 h of incubation. The aldo-induced hypertrophy was blocked by the mineralocorticoid receptor (MR) inhibitor Eplererone or the reduction of MR expression by siRNA. The activation of GPER by the agonist G-1 totally prevented the increase surface area by Ald. The transfection of neonatal rat cardiac myocytes with a siRNA against GPER or the incubation with GPER blockers G-15 and G-36 inhibited the protection of G-1. The significant increase of cell surface area after 48 h of incubation with Ald was totally regressed in 24 h by the presence of G-1, indicating that the activation of GPER not only prevent the hypertrophy but also regress the hypertrophy when it is already established. In the in vivo model, G-1 or Vehicle was constantly infused via the minipump to SHR. The reduction of the hypertrophy by G-1 was evident by the cross-sectional area, BNP and ANP markers and by echocardiography. In this studied we demonstrated that the activation of GPER prevented and regressed the hypertrophy induced by Ald in NRCM and regressed hypertrophy in SHR rats.


Assuntos
Cardiomegalia/prevenção & controle , Receptores Acoplados a Proteínas-G/metabolismo , Animais , Animais Recém-Nascidos , Western Blotting , Cardiomegalia/diagnóstico por imagem , Células Cultivadas , Ciclopentanos/farmacologia , Ecocardiografia , Eplerenona/farmacologia , Masculino , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Quinolinas/farmacologia , Ratos , Ratos Endogâmicos SHR , Ratos Wistar , Reação em Cadeia da Polimerase em Tempo Real , Receptores Acoplados a Proteínas-G/antagonistas & inibidores , Receptores Acoplados a Proteínas-G/fisiologia
2.
Eur J Med Chem ; 186: 111789, 2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31727469

RESUMO

Dual- or multi-target drugs are particularly promising for the treatment of complex diseases such as (neuro)inflammatory disorders. In the present study, we identified dual antagonists for two related pro-inflammatory G protein-coupled receptors (GPCRs), the purinergic receptor P2Y2 receptor, and the orphan receptor GPR17. Based on the lead compound suramin small molecules were designed, synthesized, and modified, including benzenesulfonate, benzenesulfonamide, dibenzamide and diphenylurea derivatives. Structure-activity relationship studies identified 3-nitrophenyl 4-benzamidobenzenesulfonic acid derivatives as dual P2Y2R/GPR17 antagonists. In particular, 3-nitrophenyl 4-(4-chlorobenzamido)benzenesulfonate (14l, IC50 3.01 µM at P2Y2R, and 3.37  µM at GPR17) and 3-nitrophenyl-4-(2-chlorobenzamido)benzenesulfonate (14m, IC50 3.17 µM at P2Y2R, and 1.67 µM at GPR17) exhibited dual antagonistic activity. Compound 14l was shown to act as an allosteric antagonist at both receptors. In addition, GPR17-selective antagonists were identified including 3-nitrophenyl 4-benzamidobenzenesulfonate (14a, IC50 3.20 µM) and 3-nitrophenyl 4-(3-(trifluoromethyl)benzamido)benzenesulfonate (14f, IC50 3.88 µM). The developed antagonists were selective versus other closely related P2Y receptors. They were found to possess high chemical and metabolic stability in human liver microsomes and therefore present good starting points for developing potent multi-target drugs with potential applications in inflammatory diseases.


Assuntos
Desenho de Drogas , Receptores Acoplados a Proteínas-G/antagonistas & inibidores , Receptores Purinérgicos P2Y2/metabolismo , Suramina/farmacologia , Animais , Células CHO , Cricetulus , Relação Dose-Resposta a Droga , Humanos , Microssomos Hepáticos/química , Microssomos Hepáticos/metabolismo , Estrutura Molecular , Receptores Acoplados a Proteínas-G/metabolismo , Relação Estrutura-Atividade , Suramina/síntese química , Suramina/química
3.
Curr Top Med Chem ; 19(19): 1712-1733, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31659944

RESUMO

During the early preclinical phase, from hit identification and optimization to a lead compound, several medicinal chemistry strategies can be used to improve potency and/or selectivity. The conformational restriction is one of these approaches. It consists of introducing some specific structural constraints in a lead candidate to reduce the overall number of possible conformations in order to favor the adoption of a bioactive conformation and, as a consequence, molecular recognition by the target receptor. In this work, we focused on the application of the conformational restriction strategy in the last five years for the optimization of hits and/or leads of several important classes of therapeutic targets in the drug discovery field. Thus, we recognize the importance of several kinase inhibitors to the current landscape of drug development for cancer therapy and the use of G-protein Coupled Receptor (GPCR) modulators. Several other targets are also highlighted, such as the class of epigenetic drugs. Therefore, the possibility of exploiting conformational restriction as a tool to increase the potency and selectivity and promote changes in the intrinsic activity of some ligands intended to act on many different targets makes this strategy of structural modification valuable for the discovery of novel drug candidates.


Assuntos
Antineoplásicos/farmacologia , Neoplasias/tratamento farmacológico , Receptores Acoplados a Proteínas-G/antagonistas & inibidores , Antineoplásicos/química , Química Farmacêutica , Descoberta de Drogas , Humanos , Estrutura Molecular , Neoplasias/metabolismo , Neoplasias/patologia , Receptores Acoplados a Proteínas-G/metabolismo
4.
PLoS Biol ; 17(10): e3000444, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31589598

RESUMO

The bipartite transcription factor ß-catenin (ß-cat)/T cell factor (TCF), formed by free ß-cat and a given TCF family member, serves as the effector of the developmental Wnt signaling cascade. ß-cat/TCFs also serve as effectors of certain peptide hormones or growth factors during adulthood. We reported that liver-specific expression of dominant-negative Transcription factor 7 like 2 (TCF7L2DN) led to impaired glucose disposal. Here we show that, in this LTCFDN transgenic mouse model, serum and hepatic lipid contents were elevated in male but not in female mice. In hepatocytes, TCF7L2DN adenovirus infection led to stimulated expression of genes that encode lipogenic transcription factors and lipogenic enzymes, while estradiol (E2) treatment attenuated the stimulation, associated with Wnt-target gene activation. Mechanistically, this E2-mediated activation can be attributed to elevated ß-cat Ser675 phosphorylation and TCF expression. In wild-type female mice, ovariectomy (OVX) plus high-fat diet (HFD) challenge impaired glucose disposal and insulin tolerance, associated with increased hepatic lipogenic transcription factor sterol regulatory element-binding protein 1-c (SREBP-1c) expression. In wild-type mice with OVX, E2 reconstitution attenuated HFD-induced metabolic defects. Some of the attenuation effects, including insulin intolerance, elevated liver-weight gain, and hepatic SREBP-1c expression, were not affected by E2 reconstitution in HFD-fed LTCFDN mice with OVX. Finally, the effects of E2 in hepatocytes on ß-cat/TCF activation can be attenuated by the G-protein-coupled estrogen receptor (GPER) antagonist G15. Our study thus expanded the scope of functions of the Wnt pathway effector ß-cat/TCF, as it can also mediate hepatic functions of E2 during adulthood. This study also enriches our mechanistic understanding of gender differences in the risk and pathophysiology of metabolic diseases.


Assuntos
Estradiol/farmacologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Proteína 2 Semelhante ao Fator 7 de Transcrição/genética , Via de Sinalização Wnt , beta Catenina/genética , Animais , Benzodioxóis/farmacologia , Dieta Hiperlipídica/efeitos adversos , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Glucose/metabolismo , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Resistência à Insulina , Metabolismo dos Lipídeos/genética , Fígado/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Obesidade/etiologia , Obesidade/genética , Obesidade/metabolismo , Obesidade/patologia , Ovariectomia , Quinolinas/farmacologia , Receptores Estrogênicos/antagonistas & inibidores , Receptores Estrogênicos/genética , Receptores Estrogênicos/metabolismo , Receptores Acoplados a Proteínas-G/antagonistas & inibidores , Receptores Acoplados a Proteínas-G/genética , Receptores Acoplados a Proteínas-G/metabolismo , Fatores Sexuais , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Proteína 2 Semelhante ao Fator 7 de Transcrição/metabolismo , beta Catenina/metabolismo
5.
Nature ; 574(7779): 581-585, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31645725

RESUMO

The tricarboxylic acid cycle intermediate succinate is involved in metabolic processes and plays a crucial role in the homeostasis of mitochondrial reactive oxygen species1. The receptor responsible for succinate signalling, SUCNR1 (also known as GPR91), is a member of the G-protein-coupled-receptor family2 and links succinate signalling to renin-induced hypertension, retinal angiogenesis and inflammation3-5. Because SUCNR1 senses succinate as an immunological danger signal6-which has relevance for diseases including ulcerative colitis, liver fibrosis7, diabetes and rheumatoid arthritis3,8-it is of interest as a therapeutic target. Here we report the high-resolution crystal structure of rat SUCNR1 in complex with an intracellular binding nanobody in the inactive conformation. Structure-based mutagenesis and radioligand-binding studies, in conjunction with molecular modelling, identified key residues for species-selective antagonist binding and enabled the determination of the high-resolution crystal structure of a humanized rat SUCNR1 in complex with a high-affinity, human-selective antagonist denoted NF-56-EJ40. We anticipate that these structural insights into the architecture of the succinate receptor and its antagonist selectivity will enable structure-based drug discovery and will further help to elucidate the function of SUCNR1 in vitro and in vivo.


Assuntos
Compostos de Bifenilo/química , Compostos de Bifenilo/farmacologia , Piperazinas/química , Piperazinas/farmacologia , Receptores Acoplados a Proteínas-G/antagonistas & inibidores , Receptores Acoplados a Proteínas-G/química , Animais , Apoproteínas/antagonistas & inibidores , Apoproteínas/química , Apoproteínas/metabolismo , Cristalografia por Raios X , Humanos , Modelos Moleculares , Ratos , Receptores Acoplados a Proteínas-G/metabolismo , Receptores Purinérgicos P2Y1/química , Transdução de Sinais , Anticorpos de Domínio Único/química , Especificidade da Espécie , Ácido Succínico/metabolismo
6.
Pharmacol Rev ; 71(4): 503-519, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31515243

RESUMO

G protein-coupled receptors (GPCRs) remain one of the most successful targets of U.S. Food and Drug Administration-approved drugs. GPCR research has predominantly focused on the characterization of the intracellular interactome's contribution to GPCR function and pharmacology. However, emerging evidence uncovers a new dimension in the biology of GPCRs involving their extracellular and transcellular interactions that critically impact GPCR function and pharmacology. The seminal examples include a variety of adhesion GPCRs, such as ADGRLs/latrophilins, ADGRBs/brain angiogenesis inhibitors, ADGRG1/GPR56, ADGRG6/GPR126, ADGRE5/CD97, and ADGRC3/CELSR3. However, recent advances have indicated that class C GPCRs that contain large extracellular domains, including group III metabotropic glutamate receptors (mGluR4, mGluR6, mGluR7, mGluR8), γ-aminobutyric acid receptors, and orphans GPR158 and GPR179, can also participate in this form of transcellular regulation. In this review, we will focus on a variety of identified extracellular and transcellular GPCR-interacting partners, including teneurins, neurexins, integrins, fibronectin leucine-rich transmembranes, contactin-6, neuroligin, laminins, collagens, major prion protein, amyloid precursor protein, complement C1q-likes, stabilin-2, pikachurin, dystroglycan, complement decay-accelerating factor CD55, cluster of differentiation CD36 and CD90, extracellular leucine-rich repeat and fibronectin type III domain containing 1, and leucine-rich repeat, immunoglobulin-like domain and transmembrane domains. We provide an account on the diversity of extracellular and transcellular GPCR complexes and their contribution to key cellular and physiologic processes, including cell migration, axon guidance, cellular and synaptic adhesion, and synaptogenesis. Furthermore, we discuss models and mechanisms by which extracellular GPCR assemblies may regulate communication at cellular junctions. SIGNIFICANCE STATEMENT: G protein-coupled receptors (GPCRs) continue to be the prominent focus of pharmacological intervention for a variety of human pathologies. Although the majority of GPCR research has focused on the intracellular interactome, recent advancements have identified an extracellular dimension of GPCR modulation that alters accepted pharmacological principles of GPCRs. Herein, we describe known endogenous allosteric modulators acting on GPCRs both in cis and in trans.


Assuntos
Receptores Acoplados a Proteínas-G/antagonistas & inibidores , Receptores Acoplados a Proteínas-G/metabolismo , Animais , Moléculas de Adesão Celular/metabolismo , Membrana Celular/metabolismo , Humanos , Ligantes , Terapia de Alvo Molecular , Receptores Acoplados a Proteínas-G/química
7.
Pharmacol Rev ; 71(4): 571-595, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31551350

RESUMO

Endogenous ions play important roles in the function and pharmacology of G-protein coupled receptors (GPCRs). Historically the evidence for ionic modulation of GPCR function dates to 1973 with studies of opioid receptors, where it was demonstrated that physiologic concentrations of sodium allosterically attenuated agonist binding. This Na+-selective effect was distinct from effects of other monovalent and divalent cations, with the latter usually counteracting sodium's negative allosteric modulation of binding. Since then, numerous studies documenting the effects of mono- and divalent ions on GPCR function have been published. While ions can act selectively and nonselectively at many sites in different receptors, the discovery of the conserved sodium ion site in class A GPCR structures in 2012 revealed the unique nature of Na+ site, which has emerged as a near-universal site for allosteric modulation of class A GPCR structure and function. In this review, we synthesize and highlight recent advances in the functional, biophysical, and structural characterization of ions bound to GPCRs. Taken together, these findings provide a molecular understanding of the unique roles of Na+ and other ions as GPCR allosteric modulators. We will also discuss how this knowledge can be applied to the redesign of receptors and ligand probes for desired functional and pharmacological profiles. SIGNIFICANCE STATEMENT: The function and pharmacology of GPCRs strongly depend on the presence of mono and divalent ions in experimental assays and in living organisms. Recent insights into the molecular mechanism of this ion-dependent allosterism from structural, biophysical, biochemical, and computational studies provide quantitative understandings of the pharmacological effects of drugs in vitro and in vivo and open new avenues for the rational design of chemical probes and drug candidates with improved properties.


Assuntos
Receptores Acoplados a Proteínas-G/antagonistas & inibidores , Receptores Acoplados a Proteínas-G/metabolismo , Sódio/metabolismo , Sítio Alostérico , Ânions/química , Ânions/metabolismo , Sítios de Ligação , Cátions Bivalentes/química , Cátions Bivalentes/metabolismo , Cátions Monovalentes/química , Cátions Monovalentes/metabolismo , Cloretos/química , Cloretos/metabolismo , Cristalografia por Raios X , Humanos , Ligantes , Conformação Proteica , Receptores Acoplados a Proteínas-G/química , Sódio/química , Relação Estrutura-Atividade , Zinco/química , Zinco/metabolismo
8.
Curr Top Med Chem ; 19(16): 1436-1444, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31512997

RESUMO

Type 2 diabetes is a major health issue worldwide with complex metabolic and endocrine abnormalities. Hyperglycemia, defects in insulin secretion and insulin resistance are classic features of type 2 diabetes. Insulin signaling regulates metabolic homeostasis by regulating glucose and lipid turnover in the liver, skeletal muscle and adipose tissue. Major treatment modalities for diabetes include the drugs from the class of sulfonyl urea, Insulin, GLP-1 agonists, SGLT2 inhibitors, DPP-IV inhibitors and Thiazolidinediones. Emerging antidiabetic therapeutics also include classes of drugs targeting GPCRs in the liver, adipose tissue and skeletal muscle. Interestingly, recent research highlights several shared intermediates between insulin and GPCR signaling cascades opening potential novel avenues for diabetic drug discovery.


Assuntos
Diabetes Mellitus Tipo 2/tratamento farmacológico , Descoberta de Drogas , Hipoglicemiantes/farmacologia , Receptor de Insulina/antagonistas & inibidores , Receptores Acoplados a Proteínas-G/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Animais , Diabetes Mellitus Tipo 2/metabolismo , Humanos , Hipoglicemiantes/química , Receptor de Insulina/metabolismo , Receptores Acoplados a Proteínas-G/metabolismo
10.
Nutrients ; 11(9)2019 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-31509959

RESUMO

Being averse to bitter taste is a common phenomenon for humans and other animals, which requires the pharmaceutical and food industries to source compounds that can block bitterness intensity and increase consumer acceptability. In this work, beef protein alcalase hydrolysates (BPAH) and chymotrypsin hydrolysates (BPCH) were reacted with glucose to initiate Maillard reactions that led to the formation of glycated or advanced glycation end products (AGEs), BPAH-AGEs and BPCH-AGEs, respectively. The degree of glycation was higher for the BPAH-AGEs (47-55%) than the BPCH-AGEs (30-38%). Analysis by an electronic tongue instrument showed that BPAH-AGEs and BPCH-AGEs had bitterness scores that were significantly (p < 0.05) less than quinine. The addition of BPAH-AGEs or BPCH-AGEs to quinine led to significant (p < 0.05) reductions (up to 38%) in bitterness intensity of quinine. The use of 3% hydrolysate to react with glucose yielded glycated peptides with a stronger ability to reduce quinine bitterness than when 1% was used. Calcium release from HEK293T cells stably expressing the T2R4 human bitter taste receptor was significantly (p < 0.05) attenuated by BPAH-AGEs (up to 96%) and BPCH-AGEs (up to 92%) when compared to the BPAH (62%) and BPCH (3%) or quinine (0%). We concluded that BPAH-AGEs and BPCH-AGEs may be used as bitter taste blockers to formulate better tasting foods.


Assuntos
Aromatizantes/farmacologia , Produtos Finais de Glicação Avançada/farmacologia , Proteínas de Carne/farmacologia , Hidrolisados de Proteína/farmacologia , Paladar/efeitos dos fármacos , Sinalização do Cálcio/efeitos dos fármacos , Quimotripsina , Nariz Eletrônico , Aromatizantes/metabolismo , Produtos Finais de Glicação Avançada/metabolismo , Glicosilação , Células HEK293 , Humanos , Reação de Maillard , Proteínas de Carne/metabolismo , Hidrolisados de Proteína/metabolismo , Receptores Acoplados a Proteínas-G/antagonistas & inibidores , Receptores Acoplados a Proteínas-G/metabolismo , Subtilisinas/metabolismo
11.
BMC Cancer ; 19(1): 810, 2019 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-31412816

RESUMO

BACKGROUND: Endometrial cancer is the most common gynecological cancer. G-protein coupled receptor 64 (GPR64) belongs to a family of adhesion GPCRs and plays an important role in male fertility. However, the function of GPR64 has not been studied in endometrial cancer. Our objective is to investigate the role of GPR64 in endometrial cancer. METHODS: We examined the levels of GPR64 in human endometrioid endometrial carcinoma by immunohistochemistry analysis. To determine a tumor suppressor role of GPR64 in endometrial cancer, we used a siRNA loss of function approach in human endometrial adenocarcinoma cell lines. RESULTS: GPR64 levels were remarkably lower in 10 of 21 (47.62%) of endometrial carcinoma samples compared to control. Depletion of GPR64 by siRNA transfection revealed an increase of colony formation ability, cell proliferation, cell migration, and invasion activity in Ishikawa and HEC1A cells. The expression of Connexin 43 (Cx43), a member of the large family of gap junction proteins, was reduced through activation of AMP-activated protein kinase (AMPK) in Ishikawa cells with GPR64-deficicy. CONCLUSIONS: These results suggest that GPR64 plays an important tumor suppressor role in endometrial cancer.


Assuntos
Carcinoma Endometrioide/patologia , Neoplasias do Endométrio/patologia , Receptores Acoplados a Proteínas-G/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Carcinoma Endometrioide/genética , Carcinoma Endometrioide/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Conexina 43/metabolismo , Neoplasias do Endométrio/genética , Neoplasias do Endométrio/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Invasividade Neoplásica , Fosforilação , RNA Interferente Pequeno , Receptores Acoplados a Proteínas-G/antagonistas & inibidores , Receptores Acoplados a Proteínas-G/genética
12.
Curr Top Med Chem ; 19(16): 1464-1483, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31264549

RESUMO

The great clinical success of chimeric antigen receptor T cell (CAR-T) and PD-1/PDL-1 inhibitor therapies suggests the drawing of a cancer immunotherapy age. However, a considerable proportion of cancer patients currently receive little benefit from these treatment modalities, indicating that multiple immunosuppressive mechanisms exist in the tumor microenvironment. In this review, we mainly discuss recent advances in small molecular regulators targeting G Protein-Coupled Receptors (GPCRs) that are associated with oncology immunomodulation, including chemokine receptors, purinergic receptors, prostaglandin E receptor EP4 and opioid receptors. Moreover, we outline how they affect tumor immunity and neoplasia by regulating immune cell recruitment and modulating tumor stromal cell biology. We also summarize the data from recent clinical advances in small molecular regulators targeting these GPCRs, in combination with immune checkpoints blockers, such as PD-1/PDL-1 and CTLA4 inhibitors, for cancer treatments.


Assuntos
Imunoterapia , Terapia de Alvo Molecular , Neoplasias/metabolismo , Neoplasias/terapia , Receptores Acoplados a Proteínas-G/antagonistas & inibidores , Bibliotecas de Moléculas Pequenas/farmacologia , Animais , Antígeno CTLA-4/antagonistas & inibidores , Antígeno CTLA-4/metabolismo , Humanos , Receptores Acoplados a Proteínas-G/metabolismo , Bibliotecas de Moléculas Pequenas/química
13.
Nat Struct Mol Biol ; 26(7): 535-544, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31270468

RESUMO

Metabotropic receptors are responsible for so-called 'slow synaptic transmission' and mediate the effects of hundreds of peptide and non-peptide neurotransmitters and neuromodulators. Over the past decade or so, a revolution in membrane-protein structural determination has clarified the molecular determinants responsible for the actions of these receptors. This Review focuses on the G protein-coupled receptors (GPCRs) that are targets of neuropsychiatric drugs and shows how insights into the structure and function of these important synaptic proteins are accelerating understanding of their actions. Notably, elucidating the structure and function of GPCRs should enhance the structure-guided discovery of novel chemical tools with which to manipulate and understand these synaptic proteins.


Assuntos
Descoberta de Drogas , Receptores Acoplados a Proteínas-G/metabolismo , Transmissão Sináptica/efeitos dos fármacos , Animais , Fármacos do Sistema Nervoso Central/química , Fármacos do Sistema Nervoso Central/farmacologia , Desenho de Drogas , Descoberta de Drogas/métodos , Humanos , Transtornos Mentais/tratamento farmacológico , Modelos Moleculares , Terapia de Alvo Molecular , Neurotransmissores/metabolismo , Receptores Acoplados a Proteínas-G/agonistas , Receptores Acoplados a Proteínas-G/antagonistas & inibidores , Receptores Acoplados a Proteínas-G/química , Receptores de Glutamato Metabotrópico/agonistas , Receptores de Glutamato Metabotrópico/antagonistas & inibidores , Receptores de Glutamato Metabotrópico/química , Receptores de Glutamato Metabotrópico/metabolismo
14.
Eur J Med Chem ; 180: 673-689, 2019 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-31357129

RESUMO

Schizophrenia is a complex disease with not fully understood pathomechanism, involving many neurotransmitters and their receptors. This is why it is best treated with multi-target drugs, such as second generation antipsychotics. Here we present 5-substituted-3-(1-arylmethyl-1,2,3,6-tetrahydropyridin-4-yl)-1H-indoles (1-20) which are ligands of dopamine D2 and serotonin 5-HT1A and 5-HT2A receptors and display affinity in the nanomolar range. These compounds were designed as modifications of the virtual hit experimentally confirmed, D2AAK1, and synthesized from indole or 5-alkoxyindoles and N-substituted piperidin-4-ones in methanol in the presence of potassium hydroxide. Compound 9 was subjected to X-ray studies and it crystallizes in the centrosymmetric monoclinic space group P21/c with one molecule in an asymmetric unit. Three most potent compounds (5, 9 and 17) turned out to be antagonists of both D2 and 5-HT2A receptors what is beneficial for their potential application as antipsychotics. Compound 5 was subjected to behavioral studies and exhibited antipsychotic, pro-cognitive and antidepressant activity in appropriate mice models. Structure-activity relationships for compounds 1-20 were rationalized using molecular docking. It was found that, in general, bulky C5-alkoxy substituents at the indole moiety are not favorable as they direct towards aqueous environment of the extracellular vestibule. Keywords: antipsychotics; behavioral studies, G protein-coupled receptors; indole derivatives; multi-target compounds; schizophrenia.


Assuntos
Antipsicóticos/farmacologia , Indóis/farmacologia , Receptores Acoplados a Proteínas-G/antagonistas & inibidores , Migração Animal/efeitos dos fármacos , Animais , Antipsicóticos/síntese química , Antipsicóticos/química , Células CHO , Cricetulus , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Células HEK293 , Humanos , Indóis/síntese química , Indóis/química , Ligantes , Masculino , Camundongos , Estrutura Molecular , Receptores Acoplados a Proteínas-G/metabolismo , Relação Estrutura-Atividade
15.
Handb Exp Pharmacol ; 256: 137-165, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31201554

RESUMO

In the recent years, bile acid receptors FXR and GPBAR1 have attracted the interest of scientific community and companies, as they proved promising targets for the treatment of several diseases, ranging from liver cholestatic disorders to metabolic syndrome, inflammatory states, nonalcoholic steatohepatitis (NASH), and diabetes.Consequently, the development of dual FXR/GPBAR1 agonists, as well as selective targeting of one of these receptors, is considered a hopeful possibility in the treatment of these disorders. Because endogenous bile acids and steroidal ligands, which cover the same chemical space of bile acids, often target both receptor families, speculation on nonsteroidal ligands represents a promising and innovative strategy to selectively target GPBAR1 or FXR.In this review, we summarize the most recent acquisition on natural, semisynthetic, and synthetic steroidal and nonsteroidal ligands, able to interact with FXR and GPBAR1.


Assuntos
Ácidos e Sais Biliares/química , Receptores Citoplasmáticos e Nucleares/agonistas , Receptores Citoplasmáticos e Nucleares/antagonistas & inibidores , Receptores Acoplados a Proteínas-G/agonistas , Receptores Acoplados a Proteínas-G/antagonistas & inibidores , Ácidos e Sais Biliares/farmacologia , Humanos , Ligantes
16.
Nat Immunol ; 20(7): 835-851, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31160797

RESUMO

How tumor cells genetically lose antigenicity and evade immune checkpoints remains largely elusive. We report that tissue-specific expression of the human long noncoding RNA LINK-A in mouse mammary glands initiates metastatic mammary gland tumors, which phenotypically resemble human triple-negative breast cancer (TNBC). LINK-A expression facilitated crosstalk between phosphatidylinositol-(3,4,5)-trisphosphate and inhibitory G-protein-coupled receptor (GPCR) pathways, attenuating protein kinase A-mediated phosphorylation of the E3 ubiquitin ligase TRIM71. Consequently, LINK-A expression enhanced K48-polyubiquitination-mediated degradation of the antigen peptide-loading complex (PLC) and intrinsic tumor suppressors Rb and p53. Treatment with LINK-A locked nucleic acids or GPCR antagonists stabilized the PLC components, Rb and p53, and sensitized mammary gland tumors to immune checkpoint blockers. Patients with programmed ccll death protein-1(PD-1) blockade-resistant TNBC exhibited elevated LINK-A levels and downregulated PLC components. Hence we demonstrate lncRNA-dependent downregulation of antigenicity and intrinsic tumor suppression, which provides the basis for developing combinational immunotherapy treatment regimens and early TNBC prevention.


Assuntos
Apresentação do Antígeno/imunologia , Regulação Neoplásica da Expressão Gênica , Neoplasias/genética , Neoplasias/imunologia , Oncogenes , RNA Longo não Codificante/genética , Evasão Tumoral/genética , Evasão Tumoral/imunologia , Adenoma/genética , Adenoma/metabolismo , Animais , Linhagem Celular Tumoral , Proliferação de Células , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Humanos , Camundongos , Neoplasias/metabolismo , Neoplasias/patologia , Fosforilação , Receptores Acoplados a Proteínas-G/antagonistas & inibidores , Microambiente Tumoral/genética , Microambiente Tumoral/imunologia , Proteína Supressora de Tumor p53/metabolismo , Ubiquitinação , Ensaios Antitumorais Modelo de Xenoenxerto
17.
Nat Cell Biol ; 21(5): 614-626, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31036939

RESUMO

Cell growth is controlled by a lysosomal signalling complex containing Rag small GTPases and mammalian target of rapamycin complex 1 (mTORC1) kinase. Here, we carried out a microscopy-based genome-wide human short interfering RNA screen and discovered a lysosome-localized G protein-coupled receptor (GPCR)-like protein, GPR137B, that interacts with Rag GTPases, increases Rag localization and activity, and thereby regulates mTORC1 translocation and activity. High GPR137B expression can recruit and activate mTORC1 in the absence of amino acids. Furthermore, GPR137B also regulates the dissociation of activated Rag from lysosomes, suggesting that GPR137B controls a cycle of Rag activation and dissociation from lysosomes. GPR137B-knockout cells exhibited defective autophagy and an expanded lysosome compartment, similar to Rag-knockout cells. Like zebrafish RagA mutants, GPR137B-mutant zebrafish had upregulated TFEB target gene expression and an expanded lysosome compartment in microglia. Thus, GPR137B is a GPCR-like lysosomal regulatory protein that controls dynamic Rag and mTORC1 localization and activity as well as lysosome morphology.


Assuntos
Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Genoma Humano/genética , Proteínas Monoméricas de Ligação ao GTP/genética , Receptores Acoplados a Proteínas-G/genética , Animais , Autofagia/genética , Regulação da Expressão Gênica/genética , Humanos , Lisossomos/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Microglia/metabolismo , Complexos Multiproteicos/química , Complexos Multiproteicos/genética , RNA Interferente Pequeno/genética , Receptores Acoplados a Proteínas-G/antagonistas & inibidores , Peixe-Zebra/genética , Peixe-Zebra/crescimento & desenvolvimento
18.
Mol Med Rep ; 19(6): 5015-5022, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31059088

RESUMO

Sweet taste receptors (STRs) expressed on ß­cells stimulate insulin secretion in response to an increase in the circulating level of glucose, maintaining glucose homeostasis. 3­Deoxyglucosone (3DG), a highly reactive α­dicarbonyl compound, has been previously described as an independent factor associate with the development of prediabetes. In our previous study, pathological plasma levels of 3DG were induced in normal rats with a single intravenous injection of 50 mg/kg 3DG, and an acute rise in circulating 3DG induced glucose intolerance by impairing the function of pancreatic ß­cells. The present study aimed to investigate whether the deleterious effects of pathological plasma levels of 3DG on ß­cell function and insulin secretion were associated with STRs. INS­1 cells, an in vitro model to study rat ß­cells, were treated with various concentrations of 3DG (1.85, 30.84 and 61.68 mM) or lactisole (5 mM). Pancreatic islets were collected from rats 2 h after a single intravenous injection of 50 mg/kg 3DG + 0.5 g/kg glucose. The insulin concentration was measured by ELISA. The protein expression levels of components of the STR signaling pathways were determined by western blot analysis. Treatment with 3DG and 25.5 mM glucose for 1 h significantly reduced insulin secretion by INS­1 cells, which was consistent with the phenotype observed in INS­1 cells treated with the STR inhibitor lactisole. Accordingly, islets isolated from rats treated with 3DG exhibited a significant reduction in insulin secretion following treatment with 25.5 mM glucose. Furthermore, acute exposure of INS­1 cells to 3DG following treatment with 25.5 mM glucose for 1 h significantly reduced the protein expression level of the STR subunit taste 1 receptor member 3 and its downstream factors, transient receptor potential cation channel subfamily M member 5 and glucose transporter 2. Notably, islet tissues collected from rats treated with 3DG exhibited a similar downregulation of these factors. The present results suggested that acute exposure to pathologically relevant levels of 3DG in presence of high physiological levels of glucose decreased insulin secretion from ß­cells by, at least in part, downregulating the STR signaling pathway.


Assuntos
Desoxiglucose/análogos & derivados , Glucose/farmacologia , Secreção de Insulina/efeitos dos fármacos , Receptores Acoplados a Proteínas-G/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Derivados de Benzeno/farmacologia , Células Cultivadas , Desoxiglucose/farmacologia , Regulação para Baixo/efeitos dos fármacos , Transportador de Glucose Tipo 2/metabolismo , Células Secretoras de Insulina/citologia , Células Secretoras de Insulina/metabolismo , Masculino , Ratos , Ratos Sprague-Dawley , Receptores Acoplados a Proteínas-G/antagonistas & inibidores , Canais de Cátion TRPM/metabolismo
19.
Int J Mol Sci ; 20(11)2019 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-31142011

RESUMO

Nonalcoholic fatty liver disease is a frequent liver malady, which can progress to cirrhosis, the end-stage liver disease if proper treatment is not applied. Omega-3 fatty acids, such as docosahexaenoic acid (DHA) and eicosapentaenoic acid, have been clinically proven to lower serum triglyceride levels. Various physiological activities of omega-3 fatty acids are due to their agonistic actions on G-protein-coupled receptor 40 (GPR40) and GPR120. Lipid droplets (LD) accumulation in hepatocytes confirmed that DHA treatment reduced the number of larger ( >10 µm2) LDs, as well as the total area of LDs. Moreover, DHA lowered protein and mRNA expression levels of lipogenic enzymes such as fatty acid synthase (FAS), acetyl-CoA carboxylase and stearoyl-CoA desaturase-1 (SCD-1) in primary hepatocytes incubated with liver X receptor (LXR) agonist T0901317 or high glucose and insulin. DHA also decreased protein expression of nuclear and precursor sterol response-element binding protein (SREBP)-1, a key lipogenesis transcription factor. We further found that exposure of murine primary hepatocytes to DHA for 12 h increased GPR40 and GPR120 mRNA levels. Specific agonists (Compound A for GPR120 and AMG-1638 for GPR40), hepatocytes from GPR120 knock-out mice and GPR40 selective antagonist (GW1100) were used to assess whether DHA's antilipogenic effects are mediated through GPR120 or GPR40. Compound A did not decrease SREBP-1 and FAS protein expression in hepatocytes exposed to T0901317 or high glucose with insulin. Moreover, DHA downregulated lipogenesis enzyme expression in GPR120-null hepatocytes. In contrast, AMG-1638 lowered SREBP-1 and SCD-1 protein levels. Additionally, GW1100, a GPR40 antagonist, reversed the antilipogenic effects of DHA. Collectively, our data demonstrate that DHA downregulates the expression SREBP-1-mediated lipogenic enzymes via GPR40 in primary hepatocytes.


Assuntos
Ácidos Docosa-Hexaenoicos/farmacologia , Hepatócitos/metabolismo , Lipogênese , Receptores Acoplados a Proteínas-G/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Acetil-CoA Carboxilase/genética , Acetil-CoA Carboxilase/metabolismo , Animais , Células Cultivadas , Ácidos Graxos Ômega-3/metabolismo , Células Hep G2 , Hepatócitos/efeitos dos fármacos , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Receptores Acoplados a Proteínas-G/antagonistas & inibidores , Estearoil-CoA Dessaturase/genética , Estearoil-CoA Dessaturase/metabolismo , Receptor fas/genética , Receptor fas/metabolismo
20.
Chem Biol Interact ; 308: 304-311, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31132327

RESUMO

Polymyxin B (PMB) and polymyxin E (PME) are cyclic, peptide antibiotics which derived from various species of Paenibacillus (Bacillus) polymyxa. They are decapeptide antibiotics with an antimicrobial spectrum that includes Gram-negative bacteria, and reused as therapeutic agents due to the emergence of multidrug-resistant (MDR) Gram-positive bacteria. PMB or PME-induced anaphylactoid reactions in the clinic have been documented. However, the mechanism underlying anaphylactoid reaction induced by polymyxin has not yet been reported. Here, we report that human Mas-related G protein-coupled receptor X2 (MRGPRX2) and its mouse homologue Mas-related G protein-coupled receptor B2 (MrgprB2) are the receptors mediating the anaphylactoid response provoked by PMB and PME. We firstly investigated the anaphylactoid reactions induced by PMB and PME in LAD2 cells in vitro and in vivo, and found that treatment with PMB and PME led to significant release of mast cell granules such as histamine and ß-hexosaminidase, secretion of pro-inflammatory cytokines, such as TNF-α and PGD2, and provocation of calcium flux in LAD2 cells. Furthermore, treatment with PMB and PME led to reduced release of ß-hexosaminidase in MRGPRX2 knockdown-LAD2 cells, and obvious increased calcium release in MRGPRX2 overexpressing HEK293 cells, which suggested that MRGPRX2 are involved in mast cell activation provoked by PMB or PME. In vivo, MRGPRB2 knockout mice exhibited lower pseudo-allergic reactions than wild type mice. Activation of MrgprB2 also triggers increased capillary permeability and paw swelling. Our results elucidated the role of MRGPRX2 in PMB and PME-induced anaphylactoid response and suggested that MRGPRX2 as a potential therapeutic target to control the anaphylactoid reactions which triggered by PMB or PME.


Assuntos
Anafilaxia/etiologia , Colistina/toxicidade , Polimixina B/toxicidade , Receptores Acoplados a Proteínas-G/metabolismo , Animais , Cálcio/metabolismo , Degranulação Celular/efeitos dos fármacos , Linhagem Celular , Células HEK293 , Histamina/metabolismo , Humanos , Mastócitos/citologia , Mastócitos/efeitos dos fármacos , Mastócitos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Receptores Acoplados a Proteínas-G/antagonistas & inibidores , Receptores Acoplados a Proteínas-G/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA