Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 625
Filtrar
1.
Adv Exp Med Biol ; 1274: 137-176, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32894510

RESUMO

Lysophosphatidic acid (LPA) has major roles as a bioactive signaling molecule, with multiple physiological and pathological roles being described in almost every major organ system. In this review we discuss LPA signaling pathways as emerging drug targets for multiple conditions relevant to human health and disease. LPA signals through the six G protein-coupled receptors LPA1-6, and several of these receptors along with the LPA-producing enzyme including autotaxin (ATX) are now established as therapeutic targets with potential to treat various human diseases as exemplified by several LPA signaling targeting compounds now in clinical trials for idiopathic pulmonary fibrosis and systemic sclerosis. Several crystal structures of LPA receptors and ATX have been solved, which will accelerate development of highly selective and effective LPA signaling targeting compounds. We also review additional bioactive lysophospholipid (LPL) signaling molecules including lysophosphatidylserine and lysophosphatidylinositol, which represent the next wave of LPL druggable targets. An emerging theme in bioactive LPL signaling is that where the ligand is produced and how it is delivered to the cognate receptor are critical determinants of the biological responses. We will also discuss how connecting the production and function of bioactive LPLs will identify new therapeutic strategies to effectively target LPL signaling pathways.


Assuntos
Lisofosfolipídeos/metabolismo , Terapia de Alvo Molecular , Transdução de Sinais/efeitos dos fármacos , Humanos , Fibrose Pulmonar Idiopática/tratamento farmacológico , Fibrose Pulmonar Idiopática/metabolismo , Receptores de Ácidos Lisofosfatídicos/química , Receptores de Ácidos Lisofosfatídicos/metabolismo , Escleroderma Sistêmico/tratamento farmacológico , Escleroderma Sistêmico/metabolismo
2.
Gene ; 761: 145038, 2020 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-32777532

RESUMO

Neuropathic pain, which results from impairment of the somatosensory system, has affected about 8% population around the world and leads to considerable burdens for patients and world health care system. However, its underlying mechanisms remain poorly understood. In this study, we hypothesized that miR-24-3p was involved in the progression of neuropathic pain in CCI rat models. By measuring miR-24-3p expression in CCI rats, we found that miR-24-3p expression was increased in CCI rats, suggesting miR-24-3p might participate in neuropathic pain progression. Next, by conducting a serial in vitro and vivo experiments, we found that miR-24-3p regulated Wnt5a/ß-Catenin Signaling levels to promote neuropathic pain progression via targeting LPAR3 in CCI rats. Furthermore, we explored the upstream regulator of miR-24-3p by conducting bioinformatics analysis, we found that circular RNA cZRANB1 might sponge to miR-24-3p. Then we applied biotinylated RNA pull-down and luciferase reporter assays to assess the association between cZRANB1 and miR-24-3p. It was found that cZRANB1 mediated LPAR3 expression via sponging miR-24-3p. Collectively, our study suggests that cZRNAB1 regulated Wnt5a/ß-Catenin Signaling expression via miR-24-3p/LPAR3 axis in CCI rat models.


Assuntos
MicroRNAs/genética , Neuralgia/genética , Receptores de Ácidos Lisofosfatídicos/genética , Animais , Constrição Patológica/genética , Progressão da Doença , Regulação da Expressão Gênica/genética , Células HEK293 , Humanos , Inflamação/genética , Masculino , MicroRNAs/metabolismo , RNA Circular/genética , RNA Longo não Codificante/genética , Ratos , Ratos Sprague-Dawley , Receptores de Ácidos Lisofosfatídicos/metabolismo , Transdução de Sinais/genética , Fator de Necrose Tumoral alfa/genética , Ubiquitina Tiolesterase/genética , Via de Sinalização Wnt/genética , Proteína Wnt-5a/genética , Proteína Wnt-5a/metabolismo , beta Catenina/metabolismo
3.
J Pharmacol Exp Ther ; 374(2): 283-294, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32409422

RESUMO

Lysophosphatidic acid (LPA) is the natural ligand for two phylogenetically distinct families of receptors (LPA1-3, LPA4-6) whose pathways control a variety of physiologic and pathophysiological responses. Identifying the benefit of balanced activation/repression of LPA receptors has always been a challenge because of the high lability of LPA and the limited availability of selective and/or stable agonists. In this study, we document the discovery of small benzofuran ethanolamine derivatives (called CpX and CpY) behaving as LPA1-3 agonists. Initially found as rabbit urethra contracting agents, their elusive receptors were identified from [35S]GTPγS-binding and ß-arrestin2 recruitment investigations and then confirmed by [3H]CpX binding studies (urethra, hLPA1-2 membranes). Both compounds induced a calcium response in hLPA1-3 cells within a range of 0.4-1.5-log lower potency as compared with LPA. The contractions of rabbit urethra strips induced by these compounds perfectly matched binding affinities with values reaching the two-digit nanomolar level. The antagonist, KI16425, dose-dependently antagonized CpX-induced contractions in agreement with its affinity profile (LPA1≥LPA3>>LPA2). The most potent agonist, CpY, doubled intraurethral pressure in anesthetized female rats at 3 µg/kg i.v. Alternatively, CpX was shown to inhibit human preadipocyte differentiation, a process totally reversed by KI16425. Together with original molecular docking data, these findings clearly established these molecules as potent agonists of LPA1-3 and consolidated the pivotal role of LPA1 in urethra/prostate contraction as well as in fat cell development. The discovery of these unique and less labile LPA1-3 agonists would offer new avenues to investigate the roles of LPA receptors. SIGNIFICANCE STATEMENT: We report the identification of benzofuran ethanolamine derivatives behaving as potent selective nonlipid LPA1-3 agonists and shown to alter urethra muscle contraction or preadipocyte differentiation. Unique at this level of potency, selectivity, and especially stability, compared with lysophosphatidic acid, they represent more appropriate tools for investigating the physiological roles of lysophosphatidic acid receptors and starting point for optimization of drug candidates for therapeutic applications.


Assuntos
Benzofuranos/química , Benzofuranos/farmacologia , Descoberta de Drogas , Etanolamina/química , Receptores de Ácidos Lisofosfatídicos/agonistas , Adipócitos/citologia , Adipócitos/efeitos dos fármacos , Animais , Benzofuranos/metabolismo , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Células CHO , Diferenciação Celular/efeitos dos fármacos , Cricetulus , Guanosina 5'-O-(3-Tiotrifosfato)/metabolismo , Humanos , Simulação de Acoplamento Molecular , Contração Muscular/efeitos dos fármacos , Músculo Liso/efeitos dos fármacos , Músculo Liso/fisiologia , Conformação Proteica , Coelhos , Ratos , Receptores de Ácidos Lisofosfatídicos/química , Receptores de Ácidos Lisofosfatídicos/metabolismo , beta-Arrestina 2/metabolismo
4.
Anim Genet ; 51(4): 584-589, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32463158

RESUMO

Mutations in lipase H (LIPH) and lysophosphatidic acid receptor 6 (LPAR6), which are essential for the lysophosphatidic acid (LPA) signalling pathway, are associated with hypotrichosis and wooly hair in humans. Mutations in LPAR6 and keratin 71 (KRT71), result in unusual fur growth and hair structure in several cat breeds (Cornish Rex, Devon Rex and Selkirk Rex). Here, we performed target sequencing of the LIPH, LPAR6 and KRT71 genes in six cat breeds with specific hair-growth phenotypes. A LIPH genetic variant (LIPH:c.478_483del; LIPH:p.Ser160_Gly161del) was found in Ural Rex cats with curly coats from Russia, but was absent in all other cat breeds tested. In silico three-dimensional analysis of the LIPH mutant protein revealed a contraction of the α3-helix structure in the enzyme phospholipid binding site that may affect its activity.


Assuntos
Gatos/genética , Cabelo/anatomia & histologia , Queratinas Específicas do Cabelo/genética , Lipase/genética , Mutação , Receptores de Ácidos Lisofosfatídicos/genética , Animais , Queratinas Específicas do Cabelo/metabolismo , Lipase/metabolismo , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Receptores de Ácidos Lisofosfatídicos/metabolismo , Especificidade da Espécie
5.
Artigo em Inglês | MEDLINE | ID: mdl-32004685

RESUMO

Lysophosphatidic acid (LPA) species are present in almost all organ systems and play diverse roles through its receptors. Asthma is an airway disease characterized by chronic allergic inflammation where various innate and adaptive immune cells participate in establishing Th2 immune response. Here, we will review the contribution of LPA and its receptors to the functions of immune cells that play a key role in establishing allergic airway inflammation and aggravation of allergic asthma.


Assuntos
Asma/imunologia , Lisofosfolipídeos/metabolismo , Diester Fosfórico Hidrolases/metabolismo , Receptores de Ácidos Lisofosfatídicos/metabolismo , Transdução de Sinais/imunologia , Animais , Asma/sangue , Asma/genética , Asma/patologia , Movimento Celular/imunologia , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Modelos Animais de Doenças , Células Endoteliais/imunologia , Células Endoteliais/metabolismo , Endotélio Vascular/citologia , Endotélio Vascular/imunologia , Endotélio Vascular/metabolismo , Técnicas de Introdução de Genes , Humanos , Pulmão/irrigação sanguínea , Pulmão/citologia , Pulmão/imunologia , Pulmão/patologia , Linfonodos/irrigação sanguínea , Linfonodos/imunologia , Linfonodos/metabolismo , Macrófagos Alveolares/imunologia , Macrófagos Alveolares/metabolismo , Camundongos , Camundongos Knockout , Diester Fosfórico Hidrolases/genética , Receptores de Ácidos Lisofosfatídicos/genética , Células Th2/imunologia , Células Th2/metabolismo
6.
J Clin Invest ; 130(3): 1513-1526, 2020 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-32065590

RESUMO

Fibroblast growth factor 23 (FGF23) is a bone-derived hormone that controls blood phosphate levels by increasing renal phosphate excretion and reducing 1,25-dihydroxyvitamin D3 [1,25(OH)2D] production. Disorders of FGF23 homeostasis are associated with significant morbidity and mortality, but a fundamental understanding of what regulates FGF23 production is lacking. Because the kidney is the major end organ of FGF23 action, we hypothesized that it releases a factor that regulates FGF23 synthesis. Using aptamer-based proteomics and liquid chromatography-mass spectrometry-based (LC-MS-based) metabolomics, we profiled more than 1600 molecules in renal venous plasma obtained from human subjects. Renal vein glycerol-3-phosphate (G-3-P) had the strongest correlation with circulating FGF23. In mice, exogenous G-3-P stimulated bone and bone marrow FGF23 production through local G-3-P acyltransferase-mediated (GPAT-mediated) lysophosphatidic acid (LPA) synthesis. Further, the stimulatory effect of G-3-P and LPA on FGF23 required LPA receptor 1 (LPAR1). Acute kidney injury (AKI), which increases FGF23 levels, rapidly increased circulating G-3-P in humans and mice, and the effect of AKI on FGF23 was abrogated by GPAT inhibition or Lpar1 deletion. Together, our findings establish a role for kidney-derived G-3-P in mineral metabolism and outline potential targets to modulate FGF23 production during kidney injury.


Assuntos
Lesão Renal Aguda/metabolismo , Fatores de Crescimento de Fibroblastos/metabolismo , Glicerofosfatos/metabolismo , Rim/metabolismo , Lesão Renal Aguda/genética , Lesão Renal Aguda/patologia , Animais , Linhagem Celular , Feminino , Fatores de Crescimento de Fibroblastos/genética , Humanos , Rim/patologia , Masculino , Metabolômica , Camundongos , Camundongos Knockout , Receptores de Ácidos Lisofosfatídicos/genética , Receptores de Ácidos Lisofosfatídicos/metabolismo
7.
Biochem Biophys Res Commun ; 523(4): 847-852, 2020 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-31954518

RESUMO

Glycyl-tRNA synthetase (GlyRS) has non-canonical roles beyond aminoacylation, but the molecular mechanism is largely unknown. We have previously found that GlyRS is phosphorylated in the cytoplasm of bovine mammary epithelial cells (bMECs) in response to amino acid stimulation, and the phosphorylated GlyRS enters nucleus to stimulate gene expression for milk synthesis. In this study, we aim to uncover the upstream kinase of GlyRS and reveal the signaling pathways that methionine (Met) stimulates GlyRS phosphorylation. We show that mitogen-activated protein kinase 10 (MAP3K10) interacts with GlyRS in bMECs by Co-IP, mass spectrometry, and Western blotting analysis. We further identify that MAP3K10 is an upstream kinase of GlyRS by in vitro kinase assay and MAP3K10 stimulates NFκB1 phosphorylation via activating GlyRS. We also uncover that Met stimulates GlyRS phosphorylation via the GPR87-CDC42/Rac1-MAP3K10 signaling pathway. Our findings help to understand the molecular mechanism of GlyRS in cellular signaling transduction.


Assuntos
Glicina-tRNA Ligase/metabolismo , Metionina/farmacologia , Proteína Quinase 10 Ativada por Mitógeno/metabolismo , Receptores de Ácidos Lisofosfatídicos/metabolismo , Transdução de Sinais , Proteína cdc42 de Ligação ao GTP/metabolismo , Proteínas rac de Ligação ao GTP/metabolismo , Animais , Bovinos , Ativação Enzimática/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Ligação Proteica/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
8.
Med Sci Monit ; 26: e919820, 2020 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-31902939

RESUMO

BACKGROUND Thyroid cancer is the most common endocrine system malignancy. Scientists have done considerable research into the molecular mechanisms involved, but many mechanisms remain undiscovered. MATERIAL AND METHODS We performed a comprehensive analysis of the whole-transcriptome resequencing derived from thyroid tissues and paired papillary thyroid cancer (PTC) and showed that lysophosphatidic acid receptor 5 (LPAR5) is strongly overexpressed in thyroid carcinoma. Then, we used TPC-1 and KTC-1 to explore the effect of LPAR5 knockdown on colony formation, migration, proliferation, invasion, and apoptosis of PTC cell line cells. AKT activator was used for the recovery test. Finally, we designed proteomic experiments to explore the role of LPAR5 in the AKT pathway and the EMT process. RESULTS Cell function experiments showed that LPAR5 knockdown can significantly induce apoptosis of KTC-1 and TPC-1 cells. Furthermore, LPAR5 can promote PTC metastasis and tumorigenesis by activating the PI3K/AKT pathway and decreasing its cancer-promoting effect when using AKT agonist. We also found that LPAR5 can regulate the expression of EMT-related proteins, which affect invasion and migration. CONCLUSIONS In summary, downregulation of LPAR5 expression can inhibit the physiological process of PTC, and this phenomenon is related to the PI3K/AKT pathway and EMT.


Assuntos
Fosfatidilinositol 3-Quinase/metabolismo , Receptores de Ácidos Lisofosfatídicos/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Câncer Papilífero da Tireoide/metabolismo , Neoplasias da Glândula Tireoide/metabolismo , Adulto , Idoso , Apoptose/fisiologia , Linhagem Celular Tumoral , Movimento Celular/fisiologia , Proliferação de Células/fisiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Proteômica/métodos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Glândula Tireoide/metabolismo , Glândula Tireoide/patologia , Neoplasias da Glândula Tireoide/patologia
9.
Int J Mol Sci ; 21(1)2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-31906413

RESUMO

Muscle invasive bladder carcinoma is a highly malignant cancer with a high mortality rate, due to its tendency to metastasize. The tyrosine kinase recepteur d'origine nantais (RON) promotes bladder carcinoma metastasis. Lysophosphatidic acid (LPA) is a phospholipid derivative, which acts as a signaling molecule to activate three high affinity G-protein coupled receptors, LPA1, LPA2, and LPA3. This in turn leads to cell proliferation and contributes to oncogenesis. However, little is known about the effects of LPA on invasive bladder cancer (IBC). In this study, we discovered that LPA upregulated RON expression, which in turn promoted cell invasion in bladder cancer T24 cells. As expected, we found that the LPA receptor was essential for the LPA induced increase in RON expression. More interestingly, we discovered that LPA induced RON expression via the MAPK (ERK1/2, JNK1/2), Egr-1, AP-1, and NF-κB signaling axes. These results provide experimental evidence and novel insights regarding bladder malignancy metastasis, which could be helpful for developing new therapeutic strategies for IBC treatment.


Assuntos
Movimento Celular/efeitos dos fármacos , Lisofosfolipídeos/farmacologia , Receptores Proteína Tirosina Quinases/metabolismo , Transdução de Sinais/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos , Neoplasias da Bexiga Urinária/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proteína 1 de Resposta de Crescimento Precoce/antagonistas & inibidores , Proteína 1 de Resposta de Crescimento Precoce/genética , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Humanos , NF-kappa B/metabolismo , Isoformas de Proteínas/antagonistas & inibidores , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Receptores Proteína Tirosina Quinases/genética , Receptores de Ácidos Lisofosfatídicos/antagonistas & inibidores , Receptores de Ácidos Lisofosfatídicos/genética , Receptores de Ácidos Lisofosfatídicos/metabolismo , Fator de Transcrição AP-1/antagonistas & inibidores , Fator de Transcrição AP-1/metabolismo , Neoplasias da Bexiga Urinária/metabolismo
10.
Exp Cell Res ; 388(1): 111813, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31904382

RESUMO

Lysophosphatidic acid (LPA) signaling via LPA receptors (LPA1 to LPA6) regulates a variety of malignant properties of cancer cells. It is known that endothelial cells promote tumor progression and chemoresistance. The present study aimed to investigate the roles of LPA5 in cellular functions modulated by endothelial cells and anticancer drug in osteosarcoma cells. Human osteosarcoma MG-63 cells were maintained in endothelial F2 cell supernatants. After culturing for 3 months, MG63-F2 cells were established. LPAR5 expression level in MG63-F2 cells was significantly elevated, compared with MG-63 cells. The cell motile activity of MG63-F2 cells was markedly higher than that of MG-63 cells. To validate the effects of LPA5 on cell motile activity, LPA5 knockdown cells were generated from MG-63 cells. The cell motile activity of MG-63 cells was inhibited by LPA5 knockdown. The cell survival to cisplatin (CDDP) was reduced in MG-63 cells treated with LPA. In the presence of LPA, the cell survival rate was significantly lower in MG63-F2 cells than MG-63 cells, correlating with LPAR5 expression. LPA5 knockdown cells indicated the high cell survival rate to CDDP. Moreover, LPAR5 expression level was increased in the long-term CDDP treated MG63-C cells. The cell survival to CDDP of MG63-C cells was enhanced by LPA5 knockdown. These results suggest that cellular functions are regulated through LPA5-mediatd signaling induced by endothelial cells and CDDP in MG-63 cells.


Assuntos
Células Endoteliais/metabolismo , Osteossarcoma/metabolismo , Receptores de Ácidos Lisofosfatídicos/metabolismo , Antineoplásicos/farmacologia , Morte Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Cisplatino/análogos & derivados , Cisplatino/farmacologia , Meios de Cultivo Condicionados/farmacologia , Humanos , Lisofosfolipídeos/metabolismo , Receptores de Ácidos Lisofosfatídicos/genética , Transdução de Sinais , Células Tumorais Cultivadas
11.
Eur J Pharmacol ; 868: 172886, 2020 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-31866407

RESUMO

Lysophosphatidic acid (LPA), as a bioactive lipid, plays a variety of physiological and pathological roles via activating six types of G-protein-coupled LPA receptors (LPA1-6). Our preliminary study found that LPA1 is highly expressed in lung cancer tissues compared with paracancerous tissues, but the role of LPA1 in lung carcinoma is unclear. This study aimed to elucidate the association between LPA1 and lung tumour behaviour at the cellular and animal model levels. We found that LPA promoted the migration, proliferation and colony formation of a lung cancer cell line (A549). LPA1 and LPA3 are preferentially expressed in A549 cells, and both Ki16425 (LPA1 and LPA3 antagonist) and ono7300243 (LPA1 antagonist) completely blocked the LPA-induced actions. These results were further verified by experiments of the LPA1/3 overexpression and LPA1 knockdown A549 cells. Furthermore, LPA1 overexpression and knockdown A549 cells were used to assess the in vivo tumour-bearing animal model and the mechanism underlying LPA-induced actions. In the animal model, A549 cell-derived tumour volume was significantly increased by LPA1 overexpression and significantly decreased by LPA1 knockdown respectively, suggesting that LPA1 is a regulator of in vivo tumour formation. Our results also indicated that the LPA1/Gi/MAP kinase/NF-κB pathway is involved in LPA-induced oncogenic actions in A549 cells. Thus, targeting LPA1 may be a novel strategy for treating lung carcinoma.


Assuntos
Antineoplásicos/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Receptores de Ácidos Lisofosfatídicos/antagonistas & inibidores , Células A549 , Animais , Antineoplásicos/uso terapêutico , Movimento Celular/efeitos dos fármacos , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Técnicas de Silenciamento de Genes , Humanos , Isoxazóis/farmacologia , Isoxazóis/uso terapêutico , Neoplasias Pulmonares/patologia , Lisofosfolipídeos/metabolismo , Masculino , Camundongos , NF-kappa B/metabolismo , Propionatos/farmacologia , Propionatos/uso terapêutico , Receptores de Ácidos Lisofosfatídicos/genética , Receptores de Ácidos Lisofosfatídicos/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
12.
Molecules ; 24(24)2019 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-31817172

RESUMO

Gintonin is a newly discovered component of ginseng and acts as a ligand for G protein-coupled lysophosphatidic acid (LPA) receptors. It is currently unclear whether gintonin has skin-related effects. Here, we examined the effects of a gintonin-enriched fraction (GEF) on [Ca2+]i transient induction in human dermal fibroblasts (HDFs). We found that GEF treatment transiently induced [Ca2+]i in a dose-dependent manner. GEF also increased cell viability and proliferation, which could be blocked by Ki16425, an LPA1/3 receptor antagonist, or 1,2-Bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid tetrakis(acetoxymethyl ester) (BAPTA-AM), a calcium chelator. We further found that GEF stimulated hyaluronic acid (HA) release from HDFs in a dose- and time-dependent manner, which could be attenuated by Ki16425, U73122, a phospholipase C inhibitor, 2-Aminoethoxydiphenyl borate (2-APB), an IP3 receptor antagonist, and BAPTA-AM. Moreover, we found that GEF increased HA synthase 1 (HAS1) expression in a time-dependent manner. We also found that GEF stimulates collagen release and the expression of collagen 1, 3, and 7 synthases in a time-dependent manner. GEF-mediated collagen synthesis could be blocked by Ki16425, U73122, 2-APB, and BAPTA-AM. GEF treatment also increased the mRNA levels of LPA1-6 receptor subtypes at 8 h and increased the protein levels of LPA1-6 receptor subtypes at 8 h. Overall, these results indicate that the GEF-mediated transient induction of [Ca2+]i is coupled to HA and collagen release from HDFs via LPA receptor regulations. We can, thus, conclude that GEF might exert a beneficial effect on human skin physiology via LPA receptors.


Assuntos
Colágeno/metabolismo , Derme/citologia , Fibroblastos/metabolismo , Ácido Hialurônico/metabolismo , Panax/química , Extratos Vegetais/farmacologia , Receptores de Ácidos Lisofosfatídicos/metabolismo , Cálcio/metabolismo , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Humanos , Hialuronan Sintases/metabolismo
13.
Int J Mol Sci ; 20(22)2019 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-31717968

RESUMO

The bile acid-phospholipid conjugate ursodeoxycholyl-lysophosphatidylethanolamide (UDCA-LPE) was shown to have anti-inflammatory, antisteatotic, and antifibrotic properties, rendering it as a drug targeting non-alcoholic steatohepatitis (NASH). On a molecular level, it disrupted the heterotetrameric fatty acid uptake complex localized in detergent-resistant membrane domains of the plasma membrane (DRM-PM). However, its mode of action was unclear. Methodologically, UDCA-LPE was incubated with the liver tumor cell line HepG2 as well as their isolated DRM-PM and all other cellular membranes (non-DRM). The membrane cholesterol and phospholipids were quantified as well as the DRM-PM protein composition by Western blotting. The results show a loss of DRM-PM by UDCA-LPE (50 µM) with a 63.13 ± 7.14% reduction of phospholipids and an 81.94 ± 8.30% reduction of cholesterol in relation to mg total protein. The ratio of phospholipids to cholesterol changed from 2:1 to 4:1, resembling those of non-DRM fractions. Among the members of the fatty acid uptake complex, the calcium-independent membrane phospholipase A2 (iPLA2ß) abandoned DRM-PM most rapidly. As a consequence, the other members of this transport system disappeared as well as the DRM-PM anchored fibrosis regulating proteins integrin ß-1 and lysophospholipid receptor 1 (LPAR-1). It is concluded that UDCA-LPE executes its action by iPLA2ß removal from DRM-PM and consequent dissolution of the raft lipid platform.


Assuntos
Colesterol/metabolismo , Lisofosfolipídeos/farmacologia , Microdomínios da Membrana/efeitos dos fármacos , Fosfolipases A2/metabolismo , Ácido Ursodesoxicólico/análogos & derivados , Células Hep G2 , Humanos , Integrina beta1/metabolismo , Microdomínios da Membrana/metabolismo , Receptores de Ácidos Lisofosfatídicos/metabolismo , Ácido Ursodesoxicólico/farmacologia
14.
Yakugaku Zasshi ; 139(11): 1403-1415, 2019.
Artigo em Japonês | MEDLINE | ID: mdl-31685737

RESUMO

For my Ph.D. research topic, I isolated endogenous morphine-like analgesic dipeptide, kyotorphin, which mediates Met-enkephalin release, and discovered kyotorphin synthetase, a putative receptor and antagonist. Furthermore, I succeeded in purifying µ-opioid receptor and functional reconstitution with purified G proteins. After receiving my full professor position at Nagasaki University in 1996, I worked on two topics of research, molecular mechanisms of chronic pain through lysophosphatidic acid (LPA) and identification and characterization of neuroprotective protein, prothymosin α. In a series of studies, we have shown that LPA signaling defines the molecular mechanisms of neuropathic pain and fibromyalgia in terms of development and maintenance. Above all, the discovery of feed-forward system in LPA production and pain memory may contribute to better understanding of chronic pain and future analgesic drug discovery. Regarding prothymosin α, we first discovered it as neuronal necrosis-inhibitory molecule through two independent mechanisms, such as toll-like receptor and F0/F1 ATPase, both which protect neurons through indirect mechanisms. Prothymosin α is released by non-classical and non-vesicular mechanisms on various stresses, such as ischemia, starvation, and heat-shock. Thus it may be called a new type of neuroprotective damage-associated molecular patterns (DAMPs)/Alarmins. Heterozygotic mice showed a defect in memory-learning and neurogenesis as well as anxiogenic behaviors. Small peptide, P6Q derived from prothymosin α retains neuroprotective actions, which include blockade of cerebral hemorrhage caused by late treatment with tissue plasminogen activator in the stroke model in mice.


Assuntos
Dor Crônica/etiologia , Dor Crônica/genética , Fármacos Neuroprotetores , Precursores de Proteínas , Receptores de Ácidos Lisofosfatídicos/fisiologia , Transdução de Sinais/fisiologia , Timosina/análogos & derivados , Animais , Endorfinas , Humanos , Camundongos , Precursores de Proteínas/metabolismo , ATPases Translocadoras de Prótons , Receptores de Ácidos Lisofosfatídicos/metabolismo , Receptores Opioides , Acidente Vascular Cerebral , Timosina/metabolismo , Receptores Toll-Like
15.
Genes (Basel) ; 10(9)2019 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-31514484

RESUMO

Existing methods often fail to recognize the conversions for the biological roles of the pairs of genes and microRNAs (miRNAs) between the tumor and normal samples. We have developed a novel cluster scoring method to identify messenger RNA (mRNA) and miRNA interaction pairs and clusters while considering tumor and normal samples jointly. Our method has identified 54 significant clusters for 15 cancer types selected from The Cancer Genome Atlas project. We also determined the shared clusters across tumor types and/or subtypes. In addition, we compared gene and miRNA overlap between lists identified in our liver hepatocellular carcinoma (LIHC) study and regulatory relationships reported from human and rat nonalcoholic fatty liver disease studies (NAFLD). Finally, we analyzed biological functions for the single significant cluster in LIHC and uncovered a significantly enriched pathway (phospholipase D signaling pathway) with six genes represented in the cluster, symbols: DGKQ, LPAR2, PDGFRB, PIK3R3, PTGFR and RAPGEF3.


Assuntos
Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , MicroRNAs/genética , RNA Mensageiro/genética , Algoritmos , Carcinoma Hepatocelular/genética , Genoma Humano , Genômica/métodos , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Humanos , Neoplasias Hepáticas/genética , MicroRNAs/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , RNA Mensageiro/metabolismo , Receptor beta de Fator de Crescimento Derivado de Plaquetas/genética , Receptor beta de Fator de Crescimento Derivado de Plaquetas/metabolismo , Receptores de Ácidos Lisofosfatídicos/genética , Receptores de Ácidos Lisofosfatídicos/metabolismo , Receptores de Prostaglandina/genética , Receptores de Prostaglandina/metabolismo
16.
J Neuroinflammation ; 16(1): 170, 2019 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-31429777

RESUMO

BACKGROUND: Lysophosphatidic acid receptor 1 (LPA1) is in the spotlight because its synthetic antagonist has been under clinical trials for lung fibrosis and psoriasis. Targeting LPA1 might also be a therapeutic strategy for cerebral ischemia because LPA1 triggers microglial activation, a core pathogenesis in cerebral ischemia. Here, we addressed this possibility using a mouse model of transient middle cerebral artery occlusion (tMCAO). METHODS: To address the role of LPA1 in the ischemic brain damage, we used AM095, a selective LPA1 antagonist, as a pharmacological tool and lentivirus bearing a specific LPA1 shRNA as a genetic tool. Brain injury after tMCAO challenge was accessed by determining brain infarction and neurological deficit score. Role of LPA1 in tMCAO-induced microglial activation was ascertained by immunohistochemical analysis. Proinflammatory responses in the ischemic brain were determined by qRT-PCR and immunohistochemical analyses, which were validated in vitro using mouse primary microglia. Activation of MAPKs and PI3K/Akt was determined by Western blot analysis. RESULTS: AM095 administration immediately after reperfusion attenuated brain damage such as brain infarction and neurological deficit at 1 day after tMCAO, which was reaffirmed by LPA1 shRNA lentivirus. AM095 administration also attenuated brain infarction and neurological deficit at 3 days after tMCAO. LPA1 antagonism attenuated microglial activation; it reduced numbers and soma size of activated microglia, reversed their morphology into less toxic one, and reduced microglial proliferation. Additionally, LPA1 antagonism reduced mRNA expression levels of proinflammatory cytokines and suppressed NF-κB activation, demonstrating its regulatory role of proinflammatory responses in the ischemic brain. Particularly, these LPA1-driven proinflammatory responses appeared to occur in activated microglia because NF-κB activation occurred mainly in activated microglia in the ischemic brain. Regulatory role of LPA1 in proinflammatory responses of microglia was further supported by in vitro findings using lipopolysaccharide-stimulated cultured microglia, showing that suppressing LPA1 activity reduced mRNA expression levels of proinflammatory cytokines. In the ischemic brain, LPA1 influenced PI3K/Akt and MAPKs; suppressing LPA1 activity decreased MAPK activation and increased Akt phosphorylation. CONCLUSION: This study demonstrates that LPA1 is a new etiological factor for cerebral ischemia, strongly indicating that its modulation can be a potential strategy to reduce ischemic brain damage.


Assuntos
Lesões Encefálicas/metabolismo , Ataque Isquêmico Transitório/metabolismo , Microglia/metabolismo , Receptores de Ácidos Lisofosfatídicos/metabolismo , Animais , Lesões Encefálicas/patologia , Ataque Isquêmico Transitório/patologia , Masculino , Camundongos , Camundongos Endogâmicos ICR , Microglia/patologia
17.
Eur J Pharmacol ; 860: 172539, 2019 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-31306636

RESUMO

Different classes of antidepressants, such as tricyclic antidepressants, selective serotonin reuptake inhibitor (SSRI), and serotonin and norepinephrine reuptake inhibitor (SNRI), have been shown to increase GDNF production in astrocytes, which could be a key mechanism of the psychotropic effect of antidepressants. The antidepressant mirtazapine is a noradrenaline and specific serotonergic antidepressant (NaSSA) and does not block reuptake of catecholamines and serotonin. The present study examined the effect of mirtazapine on GDNF expression in rat C6 astroglial cells (C6 cells) and rat primary cultured cortical astrocytes (primary astrocytes). Mirtazapine treatment significantly increased GDNF mRNA expression and GDNF release in both C6 cells and primary astrocytes. In primary astrocytes, mirtazapine also increased the expressions of brain-derived neurotrophic factor mRNA. To mimic mirtazapine's putative mechanism of action, cells were treated with either a α2-adrenoceptor antagonist (yohimbine), 5-HT2 receptor antagonist (ketanserin), 5-HT3 receptor antagonist (ondansetron), or a mixture of these--no effect on GDNF mRNA expression was observed. Mirtazapine treatment increased phosphorylation of extracellular signal-regulated kinase (ERK) 1/2, and the mirtazapine-induced GDNF and BDNF expression were blocked by MAPK/ERK kinase (MEK) inhibitor (U0126). Furthermore, the effect of mirtazapine on ERK phosphorylation and expressions of GDNF and BDNF was antagonized by Gi/o inhibitor (pertussis toxin), lysophosphatidic acid-1 (LPA1) receptor antagonist (AM966), and LPA1/LPA3 receptors antagonist (Ki16425). The current findings demonstrate that the NaSSA mirtazapine, similar to other classes of antidepressants, increases GDNF expression through a Gi/o coupled LPA1 receptor-mediated ERK pathway. The current findings suggest a general mechanism underlying the psychotropic effect antidepressants.


Assuntos
Antidepressivos/farmacologia , Astrócitos/efeitos dos fármacos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Fator Neurotrófico Derivado de Linhagem de Célula Glial/biossíntese , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Mirtazapina/farmacologia , Receptores de Ácidos Lisofosfatídicos/metabolismo , Antagonistas de Receptores Adrenérgicos alfa 2/farmacologia , Animais , Astrócitos/citologia , Astrócitos/metabolismo , Linhagem Celular Tumoral , Regulação da Expressão Gênica/efeitos dos fármacos , Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Fosforilação/efeitos dos fármacos , RNA Mensageiro/genética , Ratos , Antagonistas do Receptor 5-HT2 de Serotonina/farmacologia , Antagonistas do Receptor 5-HT3 de Serotonina/farmacologia
18.
Med Sci Monit ; 25: 4705-4715, 2019 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-31235682

RESUMO

BACKGROUND The aim of this study was to evaluate lysophosphatidic acid receptor-2 (LPA2) and Krüppel-like factor 5 (KLF5) protein expression in gastric adenocarcinoma and their correlation with patient clinicopathological characteristics and prognosis. MATERIAL AND METHODS Fifty-one gastric adenocarcinoma tissue samples, 21 gastric intraepithelial neoplasia (GIN) samples, and 13 normal gastric tissue samples were collected to test for LPA2 and KLF5 expression by tissue microarray and immunohistochemistry assay. LPA2 and KLF5 positive expression rate between gastric adenocarcinoma, GIN, and normal gastric tissue were compared. The relationship between LPA2 expression, KLF5 expression, and patients' clinicopathological characteristics and prognosis were evaluated. RESULTS The positive expression rate of LPA2 and KLF5 were statistical different in gastric adenocarcinoma, GIN, and normal gastric tissue (P<0.05). LPA2 positive expression was associated with tumor invasion depth, Lauren type, vascular invasion, local lymph node metastasis, and clinical stage (P<0.05). There was no correlation between LPA2 expression (hazard ratio [HR]=1.84, 95% confidence interval [CI]: 0.89-3.80, P>0.05), KLF5 expression (HR=1.13, 95% CI: 0.53-2.36, P>0.05), and gastric cancer patients' overall survival. CONCLUSIONS LPA2 and KLF5 protein expressions were differently expressed in gastric adenocarcinoma, GIN, and normal gastric tissue, and differences were correlated with patients' clinical characteristic. However, LPA2 and KLF5 expressions were not correlated with the patients' prognosis.


Assuntos
Fatores de Transcrição Kruppel-Like/metabolismo , Receptores de Ácidos Lisofosfatídicos/metabolismo , Neoplasias Gástricas/metabolismo , Adenocarcinoma/metabolismo , Adenocarcinoma/patologia , Adulto , Idoso , Feminino , Humanos , Imuno-Histoquímica , Fatores de Transcrição Kruppel-Like/biossíntese , Fatores de Transcrição Kruppel-Like/genética , Masculino , Pessoa de Meia-Idade , Prognóstico , Modelos de Riscos Proporcionais , Receptores de Ácidos Lisofosfatídicos/biossíntese , Receptores de Ácidos Lisofosfatídicos/genética , Neoplasias Gástricas/patologia
19.
Int Immunopharmacol ; 74: 105664, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31233937

RESUMO

Lysophosphatidic acid (LPA) is a multifunctional phospholipid. Osteocytes are the most abundant cells in bone and can orchestrate bone formation and resorption, in part by producing cytokines that regulate osteoblast and osteoclast differentiation and activity. Interleukin (IL)-6 and IL-8 are two important cytokines that have potent effects on bone fracture healing. Previous studies suggest that platelet-derived LPA may influence fracture healing by inducing osteocyte dendrite outgrowth. However, the biological mechanism through which LPA induces cytokine production in osteocytes is poorly understood. In this study, we report that LPA markedly enhanced IL-6 and CXCL15 (mouse homologue of human IL-8) production in MLO-Y4 cells and that this enhancement was suppressed by the LPA1/3-selective antagonist Ki16425, the Gi/o protein inhibitor PTX or the protein kinase C (PKC) inhibitor sotrastaurin. We also observed that of all the PKC isoform targets of sotrastaurin, only PKCθ was activated by LPA in MLO-Y4 cells and that this activation was blocked by sotrastaurin, Ki16425 or PTX. Taken together, the results of the present study demonstrate that LPA may be a potent inducer of IL-6 and CXCL15 production in MLO-Y4 cells and that this induction is associated with the activation of LPA1, Gi/o protein and the PKCθ pathway. These findings may help us better understand the mechanism of fracture healing and contribute to the treatment of bone damage.


Assuntos
Quimiocinas CXC/metabolismo , Interleucina-6/metabolismo , Lisofosfolipídeos/farmacologia , Animais , Linhagem Celular , Quimiocinas CXC/genética , Interleucina-6/genética , Camundongos , Proteína Quinase C-theta/metabolismo , Receptores de Ácidos Lisofosfatídicos/metabolismo , Transdução de Sinais/efeitos dos fármacos
20.
Neuropharmacology ; 155: 150-161, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31145906

RESUMO

Lysophosphatidic acid (LPA) is a bioactive lipid mediator of inflammation that binds to its specific cell surface G protein coupled receptors (LPA1-6). It is reported that LPA induced cell apoptosis by targeting LPA1, while LPA1 blockade eliminated LPS-induced production of peritoneal neutrophil chemokines and cytokines. Previous studies have shown that Saikosaponin-d (SSd) mitigated depressive-like behaviors in rats exposed to chronic unpredictable mild stress (CUMS), as well as corticosterone-induced apoptosis in PC12 cells. The present study explored the role of SSd during modulating LPA1 mediated neuronal apoptosis in LPS-stimulated mice. The phenomenon that SSd alleviated LPS-induced depressive-like behaviors were observed by open field test (OPT), forced swim test (FST) and tail suspension test (TST). SSd inhibited the protein expression of LPA1 both in the CA1 and CA3 region of the hippocampus. Moreover, SSd significantly decreased the levels of RhoA, ROCK2, p-p38, p-ERK, p-p65, p-IκBα in LPS-stimulated mice as well as in LPA-stimulated SH-SY5Y cells. Additionally, SSd significantly decreased the expression of LPA1 and the degree of neuronal apoptosis in SH-SY5Y cells which were co-cultured with LPS-stimulated BV2 microglia. These results suggested that SSd improved LPS-induced depressive-like behaviors in mice and suppressed neuronal apoptosis by regulating LPA1/RhoA/ROCK2 signaling pathway.


Assuntos
Anti-Inflamatórios não Esteroides/metabolismo , Apoptose/fisiologia , Depressão/metabolismo , Neurônios/metabolismo , Ácido Oleanólico/análogos & derivados , Receptores de Ácidos Lisofosfatídicos/metabolismo , Saponinas/metabolismo , Animais , Anti-Inflamatórios não Esteroides/farmacologia , Anti-Inflamatórios não Esteroides/uso terapêutico , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Técnicas de Cocultura , Depressão/induzido quimicamente , Depressão/tratamento farmacológico , Relação Dose-Resposta a Droga , Humanos , Lisofosfolipídeos/metabolismo , Lisofosfolipídeos/toxicidade , Camundongos , Camundongos Endogâmicos ICR , Neurônios/efeitos dos fármacos , Ácido Oleanólico/metabolismo , Ácido Oleanólico/farmacologia , Ácido Oleanólico/uso terapêutico , Distribuição Aleatória , Saponinas/farmacologia , Saponinas/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA