Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 852
Filtrar
1.
Nat Commun ; 11(1): 4167, 2020 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-32820177

RESUMO

Muscle regeneration depends on a robust albeit transient inflammatory response. Persistent inflammation is a feature of age-related regenerative deficits, yet the underlying mechanisms are poorly understood. Here, we find inflammatory-related CC-chemokine-receptor 2 (Ccr2) expression in non-hematopoietic myogenic progenitors (MPs) during regeneration. After injury, the expression of Ccr2 in MPs corresponds to the levels of its ligands, the chemokines Ccl2, 7, and 8. We find stimulation of Ccr2-activity inhibits MP fusion and contribution to myofibers. This occurs in association with increases in MAPKp38δ/γ signaling, MyoD phosphorylation, and repression of the terminal myogenic commitment factor Myogenin. High levels of Ccr2-chemokines are a feature of regenerating aged muscle. Correspondingly, deletion of Ccr2 in MPs is necessary for proper fusion into regenerating aged muscle. Finally, opportune Ccr2 inhibition after injury enhances aged regeneration and functional recovery. These results demonstrate that inflammatory-induced activation of Ccr2 signaling in myogenic cells contributes to aged muscle regenerative decline.


Assuntos
Mediadores da Inflamação/metabolismo , Músculo Esquelético/fisiopatologia , Receptores CCR2/metabolismo , Regeneração/fisiologia , Transdução de Sinais/fisiologia , Fatores Etários , Animais , Transplante de Células/métodos , Quimiocina CCL2/metabolismo , Quimiocina CCL7/metabolismo , Quimiocina CCL8/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Desenvolvimento Muscular/genética , Músculo Esquelético/lesões , Músculo Esquelético/metabolismo , Miogenina/genética , Miogenina/metabolismo , Receptores CCR2/genética , Regeneração/genética , Células Satélites de Músculo Esquelético/citologia , Células Satélites de Músculo Esquelético/metabolismo , Células Satélites de Músculo Esquelético/transplante , Transdução de Sinais/genética , Ferimentos e Lesões/genética , Ferimentos e Lesões/fisiopatologia , Ferimentos e Lesões/terapia
2.
Proc Natl Acad Sci U S A ; 117(25): 14231-14242, 2020 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-32513687

RESUMO

Transforming growth factor ß-activated kinase1 (TAK1) encoded by the gene MAP3K7 regulates multiple important downstream effectors involved in immune response, cell death, and carcinogenesis. Hepatocyte-specific deletion of TAK1 in Tak1 ΔHEP mice promotes liver fibrosis and hepatocellular carcinoma (HCC) formation. Here, we report that genetic inactivation of RIPK1 kinase using a kinase dead knockin D138N mutation in Tak1 ΔHEP mice inhibits the expression of liver tumor biomarkers, liver fibrosis, and HCC formation. Inhibition of RIPK1, however, has no or minimum effect on hepatocyte loss and compensatory proliferation, which are the recognized factors important for liver fibrosis and HCC development. Using single-cell RNA sequencing, we discovered that inhibition of RIPK1 strongly suppresses inflammation induced by hepatocyte-specific loss of TAK1. Activation of RIPK1 promotes the transcription of key proinflammatory cytokines, such as CCL2, and CCR2+ macrophage infiltration. Our study demonstrates the role and mechanism of RIPK1 kinase in promoting inflammation, both cell-autonomously and cell-nonautonomously, in the development of liver fibrosis and HCC, independent of cell death, and compensatory proliferation. We suggest the possibility of inhibiting RIPK1 kinase as a therapeutic strategy for reducing liver fibrosis and HCC development by inhibiting inflammation.


Assuntos
Carcinoma Hepatocelular/metabolismo , Hepatócitos/metabolismo , Inflamação/metabolismo , Cirrose Hepática/metabolismo , Neoplasias Hepáticas/metabolismo , MAP Quinase Quinase Quinases/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Animais , Biomarcadores Tumorais , Carcinogênese/genética , Carcinogênese/patologia , Carcinoma Hepatocelular/genética , Morte Celular , Quimiocina CCL2/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças , Regulação Neoplásica da Expressão Gênica , Hepatócitos/patologia , Inflamação/patologia , Cirrose Hepática/patologia , Neoplasias Hepáticas/genética , MAP Quinase Quinase Quinases/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Receptores CCR2/metabolismo
3.
Am J Physiol Gastrointest Liver Physiol ; 318(6): G989-G999, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32363890

RESUMO

Nonalcoholic fatty liver disease (NAFLD) is associated with testosterone deficiency. However, NAFLD patients generally do not respond to treatment with testosterone alone. We investigated the innate immune mechanisms underlying the effects of treatment with testosterone alone, estrogen alone, or combined testosterone and estrogen on high-fat diet (HFD)-induced NAFLD due to testosterone deficiency. Orchiectomized (OCX) male Rag2-/- mice were used as a model of testosterone deficiency. To assess NAFLD severity, NAFLD activity score (NAS) is adopted. Moreover, immunological change was analyzed by multicolor flow cytometry. Treatment with both testosterone and estrogen significantly decreased body weight to that of the sham mice/normal diet (ND). NAS and liver fibrosis in OCX-HFD mice were significantly deteriorated, and treatment with testosterone and estrogen improved same as sham-ND mice. HFD increased the ratio of both type 2 and 3 innate lymphoid cells (ILC2s and ILC3s) to CD45-positive cells in the liver. Treatment with testosterone alone decreased the ratio of ILC2 to CD45 but not the ILC3-to-CD45 ratio. Addition of estrogen to the treatment reduced the ratios of ILC2-to-CD45 and ILC3-to-CD45 to the same level observed in sham-HFD mice. Moreover, OCX-HFD mice had a decreased proportion of M2 macrophages compared with sham-ND mice. Treatment with testosterone alone did not restore the proportion of M2 macrophages; however, combination treatment with both estrogen and testosterone increased that to the same level as that in sham-HFD mice. Treatment with both testosterone and estrogen improves liver fibrosis and decreases ILC3 and increases M2 macrophage abundance in the liver.NEW & NOTEWORTHY The progression of nonalcoholic fatty liver disease (NAFLD) is associated with testosterone deficiency. NAFLD patients generally do not respond to treatment with testosterone alone. In animal studies, treatment with testosterone and estrogen reduced the ratios of ILC2:CD45 and ILC3:CD45 and increased M2 macrophages in liver. Our study suggests, based on our immunological data, that a combination of estrogen and testosterone may be clinically relevant for the treatment of NAFLD in patients with male menopause.


Assuntos
Estradiol/farmacologia , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Testosterona/farmacologia , Aminoácidos , Animais , Carcinoma Hepatocelular , Linhagem Celular Tumoral , Cromo , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Dieta Hiperlipídica/efeitos adversos , Regulação para Baixo , Estradiol/administração & dosagem , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Insulina , Cirrose Hepática , Neoplasias Hepáticas , Masculino , Camundongos , Camundongos Knockout , Ácidos Nicotínicos , Hepatopatia Gordurosa não Alcoólica/patologia , Orquiectomia , Células RAW 264.7 , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores CCR2/genética , Receptores CCR2/metabolismo , Testosterona/administração & dosagem , Testosterona/deficiência , Fator de Crescimento Transformador beta1/genética , Fator de Crescimento Transformador beta1/metabolismo
4.
J Neurosci ; 40(19): 3849-3861, 2020 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-32269105

RESUMO

Neonatal stroke is as frequent as stroke in the elderly, but many pathophysiological injury aspects are distinct in neonates, including immune signaling. While myeloid cells can traffic into the brain via multiple routes, the choroid plexus (CP) has been identified as a uniquely educated gate for immune cell traffic during health and disease. To understand the mechanisms of myeloid cell trafficking via the CP and their influence on neonatal stroke, we characterized the phenotypes of CP-infiltrating myeloid cells after transient middle cerebral artery occlusion (tMCAO) in neonatal mice of both sexes in relation to blood-brain barrier permeability, injury, microglial activation, and CX3CR1-CCR2 signaling, focusing on the dynamics early after reperfusion. We demonstrate rapid recruitment of multiple myeloid phenotypes in the CP ipsilateral to the injury, including inflammatory CD45+CD11b+Ly6chighCD86+, beneficial CD45+CD11b+Ly6clowCD206+, and CD45+CD11b+Ly6clowLy6ghigh cells, but only minor leukocyte infiltration into acutely ischemic-reperfused cortex and negligible vascular albumin leakage. We report that CX3CR1-CCR2-mediated myeloid cell recruitment contributes to stroke injury. Considering the complexity of inflammatory cascades triggered by stroke and a role for TLR2 in injury, we also used direct TLR2 stimulation as an independent injury model. TLR2 agonist rapidly recruited myeloid cells to the CP, increased leukocytosis in the CSF and blood, but infiltration into the cortex remained low over time. While the magnitude and the phenotypes of myeloid cells diverged between tMCAO and TLR2 stimulation, in both models, disruption of CX3CR1-CCR2 signaling attenuated both monocyte and neutrophil trafficking to the CP and cortex.SIGNIFICANCE STATEMENT Stroke during the neonatal period leads to long-term disabilities. The mechanisms of ischemic injury and inflammatory response differ greatly between the immature and adult brain. We examined leukocyte trafficking via the choroid plexus (CP) following neonatal stroke in relation to blood-brain barrier integrity, injury, microglial activation, and signaling via CX3CR1 and CCR2 receptors, or following direct TLR2 stimulation. Ischemia-reperfusion triggered marked unilateral CX3CR1-CCR2 dependent accumulation of diverse leukocyte subpopulations in the CP without inducing extravascular albumin leakage or major leukocyte infiltration into the brain. Disrupted CX3CR1-CCR2 signaling was neuroprotective in part by attenuating monocyte and neutrophil trafficking. Understanding the migratory patterns of CP-infiltrating myeloid cells with intact and disrupted CX3CR1-CCR2 signaling could identify novel therapeutic targets to protect the neonatal brain.


Assuntos
Quimiotaxia de Leucócito/fisiologia , Plexo Corióideo/metabolismo , Células Mieloides/metabolismo , Acidente Vascular Cerebral/fisiopatologia , Animais , Animais Recém-Nascidos , Receptor 1 de Quimiocina CX3C/metabolismo , Plexo Corióideo/imunologia , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Células Mieloides/imunologia , Receptores CCR2/metabolismo , Acidente Vascular Cerebral/imunologia , Acidente Vascular Cerebral/metabolismo , Receptor 1 Toll-Like/metabolismo , Receptor 2 Toll-Like/metabolismo
5.
Am J Physiol Renal Physiol ; 318(4): F982-F993, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32150444

RESUMO

Studies examining mechanisms of Dahl salt-sensitive (SS) hypertension have implicated the infiltration of leukocytes in the kidneys, which contribute to renal disease and elevated blood pressure. However, the signaling pathways by which leukocytes traffic to the kidneys remain poorly understood. The present study nominated a signaling pathway by analyzing a kidney RNA sequencing data set from SS rats fed either a low-salt (0.4% NaCl) diet or a high-salt (4.0% NaCl) diet. From this analysis, chemokine (C-C motif) ligand 2 (CCL2) and chemokine (C-C motif) receptor 2 (CCR2) were nominated as a potential pathway modifying renal leukocyte infiltration and contributing to SS hypertension. The functional role of the CCL2/CCR2 pathway was tested by daily administration of CCR2 antagonist (RS-102895 at 5 mg·kg-1·day-1 in DMSO) or DMSO vehicle for 3 or 21 days by intraperitoneal injections during the high salt challenge. Blood pressure, renal leukocyte infiltration, and renal damage were evaluated. The results demonstrated that RS-102895 treatment ameliorated renal damage (urinary albumin excretion; 43.4 ± 5.1 vs. 114.7 ± 15.2 mg/day in vehicle, P < 0.001) and hypertension (144.3 ± 2.2 vs. 158.9 ± 4.8 mmHg in vehicle, P < 0.001) after 21 days of high-salt diet. It was determined that renal leukocyte infiltration was blunted by day 3 of the high-salt diet (1.4 ± 0.1 vs. 1.9 ± 0.2 in vehicle × 106 CD45+ cells/kidney, P = 0.034). An in vitro chemotaxis assay validated the effect of RS-102895 on leukocyte chemotaxis toward CCL2. The results suggest that increased CCL2 in SS kidneys is important in the early recruitment of leukocytes, and blockade of this recruitment by administering RS-102895 subsequently blunted the renal damage and hypertension.


Assuntos
Quimiocina CCL2/metabolismo , Quimiotaxia de Leucócito , Hipertensão/metabolismo , Rim/metabolismo , Leucócitos/metabolismo , Cloreto de Sódio na Dieta , Animais , Anti-Hipertensivos/farmacologia , Pressão Arterial , Benzoxazinas/farmacologia , Células Cultivadas , Quimiocina CCL2/antagonistas & inibidores , Quimiocina CCL2/genética , Quimiotaxia de Leucócito/efeitos dos fármacos , Modelos Animais de Doenças , Hipertensão/patologia , Hipertensão/fisiopatologia , Hipertensão/prevenção & controle , Rim/efeitos dos fármacos , Rim/patologia , Leucócitos/efeitos dos fármacos , Leucócitos/patologia , Masculino , Piperidinas/farmacologia , Ratos Endogâmicos Dahl , Receptores CCR2/antagonistas & inibidores , Receptores CCR2/metabolismo , Transdução de Sinais , Regulação para Cima
6.
PLoS One ; 15(3): e0230080, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32155215

RESUMO

Human bone marrow-derived mesenchymal stem/stromal cells (hMSCs) have shown potential in facilitating recovery from spinal cord injury (SCI) through communicating with microglia/macrophages (MG/MΦ). We here focused on chemokines as a candidate for the communication. Selected MG/MΦ-related chemokines were determined gene expression after SCI and further focused CCL2/CCR2 and CCL5/CCR5 to estimate role of the chemokines by hMSCs. Male C57/BL6 mice were subjected to spinal cord transection. Gene expression was assayed in the spinal cords following SCI for selected MG/MΦ-related chemokines and their receptors. hMSCs (5×105 cells) were then transplanted into parenchyma of the spinal cord, and the expressions of the Ccl2/Ccr2 and Ccl5/Ccr5 axes, inflammation, MG/MΦ-polarization, and axonal regeneration were evaluated to measure the influence of the hMSCs. Finally, mouse CCL5 was injected into the spinal cords. Acute increases in gene expression after SCI were observed for most chemokines, including Ccl2; chronic increases were observed for Ccl5. CCL2+-cells merged with NeuN+-neurons. CCR2+ immunoreactivity was principally observed in Ly-6G+/iNOS+-granulocytes on postoperative day (pod) 1, and CCL5+ and CCR5+ immunoreactivity overlapped with NeuN+-neurons and F4/80+-MG/MΦ on pod 14. The hMSC transplantation enhanced Ccl2 and Ccl5 and improved locomotor activity. The hMSC implantation did not alter the number of Ly-6G+/CCR2+ but decreased Il1, Elane, and Mpo on pod 3. Conversely, hMSC transplantation increased expression of Zc3h12a (encodes MCP-1-induced protein) on pod 14. Moreover, hMSC increased the Aif1, and two alternatively activated macrophage (AAM)-related genes, Arg1 and Chil3 (Ym1), as well as axonal regenerative markers, Dpysl2 and Gap43. Gene expression indicative of AAM polarization and axonal regeneration were partially recovered by CCL5 injection. These results suggest that hMSC implantation increases Ccl2 and Ccl5, improves locomotor activity, enhances MG/MΦ polarization to AAM, and increases the gene expression of axonal regenerative markers. These functions of hMSCs might be partially mediated by the CCL2/CCR2 and CCL5/CCR5 axes.


Assuntos
Axônios/patologia , Quimiocina CCL2/farmacologia , Quimiocina CCL5/farmacologia , Transplante de Células-Tronco Mesenquimais , Traumatismos da Medula Espinal/terapia , Animais , Axônios/efeitos dos fármacos , Quimiocina CCL2/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , Receptores CCR2/metabolismo , Traumatismos da Medula Espinal/metabolismo , Traumatismos da Medula Espinal/patologia
7.
Nat Commun ; 11(1): 1329, 2020 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-32165624

RESUMO

While the ontogeny and recruitment of the intestinal monocyte/macrophage lineage has been studied extensively, their precise localization and function has been overlooked. Here we show by imaging the murine small and large intestines in steady-state that intestinal CX3CR1+ macrophages form an interdigitated network intimately adherent to the entire mucosal lamina propria vasculature. The macrophages form contacts with each other, which are disrupted in the absence of microbiome, monocyte recruitment (Ccr2-/-), or monocyte conversion (Nr4a1-/-). In dysbiosis, gaps exist between the perivascular macrophages correlating with increased bacterial translocation from the lamina propria into the bloodstream. The recruitment of monocytes and conversion to macrophages during intestinal injury is also dependent upon CCR2, Nr4a1 and the microbiome. These findings demonstrate a relationship between microbiome and the maturation of lamina propria perivascular macrophages into a tight anatomical barrier that might function to prevent bacterial translocation. These cells are also critical for emergency vascular repair.


Assuntos
Microbioma Gastrointestinal , Mucosa Intestinal/irrigação sanguínea , Mucosa Intestinal/citologia , Macrófagos/metabolismo , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/metabolismo , Animais , Receptor 1 de Quimiocina CX3C/metabolismo , Colite/patologia , Sulfato de Dextrana , Disbiose/patologia , Camundongos Endogâmicos C57BL , Monócitos/metabolismo , Receptores CCR2/metabolismo , Cicatrização
8.
Nature ; 579(7800): 581-585, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32103173

RESUMO

Adipose tissue is an energy store and a dynamic endocrine organ1,2. In particular, visceral adipose tissue (VAT) is critical for the regulation of systemic metabolism3,4. Impaired VAT function-for example, in obesity-is associated with insulin resistance and type 2 diabetes5,6. Regulatory T (Treg) cells that express the transcription factor FOXP3 are critical for limiting immune responses and suppressing tissue inflammation, including in the VAT7-9. Here we uncover pronounced sexual dimorphism in Treg cells in the VAT. Male VAT was enriched for Treg cells compared with female VAT, and Treg cells from male VAT were markedly different from their female counterparts in phenotype, transcriptional landscape and chromatin accessibility. Heightened inflammation in the male VAT facilitated the recruitment of Treg cells via the CCL2-CCR2 axis. Androgen regulated the differentiation of a unique IL-33-producing stromal cell population specific to the male VAT, which paralleled the local expansion of Treg cells. Sex hormones also regulated VAT inflammation, which shaped the transcriptional landscape of VAT-resident Treg cells in a BLIMP1 transcription factor-dependent manner. Overall, we find that sex-specific differences in Treg cells from VAT are determined by the tissue niche in a sex-hormone-dependent manner to limit adipose tissue inflammation.


Assuntos
Hormônios Esteroides Gonadais/metabolismo , Gordura Intra-Abdominal/imunologia , Caracteres Sexuais , Linfócitos T Reguladores/imunologia , Androgênios/metabolismo , Animais , Quimiocina CCL2/imunologia , Cromatina/genética , Feminino , Regulação da Expressão Gênica , Inflamação/imunologia , Inflamação/metabolismo , Interleucina-33/imunologia , Gordura Intra-Abdominal/metabolismo , Masculino , Camundongos , Fator 1 de Ligação ao Domínio I Regulador Positivo/metabolismo , RNA-Seq , Receptores CCR2/metabolismo , Células Estromais/citologia , Células Estromais/imunologia , Células Estromais/metabolismo , Linfócitos T Reguladores/metabolismo , Transcrição Genética
9.
PLoS One ; 15(1): e0227449, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32004354

RESUMO

The SOD3 variant, SOD3R213G, results from substitution of arginine to glycine at amino acid 213 (R213G) in its heparin binding domain (HBD) and is a common genetic variant, reported to be associated with ischemic heart disease. However, little is understood about the role of SOD3R213G in innate immune function, and how it leads to dysfunction of the cardiovascular system. We observed pathologic changes in SOD3R213G transgenic (Tg) mice, including cystic medial degeneration of the aorta, heart inflammation, and increased circulating and organ infiltrating neutrophils. Interestingly, SOD3R213G altered the profile of SOD3 interacting proteins in neutrophils in response to G-CSF. Unexpectedly, we found that G-CSF mediated tyrosine phosphatase, SH-PTP1 was down-regulated in the neutrophils of SOD3R213G overexpressing mice. These effects were recovered by reconstitution with Wt SOD3 expressing bone marrow cells. Overall, our study reveals that SOD3R213G plays a crucial role in the function of the cardiovascular system by controlling innate immune response and signaling. These results suggest that reconstitution with SOD3 expressing bone marrow cells may be a therapeutic strategy to treat SOD3R213G mediated diseases.


Assuntos
Infiltração de Neutrófilos/fisiologia , Neutrófilos/metabolismo , Superóxido Dismutase/metabolismo , Animais , Aorta/metabolismo , Aorta/patologia , Células da Medula Óssea/citologia , Células da Medula Óssea/metabolismo , Proliferação de Células , Modelos Animais de Doenças , Regulação para Baixo , Fator Estimulador de Colônias de Granulócitos/metabolismo , Cardiopatias/imunologia , Cardiopatias/metabolismo , Cardiopatias/patologia , Imunidade Inata , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mutagênese Sítio-Dirigida , Miocárdio/metabolismo , Miocárdio/patologia , Neutrófilos/citologia , Proteína Tirosina Fosfatase não Receptora Tipo 6/metabolismo , Receptores CCR2/metabolismo , Transdução de Sinais , Superóxido Dismutase/genética
10.
Cancer Immunol Res ; 8(4): 436-450, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32075803

RESUMO

Cancer-associated fibroblasts (CAF) represent a functionally heterogeneous population of activated fibroblasts that constitutes a major component of tumor stroma. Although CAFs have been shown to promote tumor growth and mediate resistance to chemotherapy, the mechanisms by which they may contribute to immune suppression within the tumor microenvironment (TME) in lung squamous cell carcinoma (LSCC) remain largely unexplored. Here, we identified a positive correlation between CAF and monocytic myeloid cell abundances in 501 primary LSCCs by mining The Cancer Genome Atlas data sets. We further validated this finding in an independent cohort using imaging mass cytometry and found a significant spatial interaction between CAFs and monocytic myeloid cells in the TME. To delineate the interplay between CAFs and monocytic myeloid cells, we used chemotaxis assays to show that LSCC patient-derived CAFs promoted recruitment of CCR2+ monocytes via CCL2, which could be reversed by CCR2 inhibition. Using a three-dimensional culture system, we found that CAFs polarized monocytes to adopt a myeloid-derived suppressor cell (MDSC) phenotype, characterized by robust suppression of autologous CD8+ T-cell proliferation and IFNγ production. We further demonstrated that inhibiting IDO1 and NADPH oxidases, NOX2 and NOX4, restored CD8+ T-cell proliferation by reducing reactive oxygen species (ROS) generation in CAF-induced MDSCs. Taken together, our study highlights a pivotal role of CAFs in regulating monocyte recruitment and differentiation and demonstrated that CCR2 inhibition and ROS scavenging abrogate the CAF-MDSC axis, illuminating a potential therapeutic path to reversing the CAF-mediated immunosuppressive microenvironment.


Assuntos
Fibroblastos Associados a Câncer/imunologia , Carcinoma de Células Escamosas/imunologia , Neoplasias Pulmonares/imunologia , Monócitos/imunologia , Células Supressoras Mieloides/imunologia , Espécies Reativas de Oxigênio/metabolismo , Idoso , Idoso de 80 Anos ou mais , Linfócitos T CD8-Positivos/imunologia , Fibroblastos Associados a Câncer/metabolismo , Fibroblastos Associados a Câncer/patologia , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia , Proliferação de Células , Células Cultivadas , Feminino , Humanos , Imunossupressão , Indolamina-Pirrol 2,3,-Dioxigenase/imunologia , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Masculino , Pessoa de Meia-Idade , NADPH Oxidase 2/imunologia , NADPH Oxidase 2/metabolismo , NADPH Oxidase 4/imunologia , NADPH Oxidase 4/metabolismo , Receptores CCR2/imunologia , Receptores CCR2/metabolismo , Transdução de Sinais , Microambiente Tumoral
12.
Expert Opin Drug Metab Toxicol ; 16(1): 11-30, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31903790

RESUMO

Introduction: Chemokine receptors are important therapeutic targets for the treatment of many human diseases. This study will provide an overview of approved chemokine receptor antagonists and promising candidates in advanced clinical trials.Areas covered: We will describe clinical aspects of chemokine receptor antagonists regarding their clinical efficacy, mechanisms of action, and re-purposed applications.Expert opinion: Three chemokine antagonists have been approved: (i) plerixafor is a small-molecule CXCR4 antagonist that mobilizes hematopoietic stem cells; (ii) maraviroc is a small-molecule CCR5 antagonist for anti-HIV treatment; and (iii) mogamulizumab is a monoclonal-antibody CCR4 antagonist for the treatment of mycosis fungoides or Sézary syndrome. Moreover, phase 3 trials are ongoing to evaluate many potent candidates, including CCR5 antagonists (e.g. leronlimab), dual CCR2/CCR5 antagonists (e.g. cenicriviroc), and CXCR4 antagonists (e.g. balixafortide, mavorixafor, motixafortide). The success of chemokine receptor antagonists depends on the selective blockage of disease-relevant chemokine receptors which are indispensable for disease progression. Although clinical translation has been slow, antagonists targeting chemokine receptors with multifaced functions offer the potential to treat a broad spectrum of human diseases.


Assuntos
Desenvolvimento de Medicamentos , Receptores de Quimiocinas/antagonistas & inibidores , Animais , Humanos , Receptores CCR2/antagonistas & inibidores , Receptores CCR2/metabolismo , Receptores CCR4/antagonistas & inibidores , Receptores CCR4/metabolismo , Receptores CCR5/efeitos dos fármacos , Receptores CCR5/metabolismo , Receptores CXCR4/antagonistas & inibidores , Receptores CXCR4/metabolismo , Receptores de Quimiocinas/metabolismo
13.
Proc Natl Acad Sci U S A ; 117(2): 1129-1138, 2020 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-31879345

RESUMO

Immunotherapy directed at the PD-L1/PD-1 axis has produced treatment advances in various human cancers. Unfortunately, progress has not extended to glioblastoma (GBM), with phase III clinical trials assessing anti-PD-1 monotherapy failing to show efficacy in newly diagnosed and recurrent tumors. Myeloid-derived suppressor cells (MDSCs), a subset of immunosuppressive myeloid derived cells, are known to infiltrate the tumor microenvironment of GBM. Growing evidence suggests the CCL2-CCR2 axis is important for this process. This study evaluated the combination of PD-1 blockade and CCR2 inhibition in anti-PD-1-resistant gliomas. CCR2 deficiency unmasked an anti-PD-1 survival benefit in KR158 glioma-bearing mice. CD11b+/Ly6Chi/PD-L1+ MDSCs within established gliomas decreased with a concomitant increase in overall CCR2+ cells and MDSCs within bone marrow of CCR2-deficient mice. The CCR2 antagonist CCX872 increased median survival as a monotherapy in KR158 glioma-bearing animals and further increased median and overall survival when combined with anti-PD-1. Additionally, combination of CCX872 and anti-PD-1 prolonged median survival time in 005 GSC GBM-bearing mice. In both models, CCX872 decreased tumor associated MDSCs and increased these cells within the bone marrow. Examination of tumor-infiltrating lymphocytes revealed an elevated population, increased IFNγ expression, indicating enhanced cytolytic activity, as well as decreased expression of exhaustion markers in CD4+ and CD8+ T cells following combination treatment. These data establish that combining CCR2 and PD-1 blockade extends survival in clinically relevant murine glioma models and provides the basis on which to advance this combinatorial treatment toward early-phase human trials.


Assuntos
Antígeno B7-H1/antagonistas & inibidores , Glioma/tratamento farmacológico , Células Mieloides/metabolismo , Receptores CCR2/efeitos dos fármacos , Receptores CCR2/metabolismo , Animais , Linfócitos T CD4-Positivos , Linfócitos T CD8-Positivos , Receptor 1 de Quimiocina CX3C/genética , Receptor 1 de Quimiocina CX3C/metabolismo , Quimiocina CCL2 , Modelos Animais de Doenças , Técnicas de Introdução de Genes , Glioblastoma/tratamento farmacológico , Glioblastoma/patologia , Glioma/patologia , Humanos , Imunoterapia , Linfócitos do Interstício Tumoral/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células Mieloides/efeitos dos fármacos , Células Supressoras Mieloides/metabolismo , Receptor de Morte Celular Programada 1 , Receptores CCR2/genética , Análise de Sobrevida , Microambiente Tumoral/efeitos dos fármacos
14.
Am J Pathol ; 190(2): 372-387, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31843499

RESUMO

Aging is associated with inflammation and metabolic syndrome, which manifests in the liver as nonalcoholic fatty liver disease (NAFLD). NAFLD can range in severity from steatosis to fibrotic steatohepatitis and is a major cause of hepatic morbidity. However, the pathogenesis of NAFLD in naturally aged animals is unclear. Herein, we performed a comprehensive study of lipid content and inflammatory signature of livers in 19-month-old aged female mice. These animals exhibited increased body and liver weight, hepatic triglycerides, and inflammatory gene expression compared with 3-month-old young controls. The aged mice also had a significant increase in F4/80+ hepatic macrophages, which coexpressed CD11b, suggesting a circulating monocyte origin. A global knockout of the receptor for monocyte chemoattractant protein (CCR2) prevented excess steatosis and inflammation in aging livers but did not reduce the number of CD11b+ macrophages, suggesting changes in macrophage accumulation precede or are independent from chemokine (C-C motif) ligand-CCR2 signaling in the development of age-related NAFLD. RNA sequencing further elucidated complex changes in inflammatory and metabolic gene expression in the aging liver. In conclusion, we report a previously unknown accumulation of CD11b+ macrophages in aged livers with robust inflammatory and metabolic transcriptomic changes. A better understanding of the hallmarks of aging in the liver will be crucial in the development of preventive measures and treatments for end-stage liver disease in elderly patients.


Assuntos
Envelhecimento/patologia , Quimiocina CCL2/metabolismo , Modelos Animais de Doenças , Inflamação/patologia , Hepatopatia Gordurosa não Alcoólica/patologia , Receptores CCR2/metabolismo , Envelhecimento/metabolismo , Animais , Peso Corporal , Quimiocina CCL2/genética , Feminino , Perfilação da Expressão Gênica , Inflamação/etiologia , Inflamação/metabolismo , Macrófagos/metabolismo , Macrófagos/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Tamanho do Órgão , Receptores CCR2/genética
15.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 35(10): 903-909, 2019 Oct.
Artigo em Chinês | MEDLINE | ID: mdl-31814567

RESUMO

Objective To investigate the expression of C-C motif chemokine ligand 23 (CCL23) in hepatocellular carcinoma (HCC) and its clinical significance for survival and prognosis. Methods GEPIA, HCCDB, MetaScape, TIMER, TISIDB, Kaplan-Meier Plotter and other online databases were used to analyze the expression level of CCL23 in HCC, the functional notes of co-expression gene and its gene ontology (GO), the enrichment of Kyoto gene and genome encyclopedia (KEGG), the correlation between tumor cell purity, the expression of CCL23 in immune cells and its significance for survival and prognosis of patients. Results The expression of CCL23 in all stages of HCC was negatively correlated with the purity of HCC tumor cells. The short prognosis of HCC patients with low expression of CCL23 was poor. The GO function and KEGG pathway of CCL23 co-expressed gene in HCC were mainly enriched in immune cell activation and complement system activation. CCL23 was the strongest chemokine factor in HCC, and it could bind to multiple receptors including CC chemokine receptor 1 (CCR1), CCR2, CCR7 and CXC chemokine receptor 6 (CXCR6) to exert chemokine effect on immune cells, among which CD8+ T cells and macrophages have the most obvious chemokine effect. Conclusion The low expression of CCL23 in HCC tissue is not conducive to the development of anti-tumor immune defense in HCC patients and significantly shortens the survival of HCC patients.


Assuntos
Carcinoma Hepatocelular/genética , Quimiocinas CC/genética , Neoplasias Hepáticas/genética , Linfócitos T CD8-Positivos , Carcinoma Hepatocelular/imunologia , Biologia Computacional , Humanos , Neoplasias Hepáticas/imunologia , Macrófagos , Receptores CCR1/metabolismo , Receptores CCR2/metabolismo , Receptores CCR7/metabolismo , Receptores CXCR6/metabolismo
16.
World J Gastroenterol ; 25(44): 6527-6540, 2019 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-31802832

RESUMO

BACKGROUND: Massive hepatocyte death is the core event in acute liver failure (ALF). Gasdermin D (GSDMD)-mediated pyroptosis is a type of highly inflammatory cell death. However, the role of hepatocyte pyroptosis and its mechanisms of expanding inflammatory responses in ALF are unclear. AIM: To investigate the role and mechanisms of GSDMD-mediated hepatocyte pyroptosis through in vitro and in vivo experiments. METHODS: The expression of pyroptosis pathway-associated proteins in liver tissues from ALF patients and a hepatocyte injury model was examined by Western blot. GSDMD short hairpin RNA (shRNA) was used to investigate the effects of downregulation of GSDMD on monocyte chemotactic protein 1 (MCP1) and its receptor CC chemokine receptor-2 (CCR2) in vitro. For in vivo experiments, we used GSDMD knockout mice to investigate the role and mechanism of GSDMD in a D-galactose/lipopolysaccharide (D-Galn/LPS)-induced ALF mouse model. RESULTS: The levels of pyroptosis pathway-associated proteins in liver tissue from ALF patients and a hepatocyte injury model increased significantly. The level of GSDMD-N protein increased most obviously (P < 0.001). In vitro, downregulation of GSDMD by shRNA decreased the cell inhibition rate and the levels of MCP1/CCR2 proteins (P < 0.01). In vivo, GSDMD knockout dramatically eliminated inflammatory damage in the liver and improved the survival of D-Galn/LPS-induced ALF mice (P < 0.001). Unlike the mechanism of immune cell pyroptosis that involves releasing interleukin (IL)-1ß and IL-18, GSDMD-mediated hepatocyte pyroptosis recruited macrophages via MCP1/CCR2 to aggravate hepatocyte death. However, this pathological process was inhibited after knocking down GSDMD. CONCLUSION: GSDMD-mediated hepatocyte pyroptosis plays an important role in the pathogenesis of ALF, recruiting macrophages to release inflammatory mediators by upregulating MCP1/CCR2 and leading to expansion of the inflammatory responses. GSDMD knockout can reduce hepatocyte death and inflammatory responses, thus alleviating ALF.


Assuntos
Hepatócitos/patologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Falência Hepática Aguda/imunologia , Macrófagos/imunologia , Proteínas de Ligação a Fosfato/metabolismo , Piroptose/imunologia , Animais , Linhagem Celular , Quimiocina CCL2/metabolismo , Modelos Animais de Doenças , Técnicas de Silenciamento de Genes , Hepatócitos/imunologia , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Falência Hepática Aguda/induzido quimicamente , Falência Hepática Aguda/patologia , Masculino , Camundongos , Camundongos Knockout , Proteínas de Ligação a Fosfato/genética , RNA Interferente Pequeno/metabolismo , Receptores CCR2/metabolismo , Transdução de Sinais/imunologia , Regulação para Cima
17.
Proc Natl Acad Sci U S A ; 116(49): 24796-24807, 2019 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-31727842

RESUMO

Brain infection by the parasite Toxoplasma gondii in mice is thought to generate vulnerability to predation by mechanisms that remain elusive. Monocytes play a key role in host defense and inflammation and are critical for controlling T. gondii However, the dynamic and regional relationship between brain-infiltrating monocytes and parasites is unknown. We report the mobilization of inflammatory (CCR2+Ly6Chi) and patrolling (CX3CR1+Ly6Clo) monocytes into the blood and brain during T. gondii infection of C57BL/6J and CCR2RFP/+CX3CR1GFP/+ mice. Longitudinal analysis of mice using 2-photon intravital imaging of the brain through cranial windows revealed that CCR2-RFP monocytes were recruited to the blood-brain barrier (BBB) within 2 wk of T. gondii infection, exhibited distinct rolling and crawling behavior, and accumulated within the vessel lumen before entering the parenchyma. Optical clearing of intact T. gondii-infected brains using iDISCO+ and light-sheet microscopy enabled global 3D detection of monocytes. Clusters of T. gondii and individual monocytes across the brain were identified using an automated cell segmentation pipeline, and monocytes were found to be significantly correlated with sites of T. gondii clusters. Computational alignment of brains to the Allen annotated reference atlas [E. S. Lein et al., Nature 445:168-176 (2007)] indicated a consistent pattern of monocyte infiltration during T. gondii infection to the olfactory tubercle, in contrast to LPS treatment of mice, which resulted in a diffuse distribution of monocytes across multiple brain regions. These data provide insights into the dynamics of monocyte recruitment to the BBB and the highly regionalized localization of monocytes in the brain during T. gondii CNS infection.


Assuntos
Barreira Hematoencefálica/metabolismo , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Monócitos/metabolismo , Toxoplasmose/diagnóstico por imagem , Toxoplasmose/metabolismo , Animais , Antígenos Ly/metabolismo , Barreira Hematoencefálica/diagnóstico por imagem , Receptor 1 de Quimiocina CX3C/metabolismo , Modelos Animais de Doenças , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Receptores CCR2/metabolismo
18.
J Neuroinflammation ; 16(1): 196, 2019 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-31666087

RESUMO

BACKGROUND: The involvement of non-neuronal cells and the cells of innate immunity has been attributed to the initiation and progression of ALS. TDP-43 pathology is observed in a broad spectrum of ALS cases and is one of the most commonly shared pathologies. The potential involvement of the neuroimmune axis in the motor cortex of ALS patients with TDP-43 pathology needs to be revealed. This information is vital for building effective treatment strategies. METHODS: We investigated the presence of astrogliosis and microgliosis in the motor cortex of ALS patients with TDP-43 pathology. prpTDP-43A315T-UeGFP mice, corticospinal motor neuron (CSMN) reporter line with TDP-43 pathology, are utilized to reveal the timing and extent of neuroimmune interactions and the involvement of non-neuronal cells to neurodegeneration. Electron microscopy and immunolabeling techniques are used to mark and monitor cells of interest. RESULTS: We detected both activated astrocytes and microglia, especially rod-like microglia, in the motor cortex of patients and TDP-43 mouse model. Besides, CCR2+ TMEM119- infiltrating monocytes were detected as they penetrate the brain parenchyma. Interestingly, Betz cells, which normally do not express MCP1, were marked with high levels of MCP1 expression when diseased. CONCLUSIONS: There is an early contribution of a neuroinflammatory response for upper motor neuron (UMN) degeneration with respect to TDP-43 pathology, and MCP1-CCR2 signaling is important for the recognition of diseased upper motor neurons by infiltrating monocytes. The findings are conserved among species and are observed in both ALS and ALS-FTLD patients.


Assuntos
Esclerose Amiotrófica Lateral/metabolismo , Esclerose Amiotrófica Lateral/patologia , Proteínas de Ligação a DNA/metabolismo , Córtex Motor/metabolismo , Córtex Motor/patologia , Receptores CCR2/metabolismo , Adulto , Idoso , Animais , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Pessoa de Meia-Idade
19.
Immunol Cell Biol ; 97(10): 902-915, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31472096

RESUMO

Myeloid-derived suppressor cells (MDSCs) are functionally immunosuppressive cells that are persistently increased in abundance and associated with adverse clinical outcomes in sepsis. Here, we investigated the therapeutic potential of an anaplastic lymphoma kinase inhibitor, LDK378, in cecal ligation and puncture (CLP)-induced polymicrobial sepsis and examined its effects on the recruitment of MDSCs. LDK378 significantly improved the survival of CLP-induced polymicrobial septic mice, which was paralleled by reduced organ injury, decreased release of inflammatory cytokines and decreased recruitment of MDSCs to the spleen. Importantly, LDK378 inhibited the migration of MDSCs to the spleen by blocking the CLP-mediated upregulation of CC chemokine receptor 2 (CCR2), a chemokine receptor critical for the recruitment of MDSCs. Mechanistically, LDK378 treatment blocked the CLP-induced CCR2 upregulation of MDSCs via partially inhibiting the phosphorylation of p38 and G-protein-coupled receptor kinase-2 (GRK2) in bone marrow MDSCs of septic mice. Furthermore, in vitro experiments also showed that lipopolysaccharide (LPS)-induced migration of MDSCs was similarly owing to the activation of GRK2 and upregulation of CCR2 by LPS, whereas the treatment with LDK378 partially blocked the LPS-induced phosphorylation of p38 and GRK2 and decreased the expression of CCR2 on the cell surface, therefore leading to the suppression of MDSC migration. Together, these findings unravel a novel function of LDK378 in the host response to infection and suggest that LDK378 could be a potential therapeutic agent for sepsis.


Assuntos
Quinase 2 de Receptor Acoplado a Proteína G/metabolismo , Células Supressoras Mieloides/metabolismo , Pirimidinas/farmacologia , Receptores CCR2/metabolismo , Sepse/metabolismo , Sepse/patologia , Baço/patologia , Sulfonas/farmacologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Animais , Ceco/patologia , Movimento Celular/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Imunossupressão , Inflamação/patologia , Ligadura , Lipopolissacarídeos , Masculino , Camundongos Endogâmicos BALB C , Modelos Biológicos , Células Supressoras Mieloides/efeitos dos fármacos , Punções , Sepse/prevenção & controle , Transdução de Sinais/efeitos dos fármacos
20.
PLoS One ; 14(9): e0222352, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31498850

RESUMO

CCL2/CCR2 signaling is believed to play an important role in kidney diseases. Several studies have demonstrated that blocking of CCR2 has a therapeutic effect on kidney diseases. However, the effects of CCR2 knockout on obesity-induced kidney injury remain unclear. We investigated the therapeutic effects and the mechanism of CCL2/CCR2 signaling in obesity-induced kidney injury. We used C57BL/6-CCR2 wild type and C57BL/6-CCR2 knockout mice: Regular diet wild type (RD WT), RD CCR2 knockout (RD KO), High-fat diet WT (HFD WT), HFD CCR2 KO (HFD KO). Body weight of WT mice was significantly increased after HFD. However, the body weight of HFD KO mice was not decreased compared to HFD WT mice. Food intake and calorie showed no significant differences between HFD WT and HFD KO mice. Glucose, insulin, total cholesterol, and triglycerides levels increased in HFD WT mice were decreased in HFD KO mice. Insulin resistance, increased insulin secretion, and lipid accumulation showed in HFD WT mice were improved in HFD KO mice. Increased desmin expression, macrophage infiltration, and TNF-α in HFD mice were reduced in HFD KO mice. HFD-induced albuminuria, glomerular hypertrophy, glomerular basement membrane thickening, and podocyte effacement were restored by CCR2 depletion. HFD-induced elevated expressions of xBP1, Bip, and Nox4 at RNA and protein levels were significantly decreased in HFD KO. Therefore, blockade of CCL2/CCR2 signaling by CCR2 depletion might ameliorate obesity-induced albuminuria through blocking oxidative stress, ER stress, and lipid accumulation.


Assuntos
Albuminúria/etiologia , Estresse do Retículo Endoplasmático/fisiologia , Nefropatias/etiologia , Obesidade/complicações , Estresse Oxidativo/fisiologia , Receptores CCR2/metabolismo , Albuminúria/genética , Albuminúria/metabolismo , Animais , Peso Corporal/fisiologia , Dieta Hiperlipídica , Ingestão de Energia , Resistência à Insulina , Rim/metabolismo , Nefropatias/genética , Nefropatias/metabolismo , Camundongos , Camundongos Knockout , Obesidade/genética , Obesidade/metabolismo , Receptores CCR2/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA