Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 196
Filtrar
1.
Int J Mol Sci ; 22(17)2021 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-34502385

RESUMO

Erythropoietin (Epo) is the critical hormone for erythropoiesis. In adults, Epo is mainly produced by a subset of interstitial fibroblasts in the kidney, with minor amounts being produced in the liver and the brain. In this study, we used the immortalized renal interstitial fibroblast cell line FAIK F3-5 to investigate the ability of the bioactive sphingolipid sphingosine 1-phosphate (S1P) to stimulate Epo production and to reveal the mechanism involved. Stimulation of cells with exogenous S1P under normoxic conditions (21% O2) led to a dose-dependent increase in Epo mRNA and protein levels and subsequent release of Epo into the medium. S1P also enhanced the stabilization of HIF-2α, a key transcription factor for Epo expression. S1P-stimulated Epo mRNA and protein expression was abolished by HIF-2α mRNA knockdown or by the HIF-2 inhibitor compound 2. Furthermore, the approved S1P receptor modulator FTY720, and its active form FTY720-phosphate, both exerted a similar effect on Epo expression as S1P. The effect of S1P on Epo was antagonized by the selective S1P1 and S1P3 antagonists NIBR-0213 and TY-52156, but not by the S1P2 antagonist JTE-013. Moreover, inhibitors of the classical MAPK/ERK, the p38-MAPK, and inhibitors of protein kinase (PK) C and D all blocked the effect of S1P on Epo expression. Finally, the S1P and FTY720 effects were recapitulated in the Epo-producing human neuroblastoma cell line Kelly, suggesting that S1P receptor-dependent Epo synthesis is of general relevance and not species-specific. In summary, these data suggest that, in renal interstitial fibroblasts, which are the primary source of plasma Epo, S1P1 and 3 receptor activation upregulates Epo under normoxic conditions. This may have a therapeutic impact on disease situations such as chronic kidney disease, where Epo production is impaired, causing anemia, but it may also have therapeutic value as Epo can mediate additional tissue-protective effects in various organs.


Assuntos
Eritropoetina/metabolismo , Receptores de Esfingosina-1-Fosfato/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/fisiologia , Linhagem Celular , Células Cultivadas , Eritropoese , Eritropoetina/fisiologia , Fibroblastos/metabolismo , Cloridrato de Fingolimode/metabolismo , Humanos , Hipóxia/metabolismo , Hipóxia/fisiopatologia , Rim/metabolismo , Lisofosfolipídeos/metabolismo , Camundongos , Ligação Proteica , Receptores de Lisoesfingolipídeo/metabolismo , Insuficiência Renal Crônica/metabolismo , Transdução de Sinais , Esfingosina/análogos & derivados , Esfingosina/metabolismo , Receptores de Esfingosina-1-Fosfato/fisiologia
2.
Cell Physiol Biochem ; 55(5): 539-552, 2021 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-34473432

RESUMO

BACKGROUND/AIMS: The pleiotropic lipid mediator sphingosine-1-phosphate (S1P) exerts a multitude of effects on respiratory cell physiology and pathology through five S1P receptors (S1PR1-5). Epidemiological studies proved high levels of circulating S1P in non-small cell lung cancer (NSCLC) patients. Studies in literature suggest that high levels of S1P support carcinogenesis but the exact mechanism is still elusive. The aim of this study was to understand the mechanism/s underlying S1P-mediated lung tumor cell proliferation. METHODS: We used human samples of NSCLC, a mouse model of first-hand smoking and of Benzo(a)pyrene (BaP)-induced tumor-bearing mice and A549 lung adenocarcinoma cells. RESULTS: We found that the expression of S1PR3 was also into the nucleus of lung cells in vitro, data that were confirmed in lung tissues of NSCLC patients, smoking and tumor bearing BaP-exposed mice. The intranuclear, but not the membrane, localization of S1PR3 was associated to S1P-mediated proliferation of lung adenocarcinoma cells. Indeed, the inhibition of the membrane S1PR3 did not alter tumor cell proliferation after Toll Like Receptor (TLR) 9 activation. Instead, according to the nuclear localization of sphingosine kinase (SPHK) II, the inhibition of the kinase completely blocked the endogenous S1P-induced tumor cell proliferation. CONCLUSION: These results prove that the nuclear S1PR3/SPHK II axis is involved in lung tumor cell proliferation, highlighting a novel molecular mechanism which could provide differential therapeutic approaches especially in non-responsive lung cancer patients.


Assuntos
Adenocarcinoma de Pulmão/metabolismo , Neoplasias Pulmonares/metabolismo , Proteínas de Neoplasias/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Transdução de Sinais , Receptores de Esfingosina-1-Fosfato/metabolismo , Células A549 , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/patologia , Animais , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Camundongos , Proteínas de Neoplasias/genética , Receptores de Esfingosina-1-Fosfato/genética
3.
J Immunol ; 207(9): 2278-2287, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34561229

RESUMO

Systemic suppression of adaptive immune responses is a major way in which UV radiation contributes to skin cancer development. Immune suppression is also likely to explain how UV protects from some autoimmune diseases, such as multiple sclerosis. However, the mechanisms underlying UV-mediated systemic immune suppression are not well understood. Exposure of C57BL/6 mice to doses of UV known to suppress systemic autoimmunity led to the accumulation of cells within the skin-draining lymph nodes and away from non-skin-draining lymph nodes. Transfer of CD45.1+ cells from nonirradiated donors into CD45.2+ UV-irradiated recipients resulted in preferential accumulation of donor naive T cells and a decrease in activated T cells within skin-draining lymph nodes. A single dose of immune-suppressive UV was all that was required to cause a redistribution of naive and central memory T cells from peripheral blood to the skin-draining lymph nodes. Specifically, CD69-independent increases in sphingosine-1-phosphate (S1P) receptor 1-negative naive and central memory T cells occurred in these lymph nodes. Mass spectrometry analysis showed UV-mediated activation of sphingosine kinase 1 activity, resulting in an increase in S1P levels within the lymph nodes. Topical application of a sphingosine kinase inhibitor on the skin prior to UV irradiation eliminated the UV-induced increase in lymph node S1P and T cell numbers. Thus, exposure to immunosuppressive UV disrupts T cell recirculation by manipulating the S1P pathway.


Assuntos
Linfonodos/imunologia , Esclerose Múltipla/radioterapia , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Pele/patologia , Animais , Circulação Sanguínea , Células Cultivadas , Humanos , Memória Imunológica , Imunossupressão , Ativação Linfocitária , Lisofosfolipídeos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais , Pele/efeitos da radiação , Esfingosina/análogos & derivados , Esfingosina/metabolismo , Receptores de Esfingosina-1-Fosfato/metabolismo , Raios Ultravioleta , Terapia Ultravioleta
4.
Cells ; 10(9)2021 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-34572121

RESUMO

P-Rex1 is a guanine-nucleotide exchange factor (GEF) that activates Rac-type small G proteins in response to the stimulation of a range of receptors, particularly G protein-coupled receptors (GPCRs), to control cytoskeletal dynamics and other Rac-dependent cell responses. P-Rex1 is mainly expressed in leukocytes and neurons. Whereas its roles in leukocytes have been studied extensively, relatively little is known about its functions in neurons. Here, we used CRISPR/Cas9-mediated P-Rex1 deficiency in neuronal PC12 cells that stably overexpress the GPCR S1PR1, a receptor for sphingosine 1-phosphate (S1P), to investigate the role of P-Rex1 in neuronal GPCR signalling and cell responses. We show that P-Rex1 is required for the S1P-stimulated activation of Rac1 and Akt, basal Rac3 activity, and constitutive cAMP production in PC12-S1PR1 cells. The constitutive cAMP production was not due to increased expression levels of major neuronal adenylyl cyclases, suggesting that P-Rex1 may regulate adenylyl cyclase activity. P-Rex1 was required for maintenance of neurite protrusions and spreading in S1P-stimulated PC12-S1PR1 cells, as well as for cell-cycle progression and proliferation. In summary, we identified novel functional roles of P-Rex1 in neuronal Rac, Akt and cAMP signalling, as well as in neuronal cell-cycle progression and proliferation.


Assuntos
Ciclo Celular , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Neuritos/fisiologia , Neurônios/fisiologia , Receptores de Esfingosina-1-Fosfato/metabolismo , Animais , Movimento Celular , Proliferação de Células , Fatores de Troca do Nucleotídeo Guanina/antagonistas & inibidores , Fatores de Troca do Nucleotídeo Guanina/genética , Lisofosfolipídeos/metabolismo , Neurônios/citologia , Células PC12 , Ratos , Transdução de Sinais , Esfingosina/análogos & derivados , Esfingosina/metabolismo , Receptores de Esfingosina-1-Fosfato/antagonistas & inibidores , Receptores de Esfingosina-1-Fosfato/genética , Proteínas rac de Ligação ao GTP/genética , Proteínas rac de Ligação ao GTP/metabolismo , Proteínas rac1 de Ligação ao GTP/genética , Proteínas rac1 de Ligação ao GTP/metabolismo
5.
Cells ; 10(9)2021 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-34571953

RESUMO

Despite significant advances in surgical techniques, treatment options for impaired bone healing are still limited. Inadequate bone regeneration is not only associated with pain, prolonged immobilization and often multiple revision surgeries, but also with high socioeconomic costs, underlining the importance of a detailed understanding of the bone healing process. In this regard, we previously showed that mice lacking the calcitonin receptor (CTR) display increased bone formation mediated through the increased osteoclastic secretion of sphingosine-1-phosphate (S1P), an osteoanabolic molecule promoting osteoblast function. Although strong evidence is now available for the crucial role of osteoclast-to-osteoblast coupling in normal bone hemostasis, the relevance of this paracrine crosstalk during bone regeneration is unknown. Therefore, our study was designed to test whether increased osteoclast-to-osteoblast coupling, as observed in CTR-deficient mice, may positively affect bone repair. In a standardized femoral osteotomy model, global CTR-deficient mice displayed no alteration in radiologic callus parameters. Likewise, static histomorphometry demonstrated moderate impairment of callus microstructure and normal osseous bridging of osteotomy ends. In conclusion, bone regeneration is not accelerated in CTR-deficient mice, and contrary to its osteoanabolic action in normal bone turnover, osteoclast-to-osteoblast coupling specifically involving the CTR-S1P axis, may only be of minor relevance during bone healing.


Assuntos
Regeneração Óssea/fisiologia , Osso e Ossos/metabolismo , Receptores da Calcitonina/metabolismo , Animais , Células da Medula Óssea/metabolismo , Células da Medula Óssea/fisiologia , Osso e Ossos/fisiologia , Diferenciação Celular/fisiologia , Feminino , Lisofosfolipídeos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Osteoblastos/metabolismo , Osteoblastos/fisiologia , Osteoclastos/metabolismo , Osteoclastos/fisiologia , Esfingosina/análogos & derivados , Esfingosina/metabolismo , Receptores de Esfingosina-1-Fosfato/metabolismo
6.
Front Immunol ; 12: 668884, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34504486

RESUMO

Although the human immune response to cancer is naturally potent, it can be severely disrupted as a result of an immunosuppressive tumor microenvironment. Infiltrating regulatory T lymphocytes contribute to this immunosuppression by inhibiting proliferation of cytotoxic CD8+ T lymphocytes, which are key to an effective anti-cancer immune response. Other important contributory factors are thought to include metabolic stress caused by the local nutrient deprivation common to many solid tumors. Interleukin-33 (IL-33), an alarmin released in reaction to cell damage, and sphingosine-1-phosphate (S1P) are known to control cell positioning and differentiation of T lymphocytes. In an in vitro model of nutrient deprivation, we investigated the influence of IL-33 and S1P receptor 4 (S1P4) on the differentiation and migration of human CD8+ T lymphocytes. Serum starvation of CD8+ T lymphocytes induced a subset of CD8Low and IL-33 receptor-positive (ST2L+) cells characterized by enhanced expression of the regulatory T cell markers CD38 and CD39. Both S1P1 and S1P4 were transcriptionally regulated after stimulation with IL-33. Moreover, expression of the chemokine receptor CXCR4 was increased in CD8+ T lymphocytes treated with the selective S1P4 receptor agonist CYM50308. We conclude that nutrient deprivation promotes CD8Low T lymphocytes, contributing to an immunosuppressive microenvironment and a poor anti-cancer immune response by limiting cytotoxic effector functions. Our results suggest that S1P4 signaling modulation may be a promising target for anti-CXCR4 cancer immunotherapy.


Assuntos
Linfócitos T CD8-Positivos/metabolismo , Linfócitos do Interstício Tumoral/metabolismo , Receptores CXCR4/metabolismo , Receptores de Esfingosina-1-Fosfato/metabolismo , Microambiente Tumoral , ADP-Ribosil Ciclase 1/metabolismo , Apirase/metabolismo , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/imunologia , Diferenciação Celular , Movimento Celular , Células Cultivadas , Humanos , Proteína 1 Semelhante a Receptor de Interleucina-1/metabolismo , Interleucina-33/farmacologia , Linfócitos do Interstício Tumoral/imunologia , Glicoproteínas de Membrana/metabolismo , Fenótipo , Receptor de Morte Celular Programada 1/metabolismo , Receptores CXCR4/genética , Transdução de Sinais , Receptores de Esfingosina-1-Fosfato/agonistas , Receptores de Esfingosina-1-Fosfato/genética , Microambiente Tumoral/imunologia , Regulação para Cima
7.
Int J Mol Sci ; 22(15)2021 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-34360625

RESUMO

Activation of microglia and/or astrocytes often releases proinflammatory molecules as critical pathogenic mediators that can promote neuroinflammation and secondary brain damages in diverse diseases of the central nervous system (CNS). Therefore, controlling the activation of glial cells and their neuroinflammatory responses has been considered as a potential therapeutic strategy for treating neuroinflammatory diseases. Recently, receptor-mediated lysophospholipid signaling, sphingosine 1-phosphate (S1P) receptor- and lysophosphatidic acid (LPA) receptor-mediated signaling in particular, has drawn scientific interest because of its critical roles in pathogenies of diverse neurological diseases such as neuropathic pain, systemic sclerosis, spinal cord injury, multiple sclerosis, cerebral ischemia, traumatic brain injury, hypoxia, hydrocephalus, and neuropsychiatric disorders. Activation of microglia and/or astrocytes is a common pathogenic event shared by most of these CNS disorders, indicating that lysophospholipid receptors could influence glial activation. In fact, many studies have reported that several S1P and LPA receptors can influence glial activation during the pathogenesis of cerebral ischemia and multiple sclerosis. This review aims to provide a comprehensive framework about the roles of S1P and LPA receptors in the activation of microglia and/or astrocytes and their neuroinflammatory responses in CNS diseases.


Assuntos
Astrócitos/metabolismo , Doenças do Sistema Nervoso Central/metabolismo , Neuroglia/metabolismo , Receptores de Ácidos Lisofosfatídicos/metabolismo , Receptores de Esfingosina-1-Fosfato/metabolismo , Animais , Humanos
8.
Int J Mol Sci ; 22(15)2021 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-34360745

RESUMO

A review of the available literature was performed in order to summarize the existing evidence between osteoblast dysfunction and clinical features in non-hereditary sclerosing bone diseases. It has been known that proliferation and migration of osteoblasts are concerted by soluble factors such as fibroblast growth factor (FGF), platelet-derived growth factor (PDGF), transforming growth factor (TGF), bone morphogenetic protein (BMP) but also by signal transduction cascades such as Wnt signaling pathway. Protein kinases play also a leading role in triggering the activation of osteoblasts in this group of diseases. Post-zygotic changes in mitogen-activated protein kinase (MAPK) have been shown to be associated with sporadic cases of Melorheostosis. Serum levels of FGF and PDGF have been shown to be increased in myelofibrosis, although studies focusing on Sphingosine-1-phosphate receptor was shown to be strongly expressed in Paget disease of the bone, which may partially explain the osteoblastic hyperactivity during this condition. Pathophysiological mechanisms of osteoblasts in osteoblastic metastases have been studied much more thoroughly than in rare sclerosing syndromes: striking cellular mechanisms such as osteomimicry or complex intercellular signaling alterations have been described. Further research is needed to describe pathological mechanisms by which rare sclerosing non hereditary diseases lead to osteoblast dysfunction.


Assuntos
Sistema de Sinalização das MAP Quinases , Melorreostose/metabolismo , Osteoblastos/metabolismo , Animais , Proteínas Morfogenéticas Ósseas/metabolismo , Fatores de Crescimento de Fibroblastos/metabolismo , Humanos , Melorreostose/patologia , Osteoblastos/patologia , Fator de Crescimento Derivado de Plaquetas/metabolismo , Receptores de Esfingosina-1-Fosfato/metabolismo
9.
Am J Physiol Heart Circ Physiol ; 321(3): H599-H611, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34415189

RESUMO

Sphingosine-1-phosphate (S1P) is a bioactive mediator in inflammation. Dysregulated S1P is demonstrated as a cause of heart failure (HF). However, the time-dependent and integrative role of S1P interaction with receptors in HF is unclear after myocardial infarction (MI). In this study, the sphingolipid mediators were quantified in ischemic human hearts. We also measured the time kinetics of these mediators post-MI in murine spleen and heart as an integrative approach to understand the interaction of S1P and respective S1P receptors in the transition of acute (AHF) to chronic HF (CHF). Risk-free 8-12 wk male C57BL/6 mice were subjected to MI surgery, and MI was confirmed by echocardiography and histology. Mass spectrometry was used to quantify sphingolipids in plasma, infarcted heart, spleen of mice, and ischemic and healthy human heart. The physiological cardiac repair was observed in mice with a notable increase of S1P quantity (pmol/g) in the heart and spleen significantly reduced in patients with ischemic HF. The circulating murine S1P levels were increased during AHF and CHF despite lowered substrate in CHF. The S1PR1 receptor expression was observed to coincide with the respective S1P quantity in mice and human hearts. Furthermore, selective S1P1 agonist limited inflammatory markers CCL2 and TNF-α and accelerated reparative markers ARG-1 and YM-1 in macrophages in the presence of Kdo2-Lipid A (KLA; potent inflammatory stimulant). This report demonstrated the importance of S1P/S1PR1 signaling in physiological inflammation during cardiac repair in mice. Alteration in these axes may serve as the signs of pathological remodeling in patients with ischemia.NEW & NOTEWORTHY Previous studies indicate that sphingosine-1-phosphate (S1P) has some role in cardiovascular disease. This study adds quantitative and integrative systems-based approaches that are necessary for discovery and bedside translation. Here, we quantitated sphinganine, sphingosine, sphingosine-1-phosphate (S1P) in mice and human cardiac pathobiology. Interorgan S1P quantity and respective systems-based receptor activation suggest cardiac repair after myocardial infarction. Thus, S1P serves as a therapeutic target for cardiac protection in clinical translation.


Assuntos
Insuficiência Cardíaca/metabolismo , Lisofosfolipídeos/metabolismo , Infarto do Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Esfingosina/análogos & derivados , Baço/metabolismo , Animais , Arginase/metabolismo , Células Cultivadas , Quimiocina CCL2/metabolismo , Humanos , Lectinas/metabolismo , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/fisiologia , Regeneração , Esfingosina/metabolismo , Receptores de Esfingosina-1-Fosfato/genética , Receptores de Esfingosina-1-Fosfato/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , beta-N-Acetil-Hexosaminidases/metabolismo
10.
Arterioscler Thromb Vasc Biol ; 41(10): e468-e479, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34407633

RESUMO

Objective: ApoM enriches S1P (sphingosine-1-phosphate) within HDL (high-density lipoproteins) and facilitates the activation of the S1P1 (S1P receptor type 1) by S1P, thereby preserving endothelial barrier function. Many protective functions exerted by HDL in extravascular tissues raise the question of how S1P regulates transendothelial HDL transport. Approach and Results: HDL were isolated from plasma of wild-type mice, Apom knockout mice, human apoM transgenic mice or humans and radioiodinated to trace its binding, association, and transport by bovine or human aortic endothelial cells. We also compared the transport of fluorescently-labeled HDL or Evans Blue, which labels albumin, from the tail vein into the peritoneal cavity of apoE-haploinsufficient mice with (apoE-haploinsufficient mice with endothelium-specific knockin of S1P1) or without (control mice, ie, apoE-haploinsufficient mice without endothelium-specific knockin of S1P1) endothelium-specific knockin of S1P1. The binding, association, and transport of HDL from Apom knockout mice and human apoM-depleted HDL by bovine aortic endothelial cells was significantly lower than that of HDL from wild-type mice and human apoM-containing HDL, respectively. The binding, uptake, and transport of 125I-HDL by human aortic endothelial cells was increased by an S1P1 agonist but decreased by an S1P1 inhibitor. Silencing of SR-BI (scavenger receptor BI) abrogated the stimulation of 125I-HDL transport by the S1P1 agonist. Compared with control mice, that is, apoE-haploinsufficient mice without endothelium-specific knockin of S1P1, apoE-haploinsufficient mice with endothelium-specific knockin of S1P1 showed decreased transport of Evans Blue but increased transport of HDL from blood into the peritoneal cavity and SR-BI expression in the aortal endothelium. Conclusions: ApoM and S1P1 promote transendothelial HDL transport. Their opposite effect on transendothelial transport of albumin and HDL indicates that HDL passes endothelial barriers by specific mechanisms rather than passive filtration.


Assuntos
Apolipoproteínas M/metabolismo , Aterosclerose/metabolismo , Células Endoteliais/metabolismo , Lipoproteínas HDL/metabolismo , Receptores de Esfingosina-1-Fosfato/metabolismo , Animais , Aterosclerose/genética , Aterosclerose/patologia , Transporte Biológico , Bovinos , Células Cultivadas , Modelos Animais de Doenças , Células Endoteliais/patologia , Feminino , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout para ApoE , Permeabilidade , Placa Aterosclerótica , Receptores Depuradores Classe B/genética , Receptores Depuradores Classe B/metabolismo , Receptores de Esfingosina-1-Fosfato/genética
11.
Biochem Biophys Res Commun ; 570: 53-59, 2021 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-34271437

RESUMO

Lysophosphatidylinositol (LPI) and sphingosine-1-phosphate (S1P) are bioactive lipids implicated in various cellular events including proliferation, migration, and cancer progression. LPI and S1P act as ligands for G-protein coupled GPR55 and S1P receptors, respectively, and activate specific signaling pathways. Both receptors are highly expressed in various cancer tissues and associated with tumor progression. However, physical and functional crosstalk between the two receptors has not been elucidated to date. Bioluminescence resonance energy transfer (BRET) experiments in the current study showed that S1P5 strongly and specifically interacts with GPR55. We observed co-internalization of both receptors upon agonist stimulation. Notably, activation of one receptor induced co-internalization of the partner receptor. Next, we examined functional crosstalk of the two receptors. Interestingly, while activation of the individual receptors augmented cell proliferation, ERK phosphorylation and cancer-associated gene expression in HCT116 cells, co-activation of both receptors inhibited these stimulatory effects. Our collective findings indicate that GPR55 and S1P5 form a heterodimer and their co-activation attenuates the stimulatory activity of each receptor on colon cancer progression.


Assuntos
Lisofosfolipídeos/metabolismo , Receptores de Canabinoides/metabolismo , Receptores de Esfingosina-1-Fosfato/metabolismo , Proliferação de Células , Sobrevivência Celular , Progressão da Doença , Endocitose , Regulação da Expressão Gênica , Células HCT116 , Humanos , Ligação Proteica
12.
J Nanobiotechnology ; 19(1): 165, 2021 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-34059068

RESUMO

BACKGROUND: Overexpressed vascular endothelial growth factor A (VEGFA) and phosphorylated signal transducer and activator of transcription 3 (P-STAT3) cause unrestricted tumor growth and angiogenesis of breast cancer (BRCA), especially triple-negative breast cancer (TNBC). Hence, novel treatment strategy is urgently needed. RESULTS: We found sphingosine 1 phosphate receptor 1 (S1PR1) can regulate P-STAT3/VEGFA. Database showed S1PR1 is highly expressed in BRCA and causes the poor prognosis of patients. Interrupting the expression of S1PR1 could inhibit the growth of human breast cancer cells (MCF-7 and MDA-MB-231) and suppress the angiogenesis of human umbilical vein endothelial cells (HUVECs) via affecting S1PR1/P-STAT3/VEGFA axis. Siponimod (BAF312) is a selective antagonist of S1PR1, which inhibits tumor growth and angiogenesis in vitro by downregulating the S1PR1/P-STAT3/VEGFA axis. We prepared pH-sensitive and tumor-targeted shell-core structure nanoparticles, in which hydrophilic PEG2000 modified with the cyclic Arg-Gly-Asp (cRGD) formed the shell, hydrophobic DSPE formed the core, and CaP (calcium and phosphate ions) was adsorbed onto the shell; the nanoparticles were used to deliver BAF312 (BAF312@cRGD-CaP-NPs). The size and potential of the nanoparticles were 109.9 ± 1.002 nm and - 10.6 ± 0.056 mV. The incorporation efficacy for BAF312 was 81.4%. Results confirmed BAF312@cRGD-CaP-NP could dramatically inhibit tumor growth and angiogenesis in vitro and in MDA-MB-231 tumor-bearing mice via downregulating the S1PR1/P-STAT3/VEGFA axis. CONCLUSIONS: Our data suggest a potent role for BAF312@cRGD-CaP-NPs in treating BRCA, especially TNBC by downregulating the S1PR1/P-STAT3/VEGFA axis.


Assuntos
Indutores da Angiogênese/farmacologia , Azetidinas/farmacologia , Compostos de Benzil/farmacologia , Nanopartículas/química , Fator de Transcrição STAT3/metabolismo , Receptores de Esfingosina-1-Fosfato/metabolismo , Neoplasias de Mama Triplo Negativas/irrigação sanguínea , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Fator A de Crescimento do Endotélio Vascular/metabolismo , Animais , Azetidinas/química , Compostos de Benzil/química , Linhagem Celular Tumoral , Regulação para Baixo/efeitos dos fármacos , Células Endoteliais/metabolismo , Humanos , Camundongos , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/metabolismo , Neovascularização Patológica/patologia , Fator de Transcrição STAT3/genética , Receptores de Esfingosina-1-Fosfato/genética , Neoplasias de Mama Triplo Negativas/genética , Fator A de Crescimento do Endotélio Vascular/genética
13.
Cells ; 10(5)2021 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-34068927

RESUMO

Destruction of alveoli by apoptosis induced by cigarette smoke (CS) is a major driver of emphysema pathogenesis. However, when compared to cells isolated from non-smokers, primary human lung microvascular endothelial cells (HLMVECs) isolated from chronic smokers are more resilient when exposed to apoptosis-inducing ceramide. Whether this adaptation restores homeostasis is unknown. To better understand the phenotype of HLMVEC in smokers, we interrogated a major pro-survival pathway supported by sphingosine-1-phosphate (S1P) signaling via S1P receptor 1 (S1P1). Primary HLMVECs from lungs of non-smoker or smoker donors were isolated and studied in culture for up to five passages. S1P1 mRNA and protein abundance were significantly decreased in HLMVECs from smokers compared to non-smokers. S1P1 was also decreased in situ in lungs of mice chronically exposed to CS. Levels of S1P1 expression tended to correlate with those of autophagy markers, and increasing S1P (via S1P lyase knockdown with siRNA) stimulated baseline macroautophagy with lysosomal degradation. In turn, loss of S1P1 (siRNA) inhibited these effects of S1P on HLMVECs autophagy. These findings suggest that the anti-apoptotic phenotype of HLMVECs from smokers may be maladaptive, since it is associated with decreased S1P1 expression that may impair their autophagic response to S1P.


Assuntos
Fumar Cigarros/efeitos adversos , Células Endoteliais , Pulmão , Microvasos , Receptores de Esfingosina-1-Fosfato/metabolismo , Animais , Células Cultivadas , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Feminino , Humanos , Pulmão/metabolismo , Pulmão/patologia , Camundongos , Camundongos Endogâmicos C57BL , Microvasos/metabolismo , Microvasos/patologia
14.
J Surg Res ; 265: 323-332, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33971464

RESUMO

BACKGROUND: Nowadays, there is no approved targeted agent for lung injury induced by sepsis. S1PR2 is confirmed to be a promising diagnosis and treatment target. JTE-013 as S1PR2 antagonists may be an agent of great potential. In this research, we sought to determine the functional role of JTE-013 in lung injury induced by sepsis. MATERIALS AND METHODS: Seventy-two rats were assigned into normal group, sepsis model group and JTE-013 group. The animal model of lung injury induced by sepsis was constructed by cecal ligation and puncture. The human pulmonary microvascular endothelial cells (HPMECs) were divided into control, LPS and LPS + JTE-013 group. HPMECs induced by LPS served as the cell model of lung injury induced by sepsis. HE staining assay was performed for assessment of the pathological condition and Evans blue was applied for assessment of pulmonary tissue permeability. Wet/dry ratio was measured as indicators of pulmonary edema degree and neutrophil count was measured as indicators of infection status. The levels of inflammatory factors were detected by corresponding kits, cell survival by CCK-8 assay and protein expression level by western blot. RESULTS: S1PR2 was highly expressed in vivo model of lung injury induced by sepsis. It was observed that JTE-013 as antagonist of S1PR2 alleviated the lung tissue injury, endothelial dysfunction and pulmonary edema induced by sepsis. In addition, JTE-013 reduced neutrophil count and levels of inflammatory factors. Moreover, results confirmed that JTE-013 enhanced cell viability and mitigated inflammatory response in cell model of sepsis. CONCLUSIONS: Overall, JTE-013 as an antagonist of S1PR2 could relieve inflammatory injury and endothelial dysfunction induced by sepsis in vivo and vitro, resulting in attenuation of lung injury. These findings elucidated that JTE-013 may be a promising targeted agent for lung injury induced by sepsis.


Assuntos
Lesão Pulmonar Aguda/tratamento farmacológico , Células Endoteliais/efeitos dos fármacos , Endotélio Vascular/efeitos dos fármacos , Pirazóis/uso terapêutico , Piridinas/uso terapêutico , Sepse/complicações , Lesão Pulmonar Aguda/etiologia , Lesão Pulmonar Aguda/metabolismo , Animais , Células Cultivadas , Avaliação Pré-Clínica de Medicamentos , Humanos , Masculino , Pirazóis/farmacologia , Piridinas/farmacologia , Ratos Sprague-Dawley , Receptores de Esfingosina-1-Fosfato/antagonistas & inibidores , Receptores de Esfingosina-1-Fosfato/metabolismo
15.
Front Immunol ; 12: 656452, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34017333

RESUMO

Inflammatory bowel diseases (IBDs), including Crohn's disease (CD) and ulcerative colitis (UC) are multifactorial diseases with still unknown aetiology and an increasing prevalence and incidence worldwide. Despite plentiful therapeutic options for IBDs, the lack or loss of response in certain patients demands the development of further treatments to tackle this unmet medical need. In recent years, the success of the anti-α4ß7 antibody vedolizumab highlighted the potential of targeting the homing of immune cells, which is now an important pillar of IBD therapy. Due to its complexity, leukocyte trafficking and the involved molecules offer a largely untapped resource for a plethora of potential therapeutic interventions. In this review, we aim to summarise current and future directions of specifically interfering with immune cell trafficking. We will comment on concepts of homing, retention and recirculation and particularly focus on the role of tissue-derived chemokines. Moreover, we will give an overview of the mode of action of drugs currently in use or still in the pipeline, highlighting their mechanisms and potential to reduce disease burden.


Assuntos
Movimento Celular/imunologia , Doenças Inflamatórias Intestinais/imunologia , Animais , Moléculas de Adesão Celular/antagonistas & inibidores , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/metabolismo , Movimento Celular/efeitos dos fármacos , Movimento Celular/genética , Quimiocinas/antagonistas & inibidores , Quimiocinas/metabolismo , Suscetibilidade a Doenças/imunologia , Desenvolvimento de Medicamentos , Humanos , Doenças Inflamatórias Intestinais/metabolismo , Integrinas/antagonistas & inibidores , Integrinas/metabolismo , Leucócitos/efeitos dos fármacos , Leucócitos/imunologia , Leucócitos/metabolismo , Linfonodos/efeitos dos fármacos , Linfonodos/imunologia , Linfonodos/metabolismo , Terapia de Alvo Molecular , Receptores de Esfingosina-1-Fosfato/metabolismo , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia , Linfócitos T/metabolismo
16.
Int J Mol Sci ; 22(7)2021 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-33801658

RESUMO

BACKGROUND: Gram-negative infections of the peritoneal cavity result in profound modifications of peritoneal B cell populations and induce the migration of peritoneal B cells to distant secondary lymphoid organs. However, mechanisms controlling the egress of peritoneal B cells from the peritoneal cavity and their subsequent trafficking remain incompletely understood. Sphingosine-1-phosphate (S1P)-mediated signaling controls migratory processes in numerous immune cells. The present work investigates the role of S1P-mediated signaling in peritoneal B cell trafficking under inflammatory conditions. METHODS: Differential S1P receptor expression after peritoneal B cell activation was assessed semi­quantitatively using RT-PCR in vitro. The functional implications of differential S1P1 and S1P4 expression were assessed by transwell migration in vitro, by adoptive peritoneal B cell transfer in a model of sterile lipopolysaccharide (LPS)­induced peritonitis and in the polymicrobial colon ascendens stent peritonitis (CASP) model. RESULTS: The two sphingosine-1-phosphate receptors (S1PRs) expressed in peritoneal B cell subsets S1P1 and S1P4 are differentially regulated upon stimulation with the TLR4 agonist LPS, but not upon PMA/ionomycin or B cell receptor (BCR) crosslinking. S1P4 deficiency affects both the trafficking of activated peritoneal B cells to secondary lymphoid organs and the positioning of these cells within the functional compartments of the targeted organ. S1P4 deficiency in LPS-activated peritoneal B cells results in significantly reduced numbers of splenic innate response activator B cells. CONCLUSIONS: The S1P-S1PR system is implicated in the trafficking of LPS-activated peritoneal B cells. Given the protective role of peritoneal B1a B cells in peritoneal sepsis, further experiments to investigate the impact of S1P4-mediated signaling on the severity and mortality of peritoneal sepsis are warranted.


Assuntos
Regulação da Expressão Gênica , Inflamação , Receptores de Esfingosina-1-Fosfato/metabolismo , Baço/metabolismo , Receptor 4 Toll-Like/metabolismo , Animais , Linfócitos B/metabolismo , Movimento Celular , Feminino , Imunidade Inata , Lipopolissacarídeos/química , Lipopolissacarídeos/metabolismo , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos C57BL , Peritônio/imunologia , Peritônio/metabolismo , Peritônio/patologia , Sepse/fisiopatologia , Transdução de Sinais
17.
Biomed Res Int ; 2021: 6680356, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33791374

RESUMO

Objective: To detect the endothelial function of external iliac artery in rats with different stages of atherosclerosis by high-resolution ultrasound, so as to provide experimental methodological basis for evaluating the function of vascular endothelial cells by ultrasound. Methods: The animals were randomly divided into the control group (n = 6) and the atherosclerosis model group (n = 15). The atherosclerosis group was further divided into 4-week group, 8-week group, and 12-week group, with 5 animals in each group. After separating and grinding rat spleen, the obtained cells were cultured by density gradient centrifugation. After the cells adhered, the morphology of the cells was observed under a microscope and identified by DiI-Ac-LDL and FITC-UEA-I double staining. The activities of LDH and SOD, the contents of MDA and GSH, and the contents of NO in plasma were detected by biochemical methods. Results: The protective effect of rosanilin on brain injury in rats with acute hypobaric hypoxia and its regulation on the expression of pAkt protein; ox-LDL inhibited the proliferation activity of EPCs in a concentration-dependent manner. The expression of KLF2 and S1PR1 in HAEC can be knocked down by small interfering RNA, and knocking down KLF2 can not only downregulate the expression of S1PR1 but also downregulate HAVEN. With the development of atherosclerosis, the endothelium-dependent relaxation function and endothelium-independent relaxation function of the control group and the atherosclerosis model at 4, 8, and 12 weeks were damaged in different degrees and gradually aggravated. Conclusion: Atherosclerosis is a disease with both morphological and functional damage, and vascular endothelial function is damaged in the early stage with corresponding pathological changes. Ultrasound is an effective method to evaluate vascular endothelial function.


Assuntos
Aterosclerose , Células Endoteliais/metabolismo , Fatores de Transcrição Kruppel-Like/metabolismo , Óxido Nítrico/metabolismo , Receptores de Esfingosina-1-Fosfato/metabolismo , Terapia por Ultrassom , Animais , Aterosclerose/induzido quimicamente , Aterosclerose/metabolismo , Aterosclerose/terapia , Modelos Animais de Doenças , Feminino , Masculino , Ratos
18.
Int J Mol Sci ; 22(9)2021 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-33919234

RESUMO

Breast cancer MCF-7 cell-line-derived mammospheres were shown to be enriched in cells with a CD44+/CD24- surface profile, consistent with breast cancer stem cells (BCSC). These BCSC were previously reported to express key sphingolipid signaling effectors, including pro-oncogenic sphingosine kinase 1 (SphK1) and sphingosine-1-phosphate receptor 3 (S1P3). In this study, we explored intracellular trafficking and localization of SphK1 and S1P3 in parental MCF-7 cells, and MCF-7 derived BCSC-enriched mammospheres treated with growth- or apoptosis-stimulating agents. Intracellular trafficking and localization were assessed using confocal microscopy and cell fractionation, while CD44+/CD24- marker status was confirmed by flow cytometry. Mammospheres expressed significantly higher levels of S1P3 compared to parental MCF-7 cells (p < 0.01). Growth-promoting agents (S1P and estrogen) induced SphK1 and S1P3 translocation from cytoplasm to nuclei, which may facilitate the involvement of SphK1 and S1P3 in gene regulation. In contrast, pro-apoptotic cytokine tumor necrosis factor α (TNFα)-treated MCF-7 cells demonstrated increased apoptosis and no nuclear localization of SphK1 and S1P3, suggesting that TNFα can inhibit nuclear translocation of SphK1 and S1P3. TNFα inhibited mammosphere formation and induced S1P3 internalization and degradation. No nuclear translocation of S1P3 was detected in TNFα-stimulated mammospheres. Notably, SphK1 and S1P3 expression and localization were highly heterogenous in mammospheres, suggesting the potential for a large variety of responses. The findings provide further insights into the understanding of sphingolipid signaling and intracellular trafficking in BCs. Our data indicates that the inhibition of SphK1 and S1P3 nuclear translocation represents a novel method to prevent BCSCs proliferation.


Assuntos
Neoplasias da Mama/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Transdução de Sinais , Receptores de Esfingosina-1-Fosfato/metabolismo , Neoplasias da Mama/genética , Estrogênios/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Lisofosfolipídeos/metabolismo , Células MCF-7 , Transporte Proteico , Esfingosina/análogos & derivados , Esfingosina/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
20.
Am J Physiol Cell Physiol ; 320(6): C1055-C1073, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33788630

RESUMO

Vascular smooth muscle (VSM) cell phenotypic expression and autophagic state are dynamic responses to stress. Vascular pathologies, such as hypoxemia and ischemic injury, induce a synthetic VSM phenotype and autophagic flux resulting in a loss of vascular integrity and VSM cell death respectfully. Both clinical pilot and experimental stroke studies demonstrate that sphingosine-1-phosphate receptor (S1PR) modulation improves stroke outcome; however, specific mechanisms associated with a beneficial outcome at the level of the cerebrovasculature have not been clearly elucidated. We hypothesized that ozanimod, a selective S1PR type 1 ligand, will attenuate VSM synthetic phenotypic expression and autophagic flux in primary human brain VSM cells following acute hypoxia plus glucose deprivation (HGD; in vitro ischemic-like injury) exposure. Cells were treated with ozanimod and exposed to normoxia or HGD. Crystal violet staining, standard immunoblotting, and immunocytochemical labeling techniques assessed cellular morphology, vacuolization, phenotype, and autophagic state. We observed that HGD temporally decreased VSM cell viability and concomitantly increased vacuolization, both of which ozanimod reversed. HGD induced a simultaneous elevation and reduction in levels of pro- and antiautophagic proteins respectfully, and ozanimod attenuated this response. Protein levels of VSM phenotypic biomarkers, smoothelin and SM22, were decreased following HGD. Furthermore, we observed an HGD-induced epithelioid and synthetic morphological appearance accompanied by disorganized cytoskeletal filaments, which was rescued by ozanimod. Thus, we conclude that ozanimod, a selective S1PR1 ligand, protects against acute HGD-induced phenotypic switching and promotes cell survival, in part, by attenuating HGD-induced autophagic flux thus improving vascular patency in response to acute ischemia-like injury.


Assuntos
Autofagia/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Glucose/metabolismo , Hipóxia/tratamento farmacológico , Indanos/farmacologia , Músculo Liso Vascular/efeitos dos fármacos , Oxidiazóis/farmacologia , Receptores de Esfingosina-1-Fosfato/metabolismo , Encéfalo/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Humanos , Hipóxia/metabolismo , Ligantes , Masculino , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Fenótipo , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/metabolismo , Acidente Vascular Cerebral/tratamento farmacológico , Acidente Vascular Cerebral/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...