Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.175
Filtrar
1.
Adv Exp Med Biol ; 1287: 1-7, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33034022

RESUMO

The evolutionary conserved Notch pathway that first developed in metazoans and that was first discovered in fruit flies (Drosophila melanogaster) governs fundamental cell fate decisions and many other cellular key processes not only in embryonic development but also during initiation, promotion, and progression of cancer. On a first look, the Notch pathway appears remarkably simple, with its key feature representing a direct connection between an extracellular signal and transcriptional output without the need of a long chain of protein intermediaries as known from many other signaling pathways. However, on a second, closer look, this obvious simplicity exerts surprising complexity. There is no doubt that the enormous scientific progress in unraveling the functional mechanisms that underlie this complexity has recently greatly increased our knowledge about the role of Notch signaling for pathogenesis and progression of many types of cancer. Moreover, these new scientific findings have shown promise in opening new avenues for cancer prevention and therapy, although this goal is still challenging. Vol. III of the second edition of the book Notch Signaling in Embryology and Cancer, entitled Notch Signaling in Cancer, summarizes important recent developments in this fast-moving and fascinating field. Here, we give an introduction to this book and a short summary of the individual chapters that are written by leading scientists, covering the latest developments in this intriguing research area.


Assuntos
Neoplasias/prevenção & controle , Neoplasias/terapia , Receptores Notch/metabolismo , Transdução de Sinais , Animais , Diferenciação Celular , Humanos , Neoplasias/patologia
2.
Adv Exp Med Biol ; 1287: 9-30, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33034023

RESUMO

The Notch signal transduction cascade requires cell-to-cell contact and results in the proteolytic processing of the Notch receptor and subsequent assembly of a transcriptional coactivator complex containing the Notch intracellular domain (NICD) and transcription factor RBPJ. In the absence of a Notch signal, RBPJ remains at Notch target genes and dampens transcriptional output. Like in other signaling pathways, RBPJ is able to switch from activation to repression by associating with corepressor complexes containing several chromatin-modifying enzymes. Here, we focus on the recent advances concerning RBPJ-corepressor functions, especially in regard to chromatin regulation. We put this into the context of one of the best-studied model systems for Notch, blood cell development. Alterations in the RBPJ-corepressor functions can contribute to the development of leukemia, especially in the case of acute myeloid leukemia (AML). The versatile role of transcription factor RBPJ in regulating pivotal target genes like c-MYC and HES1 may contribute to the better understanding of the development of leukemia.


Assuntos
Regulação da Expressão Gênica , Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina/metabolismo , Receptores Notch/metabolismo , Cromatina/genética , Cromatina/metabolismo , Humanos , Transdução de Sinais
3.
Adv Exp Med Biol ; 1287: 31-46, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33034024

RESUMO

The endosomal pathway plays a pivotal role upon signal transduction in the Notch pathway. Recent work on lethal (2) giant discs (lgd) points to an additional critical role in avoiding uncontrolled ligand-independent signalling during trafficking of the Notch receptor through the endosomal pathway to the lysosome for degradation. In this chapter, we will outline the journey of Notch through the endosomal system and present an overview of the current knowledge about Lgd and its mammalian orthologs Lgd1/CC2D1b and Lgd2/CC2D1a. We will then discuss how Notch is activated in the absence of lgd function in Drosophila and ask whether there is evidence that a similar ligand-independent activation of the Notch pathway can also happen in mammals if the orthologs are inactivated.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/metabolismo , Neoplasias/metabolismo , Receptores Notch/metabolismo , Proteínas Repressoras/metabolismo , Transdução de Sinais , Proteínas Supressoras de Tumor/metabolismo , Animais , Endossomos/metabolismo , Humanos
4.
Adv Exp Med Biol ; 1287: 47-57, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33034025

RESUMO

The human endometrium is a unique, highly dynamic tissue that undergoes cyclic changes of cell proliferation, differentiation, and death. Endometrial cancer is the most common malignancy among women in developed countries. Importantly, the incidence of endometrial cancer is rising in high-income countries. Currently histological classification is used for subtyping of endometrial cancer, while ongoing research is evaluating markers for more accurate molecular classification. Evolutionary conserved Notch signaling pathway regulates diverse cellular processes such as proliferation, differentiation, and cell invasion. Accumulating evidence links aberrant Notch signaling with diseases such as hyperplasia and endometrial cancer. This chapter summarizes the current state of Notch signaling investigations in the endometrium, endometriosis, and endometrial cancer.


Assuntos
Neoplasias do Endométrio , Endometriose , Receptores Notch/metabolismo , Neoplasias do Endométrio/metabolismo , Neoplasias do Endométrio/patologia , Endometriose/metabolismo , Endometriose/patologia , Endométrio/metabolismo , Endométrio/patologia , Feminino , Humanos , Transdução de Sinais
5.
Adv Exp Med Biol ; 1287: 59-68, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33034026

RESUMO

Esophageal squamous cell carcinoma (ESCC) is a deadly disease that requires extensive research on its mechanisms, prevention, and therapy. Recent studies have shown that NOTCH mutations are commonly seen in human ESCC. This chapter summarizes our current understanding of the NOTCH pathway in normal esophagus and in ESCC. In normal esophagus, NOTCH pathway regulates the development of esophageal squamous epithelium, in particular, squamous differentiation. Exposure to extrinsic and intrinsic factors, such as gastroesophageal reflux, alcohol drinking, and inflammation, downregulates the NOTCH pathway and thus inhibits squamous differentiation of esophageal squamous epithelial cells. In ESCC, NOTCH plays a dual role as both a tumor suppressor pathway and an oncogenic pathway. In summary, further studies are warranted to develop NOTCH activators for the prevention of ESCC and NOTCH inhibitors for targeted therapy of a subset of ESCC with activated NOTCH pathway.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Receptores Notch/metabolismo , Carcinogênese , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/patologia , Carcinoma de Células Escamosas do Esôfago/metabolismo , Carcinoma de Células Escamosas do Esôfago/patologia , Humanos , Transdução de Sinais
6.
Adv Exp Med Biol ; 1287: 69-80, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33034027

RESUMO

Interactions between liver cells are closely regulated by Notch signaling. Notch signaling has been reported clinically related to bile duct hypogenesis in Alagille syndrome, which is caused by mutations in the Jagged1 gene. Notch activation and hepatocarcinogenesis are closely associated since cancer signaling is affected by the development of liver cells and cancer stem cells. Gene expression and genomic analysis using a microarray revealed that abnormalities in Notch-related genes were associated with the aggressiveness of liver cancer. This pattern was also accompanied with α-fetoprotein- and EpCAM-expressing phenotypes in vitro, in vivo, and in clinical tissues. Hepatitis B or C virus chronic infection or alcohol- or steatosis-related liver fibrosis induces liver cancer. Previous reports demonstrated that HBx, a hepatitis B virus protein, was associated with Jagged1 expression. We found that the Jagged1 and Notch1 signaling pathways were closely associated with the transcription of covalently closed circular hepatitis B virus DNA, which regulated cAMP response element-binding protein, thereby affecting Notch1 regulation by the E3 ubiquitin ligase ITCH. This viral pathogenesis in hepatocytes induces liver cancer. In conclusion, Notch signaling exerts various actions and is a clinical signature associated with hepatocarcinogenesis and liver context-related developmental function.


Assuntos
Neoplasias Hepáticas , Receptores Notch/metabolismo , Transdução de Sinais , Hepatite/metabolismo , Hepatite/virologia , Vírus da Hepatite B/patogenicidade , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/virologia , Proteínas Repressoras/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
7.
Adv Exp Med Biol ; 1287: 105-122, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33034029

RESUMO

The NOTCH pathway is critical for the development of many cell types including the squamous epithelium lining of cutaneous and mucosal surfaces. In genetically engineered mouse models, Notch1 acts as one of the first steps to commit basal keratinocytes to terminally differentiate. Similarly, in human head and neck squamous cell cancers (HNSCCs), NOTCH1 is often lost consistent with its essential tumor-suppressive role for initiating keratinocyte differentiation. However, constitutive NOTCH1 activity in the epithelium results in expansion of the spinous keratinocyte layers and impaired terminal differentiation is consistent with the role of NOTCH1 as an oncogene in other cancers, especially in T-cell acute lymphoblastic leukemia. We have previously observed that NOTCH1 plays a dual role as both a tumor suppressor and oncogene, depending on the mutational context of the tumor. Namely, gain or loss or NOTCH1 activity promotes the development of human papillomavirus (HPV)-associated cancers. The additional HPV oncogenes likely disrupt the tumor-suppressive activities of NOTCH and enable the oncogenic pathways activated by NOTCH to promote tumor growth. In this review, we detail the role of NOTCH pathway in head and neck cancers with a focus on HPV-associated cancers.


Assuntos
Carcinogênese , Neoplasias Bucais/metabolismo , Neoplasias Bucais/virologia , Papillomaviridae/patogenicidade , Infecções por Papillomavirus/metabolismo , Receptores Notch/metabolismo , Transdução de Sinais , Animais , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/virologia , Humanos , Infecções por Papillomavirus/virologia
8.
Adv Exp Med Biol ; 1287: 123-154, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33034030

RESUMO

Since many decades, nonmelanoma skin cancer (NMSCs) is the most common malignancy worldwide. Basal cell carcinomas (BCC) and squamous cell carcinomas (SCC) are the major types of NMSCs, representing approximately 70% and 25% of these neoplasias, respectively. Because of their continuously rising incidence rates, NMSCs represent a constantly increasing global challenge for healthcare, although they are in most cases nonlethal and curable (e.g., by surgery). While at present, carcinogenesis of NMSC is still not fully understood, the relevance of genetic and molecular alterations in several pathways, including evolutionary highly conserved Notch signaling, has now been shown convincingly. The Notch pathway, which was first developed during evolution in metazoans and that was first discovered in fruit flies (Drosophila melanogaster), governs cell fate decisions and many other fundamental processes that are of high relevance not only for embryonic development, but also for initiation, promotion, and progression of cancer. Choosing NMSC as a model, we give in this review a brief overview on the interaction of Notch signaling with important oncogenic and tumor suppressor pathways and on its role for several hallmarks of carcinogenesis and cancer progression, including the regulation of cancer stem cells, tumor angiogenesis, and senescence.


Assuntos
Carcinogênese , Células-Tronco Neoplásicas/patologia , Neovascularização Patológica , Receptores Notch/metabolismo , Transdução de Sinais , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/patologia , Animais , Carcinoma Basocelular/metabolismo , Carcinoma Basocelular/patologia , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia , Humanos , Neoplasias Cutâneas/irrigação sanguínea
9.
Adv Exp Med Biol ; 1287: 155-168, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33034031

RESUMO

Thyroid cancer is the most common malignancy of the endocrine system with a steadily rising incidence. The term "thyroid cancer" encompasses a spectrum of subtypes, namely papillary thyroid cancer, follicular thyroid cancer, anaplastic thyroid cancer, and medullary thyroid cancer. Each subtype differs histopathologically and in degrees of cellular differentiation, which may be in part due to signaling of the Notch pathway. The Notch pathway is an evolutionarily conserved signal transduction mechanism that regulates cell proliferation, differentiation, survival, stem cell maintenance, embryonic and adult development, epithelial-mesenchymal transition, and angiogenesis. Its role in cancer biology is controversial, as it has been shown to play both an oncogenic and tumor-suppressive role in many different types of cancers. This discordance holds true for each subtype of thyroid cancer, indicating that Notch signaling is likely cell type and context dependent. Whether oncogenic or not, Notch signaling has proven to be significantly involved in the tumorigenesis of thyroid cancer and has thus earned interest as a therapeutic target. Advancement in the understanding of Notch signaling in thyroid cancer holds great promise for the development of novel treatment strategies to benefit patients.


Assuntos
Receptores Notch/metabolismo , Transdução de Sinais , Neoplasias da Glândula Tireoide/metabolismo , Humanos , Oncogenes , Neoplasias da Glândula Tireoide/genética , Neoplasias da Glândula Tireoide/patologia
10.
Adv Exp Med Biol ; 1287: 169-181, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33034032

RESUMO

The Notch signaling pathway controls normal embryonic development and tissue homeostasis of many cell types. It regulates cell proliferation, fate, differentiation, and cell death by short-range signaling between nearby cells that come in contact. The Notch pathway has also been critically involved in the pathobiology of a variety of malignancies, regulating cancer initiation and development, as well as early stages of cancer progression, by adjusting conserved cellular programs. Fibroblasts, an essential for tumor growth component of stroma, have also been affected by Notch regulation. Sequencing Notch gene mutations have been identified in a number of human tumors, revealing information on the progression of specific cancer types, such as ovarian cancer and melanoma, immune-associated tumors such as myeloid neoplasms, but especially in lymphocytic leukemia. Activation of the Notch can be either oncogenic or it may contain growth-suppressive functions, acting as a tumor suppressor in other hematopoietic cells, hepatocytes, skin, and pancreatic epithelium.


Assuntos
Progressão da Doença , Neoplasias/patologia , Receptores Notch , Transdução de Sinais , Genes Supressores de Tumor , Humanos , Neoplasias/genética , Oncogenes , Receptores Notch/metabolismo
11.
Adv Exp Med Biol ; 1287: 183-200, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33034033

RESUMO

Notch promotes breast cancer progression through tumor initiating cell maintenance, tumor cell fate specification, proliferation, survival, and motility. In addition, Notch is recognized as a decisive mechanism in regulating various juxtacrine and paracrine communications in the tumor microenvironment (TME). In this chapter, we review recent studies on stress-mediated Notch activation within the TME and sequelae such as angiogenesis, extracellular matrix remodeling, changes in the innate and adaptive immunophenotype, and therapeutic perspectives.


Assuntos
Neoplasias da Mama , Receptores Notch/metabolismo , Transdução de Sinais , Microambiente Tumoral , Neoplasias da Mama/irrigação sanguínea , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Humanos , Neovascularização Patológica , Comunicação Parácrina
12.
Adv Exp Med Biol ; 1287: 201-222, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33034034

RESUMO

Notch is a key evolutionary conserved pathway, which has fascinated and engaged the work of investigators in an uncountable number of biological fields, from development of metazoans to immunotherapy for cancer. The study of Notch has greatly contributed to the understanding of cancer biology and a substantial effort has been spent in designing Notch-targeting therapies. Due to its broad involvement in cancer, targeting Notch would allow to virtually modulate any aspect of the disease. However, this means that Notch-based therapies must be highly specific to avoid off-target effects. This review will present the newest mechanistic and therapeutic advances in the Notch field and discuss the promises and challenges of this constantly evolving field.


Assuntos
Imunoterapia , Terapia de Alvo Molecular , Neoplasias/terapia , Receptores Notch/antagonistas & inibidores , Humanos , Neoplasias/imunologia , Fenótipo , Receptores Notch/metabolismo
13.
Ecotoxicol Environ Saf ; 203: 110956, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32678753

RESUMO

BACKGROUND: Atmospheric pollutants could induced over-expression of Muc5ac, which is a major pathological feature in acute exacerbation of Chronic Obstructive Pulmonary Disease (COPD) and fatal asthma. Notch signaling pathway could promote mucus cell proliferation and mucus secretion. However, the effects of Notch signaling pathway on the airway mucus secretion induced by PM2.5 remain unknown. In this study, we investigated the role of the Notch signaling pathway on Muc5ac by atmospheric PM2.5 in Beas-2B cell. METHODS: The mRNA and protein levels of the Notch1-4, downstream target gene Hes1 and Muc5ac in the Notch signaling pathway were detected by qPCR and western after Beas-2B cells were exposed to PM2.5 of different concentrations for 12h, 24h, and 48h. RESULTS: The longer the exposure time and the higher the concentration of PM2.5, the lower the survival rate of Beas-2B cells. The expressions of Hes1 and Muc5ac in mRNA and protein were significantly increased after PM2.5 exposure. Correlation analysis indicated that there was a positive correlation between the expression of Muc5ac and Hes1 in mRNA and protein. CONCLUSION: Atmospheric PM2.5 can induce the express of Muc5ac, the Notch signaling pathway may be involved in the regulation of Muc5ac by Hes1.


Assuntos
Poluentes Atmosféricos/toxicidade , Células Epiteliais/efeitos dos fármacos , Mucina-5AC/biossíntese , Material Particulado/toxicidade , Receptores Notch/metabolismo , Mucosa Respiratória/efeitos dos fármacos , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Humanos , Mucosa Respiratória/metabolismo , Mucosa Respiratória/patologia , Transdução de Sinais
14.
Chem Biol Interact ; 328: 109200, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32702347

RESUMO

Activation of Notch signaling is associated with tumor aggressiveness, poor clinical outcome and drug resistance in breast cancer patients. Targeting Notch signaling with small molecule inhibitors may be a better strategy for anticancer drug development. We identified 3-O-(E)-p-Coumaroylbetulinic acid (CB) as a lead compound and potent inhibitor of Notch signaling pathway. Treatment of human breast cancer MBA-MD-231 and T47D cells with CB resulted in a dose- and time-dependent inhibition of cell viability and G0/G1-phase cell cycle arrest. This effect was associated with a marked decrease in the expression of cyclin D1 and its activating partner, cyclin-dependent kinase 2 with concomitant increase in cyclin kinase inhibitor p21, operative in G1-phase of the cell cycle. CB treatment induced early apoptosis in breast cancer cells as evident by increase in cleaved caspase-3, decrease in Bcl2 and survivin, surge in reactive oxygen species and disruption of mitochondrial membrane potential. CB treatment altered Notch target genes viz. Hes1, Hey1 and E-cadherin at mRNA and protein level in time-dependent manner along with decrease in Notch promoter activity at IC50 concentration. Furthermore, CB treatment decreased mammosphere formation in MCF-7 cells through down-modulation of the Notch signaling pathway and suppression of self-renewal markers such as c-Myc, SOX-2 and CD44. Our findings demonstrate that CB possess anticancer activity in breast cancer cells and suppresses self-renewal ability in the mammosphere as a result of modulation in cell-cycle machinery, disruption of mitochondrial function, induction of apoptosis, and Notch inhibition.


Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Receptores Notch/antagonistas & inibidores , Receptores Notch/metabolismo , Transdução de Sinais/efeitos dos fármacos , Triterpenos/farmacologia , Apoptose/efeitos dos fármacos , Neoplasias da Mama/metabolismo , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular , Linhagem Celular Tumoral , Feminino , Células HEK293 , Humanos , Células MCF-7 , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo
15.
Proc Natl Acad Sci U S A ; 117(28): 16292-16301, 2020 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-32601208

RESUMO

Notch pathway signaling is implicated in several human cancers. Aberrant activation and mutations of Notch signaling components are linked to tumor initiation, maintenance, and resistance to cancer therapy. Several strategies, such as monoclonal antibodies against Notch ligands and receptors, as well as small-molecule γ-secretase inhibitors (GSIs), have been developed to interfere with Notch receptor activation at proximal points in the pathway. However, the use of drug-like small molecules to target the downstream mediators of Notch signaling, the Notch transcription activation complex, remains largely unexplored. Here, we report the discovery of an orally active small-molecule inhibitor (termed CB-103) of the Notch transcription activation complex. We show that CB-103 inhibits Notch signaling in primary human T cell acute lymphoblastic leukemia and other Notch-dependent human tumor cell lines, and concomitantly induces cell cycle arrest and apoptosis, thereby impairing proliferation, including in GSI-resistant human tumor cell lines with chromosomal translocations and rearrangements in Notch genes. CB-103 produces Notch loss-of-function phenotypes in flies and mice and inhibits the growth of human breast cancer and leukemia xenografts, notably without causing the dose-limiting intestinal toxicity associated with other Notch inhibitors. Thus, we describe a pharmacological strategy that interferes with Notch signaling by disrupting the Notch transcription complex and shows therapeutic potential for treating Notch-driven cancers.


Assuntos
Receptores Notch/metabolismo , Bibliotecas de Moléculas Pequenas/farmacologia , Ativação Transcricional/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Sítios de Ligação , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Drosophila , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Células HeLa , Humanos , Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina/química , Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina/genética , Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina/metabolismo , Intestino Delgado/efeitos dos fármacos , Intestino Delgado/metabolismo , Camundongos , Mutação , Fenótipo , Multimerização Proteica , Transdução de Sinais/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/uso terapêutico
16.
Arterioscler Thromb Vasc Biol ; 40(9): 2227-2243, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32640901

RESUMO

OBJECTIVE: Perivascular adipose tissue (PVAT) surrounding arteries supports healthy vascular function. During obesity, PVAT loses its vasoprotective effect. We study pathological conversion of PVAT, which involves molecular changes in protein profiles and functional changes in adipocytes. Approach and Results: C57BL6/J mice were fed a 60% high-fat diet for 12 weeks or a cardioprotective 30% calorie-restricted diet for 5 weeks. Proteomic analysis identified PVAT as a molecularly distinct adipose depot, and novel markers for thermogenic adipocytes, such as GRP75 (stress-70 protein, mitochondrial), were identified. High-fat diet increased the similarity of protein signatures in PVAT and brown adipose, suggesting activation of a conserved whitening pathway. The whitening phenotype was characterized by suppression of UCP1 (uncoupling protein 1) and increased lipid deposition, leptin, and inflammation, and specifically in PVAT, elevated Notch signaling. Conversely, PVAT from calorie-restricted mice had decreased Notch signaling and less lipid. Using the Adipoq-Cre strain, we constitutively activated Notch1 signaling in adipocytes, which phenocopied the changes in PVAT caused by a high-fat diet, even on a standard diet. Preadipocytes from mouse PVAT expressed Sca1, CD140a, Notch1, and Notch2, but not CD105, showing differences compared with preadipocytes from other depots. Inhibition of Notch signaling during differentiation of PVAT-derived preadipocytes reduced lipid deposition and adipocyte marker expression. CONCLUSIONS: PVAT shares features with other adipose depots, but has a unique protein signature that is regulated by dietary stress. Increased Notch signaling in PVAT is sufficient to initiate the pathological conversion of PVAT by promoting adipogenesis and lipid accumulation and may thus prime the microenvironment for vascular disease.


Assuntos
Adipócitos Brancos/metabolismo , Adipogenia , Tecido Adiposo Branco/metabolismo , Lipogênese , Obesidade/metabolismo , Receptores Notch/metabolismo , Adipócitos Brancos/patologia , Tecido Adiposo Branco/patologia , Adiposidade , Animais , Ataxina-1/metabolismo , Aterosclerose/genética , Aterosclerose/metabolismo , Aterosclerose/patologia , Restrição Calórica , Dieta Hiperlipídica , Modelos Animais de Doenças , Endoglina/metabolismo , Feminino , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Obesidade/genética , Obesidade/patologia , Fenótipo , Pró-Proteína Convertase 9/genética , Pró-Proteína Convertase 9/metabolismo , Proteômica , Receptor Notch1/genética , Receptor Notch1/metabolismo , Receptor Notch2/metabolismo , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/metabolismo , Receptores Notch/genética , Transdução de Sinais
17.
PLoS Genet ; 16(6): e1008792, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32579612

RESUMO

While rare pathogenic copy-number variants (CNVs) are associated with both neuronal and non-neuronal phenotypes, functional studies evaluating these regions have focused on the molecular basis of neuronal defects. We report a systematic functional analysis of non-neuronal defects for homologs of 59 genes within ten pathogenic CNVs and 20 neurodevelopmental genes in Drosophila melanogaster. Using wing-specific knockdown of 136 RNA interference lines, we identified qualitative and quantitative phenotypes in 72/79 homologs, including 21 lines with severe wing defects and six lines with lethality. In fact, we found that 10/31 homologs of CNV genes also showed complete or partial lethality at larval or pupal stages with ubiquitous knockdown. Comparisons between eye and wing-specific knockdown of 37/45 homologs showed both neuronal and non-neuronal defects, but with no correlation in the severity of defects. We further observed disruptions in cell proliferation and apoptosis in larval wing discs for 23/27 homologs, and altered Wnt, Hedgehog and Notch signaling for 9/14 homologs, including AATF/Aatf, PPP4C/Pp4-19C, and KIF11/Klp61F. These findings were further supported by tissue-specific differences in expression patterns of human CNV genes, as well as connectivity of CNV genes to signaling pathway genes in brain, heart and kidney-specific networks. Our findings suggest that multiple genes within each CNV differentially affect both global and tissue-specific developmental processes within conserved pathways, and that their roles are not restricted to neuronal functions.


Assuntos
Variações do Número de Cópias de DNA , Proteínas de Drosophila/genética , Regulação da Expressão Gênica no Desenvolvimento , Transtornos do Neurodesenvolvimento/genética , Animais , Olho Composto de Artrópodes/embriologia , Olho Composto de Artrópodes/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Especificidade de Órgãos , Receptores Notch/genética , Receptores Notch/metabolismo , Transdução de Sinais , Asas de Animais/embriologia , Asas de Animais/metabolismo , Proteínas Wnt/genética , Proteínas Wnt/metabolismo
18.
Nat Commun ; 11(1): 3084, 2020 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-32555153

RESUMO

Tumor-initiating stem-like cells (TICs) are defective in maintaining asymmetric cell division and responsible for tumor recurrence. Cell-fate-determinant molecule NUMB-interacting protein (TBC1D15) is overexpressed and contributes to p53 degradation in TICs. Here we identify TBC1D15-mediated oncogenic mechanisms and tested the tumorigenic roles of TBC1D15 in vivo. We examined hepatocellular carcinoma (HCC) development in alcohol Western diet-fed hepatitis C virus NS5A Tg mice with hepatocyte-specific TBC1D15 deficiency or expression of non-phosphorylatable NUMB mutations. Liver-specific TBC1D15 deficiency or non-p-NUMB expression reduced TIC numbers and HCC development. TBC1D15-NuMA1 association impaired asymmetric division machinery by hijacking NuMA from LGN binding, thereby favoring TIC self-renewal. TBC1D15-NOTCH1 interaction activated and stabilized NOTCH1 which upregulated transcription of NANOG essential for TIC expansion. TBC1D15 activated three novel oncogenic pathways to promote self-renewal, p53 loss, and Nanog transcription in TICs. Thus, this central regulator could serve as a potential therapeutic target for treatment of HCC.


Assuntos
Proteínas Ativadoras de GTPase/metabolismo , Células-Tronco Neoplásicas/citologia , Receptor Notch1/metabolismo , Adulto , Idoso , Animais , Carcinogênese/patologia , Carcinoma Hepatocelular/metabolismo , Divisão Celular , Linhagem Celular Tumoral , Transferência Ressonante de Energia de Fluorescência , Hepacivirus , Hepatócitos/citologia , Humanos , Fígado/metabolismo , Neoplasias Hepáticas/metabolismo , Camundongos , Pessoa de Meia-Idade , Recidiva Local de Neoplasia , Fosforilação , Receptores Notch/metabolismo , Transdução de Sinais , Proteína Supressora de Tumor p53/metabolismo
19.
Zhongguo Ying Yong Sheng Li Xue Za Zhi ; 36(1): 90-93, 2020 Jan 28.
Artigo em Chinês | MEDLINE | ID: mdl-32476379

RESUMO

OBJECTIVE: To observe the regulatory effect of 6-Shogaol on Notch signal pathway in colonic epithelial cells of mice with ulcerative colitis. METHODS: Forty Kunming mice were randomly divided into normal group (n=10) and model group (n=30). The model of ulcerative colitis was induced by free drinking of 2% dextran sulfate sodium salt(DSS). After 15 days, the mice were divided into model group, 6-gingerenol group and positive control group with 10 mice in each group. Normal group and model group were treated with normal saline, 6-gingerenol group was treated with 6-Shogaol 100 mg/(kg·d), positive control group was treated with sulfasalazine 100 mg/(kg·d), for 20 days. The histopathological changes of colon were observed, and the expressions of Hes-1 and Math-1protein in colonic epithelial cells were detected by immunofluorescence double labeling method. The expressions of Notch-1, Hes-1 and Math-1 mRNA in colonic epithelial tissue were detected by RT-PCR. The expressions of Notch-1, Hes-1 and Math-1 protein in colonic epithelial tissue was detected by Western blot. RESULTS: Compared with the normal group, the expression of Notch-1 and Hes-1 protein and the relative expression of mRNA in colonic epithelium of model group were significantly increased (P<0.01), while the relative expressions of Math-1 mRNA and protein were decreased significantly (P<0.01). Compared with the model group, the expressions of Notch-1 and Hes-1 protein and the relative expression of mRNA in colonic epithelium of 6-Shogaol group and sulfasalazine group were decreased significantly(P<0.01), while the relative expressions of Math-1 mRNA and protein were increased significantly(P<0.01). CONCLUSION: 6-Shogaol can inhibit the over activation of Notch pathway and regulate the balance of differentiation between colonic epithelialabsorptive cell line and secretory cell line and repair damaged mucosal tissue.


Assuntos
Catecóis/farmacologia , Colite Ulcerativa , Células Epiteliais/efeitos dos fármacos , Transdução de Sinais , Animais , Colo/citologia , Modelos Animais de Doenças , Mucosa Intestinal/patologia , Camundongos , Receptores Notch/metabolismo
20.
Anticancer Res ; 40(6): 3155-3161, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32487610

RESUMO

BACKGROUND/AIM: The deacetylase sirtuin1 (SIRT1) inhibits tumor suppressor p53 and may promote tumorigenesis; however, SIRT1 effects on leukemia cells are controversial. The aim of this study was to clarify the activity of SIRT1 in leukemia cells. MATERIALS AND METHODS: The effects of SIRT1 inhibition or activation and SIRT1 knockdown or overexpression were examined in two T cell acute lymphoblastic leukemia (T-ALL) cell lines carrying NOTCH1 mutations and three acute myeloid leukemia (AML) cell lines. RESULTS: The growth of T-ALL cells was promoted by SIRT1 inhibition and SIRT1 knockdown but was reduced by SIRT1 activation and overexpression; however, no effects were observed in AML cells. SIRT1 activation decreased NOTCH, NF-κB, and mTOR signaling and inhibited p53, suggesting that the possible mechanisms of T-ALL growth suppression by SIRT1 are independent of p53. CONCLUSION: SIRT1 activators acting through the down-regulation of NOTCH, NF-κB, and mTOR pathways can be novel targeted drugs for NOTCH1-mutated T-ALLs.


Assuntos
NF-kappa B/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Receptores Notch/metabolismo , Sirtuína 1/metabolismo , Carbazóis/farmacologia , Processos de Crescimento Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Técnicas de Silenciamento de Genes , Humanos , Mutação , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patologia , Receptor Notch1/genética , Receptor Notch1/metabolismo , Transdução de Sinais/efeitos dos fármacos , Sirtuína 1/antagonistas & inibidores , Sirtuína 1/biossíntese , Sirtuína 1/genética , Serina-Treonina Quinases TOR/metabolismo , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA