Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.554
Filtrar
1.
Biomolecules ; 13(4)2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-37189400

RESUMO

Ovarian cancer (OC) is the leading cause of death from gynecological malignancies worldwide. Fortunately, recent advances in OC biology and the discovery of novel therapeutic targets have led to the development of novel therapeutic agents that may improve the outcome of OC patients. The glucocorticoid receptor (GR) is a ligand-dependent transcriptional factor known for its role in body stress reactions, energy homeostasis and immune regulation. Notably, evidence suggests that GR may play a relevant role in tumor progression and may affect treatment response. In cell culture models, administration of low levels of glucocorticoids (GCs) suppresses OC growth and metastasis. Conversely, high GR expression has been associated with poor prognostic features and long-term outcomes in patients with OC. Moreover, both preclinical and clinical data have shown that GR activation impairs the effectiveness of chemotherapy by inducing the apoptotic pathways and cell differentiation. In this narrative review, we summarize data related to the function and role of GR in OC. To this aim, we reorganized the controversial and fragmented data regarding GR activity in OC and herein describe its potential use as a prognostic and predictive biomarker. Moreover, we explored the interplay between GR and BRCA expression and reviewed the latest therapeutic strategies such as non-selective GR antagonists and selective GR modulators to enhance chemotherapy sensitivity, and to finally provide new treatment options in OC patients.


Assuntos
Neoplasias Ovarianas , Receptores de Glucocorticoides , Humanos , Feminino , Receptores de Glucocorticoides/metabolismo , Glucocorticoides/uso terapêutico , Glucocorticoides/farmacologia , Neoplasias Ovarianas/tratamento farmacológico , Transdução de Sinais
2.
Life Sci ; 322: 121681, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37040814

RESUMO

AIM: Glucocorticoids (GCs) play a crucial role in energy homeostasis including white adipose tissue function; however, chronic GC excess is detrimental to mammals' health. White hypertrophic adiposity is a main factor for neuroendocrine-metabolic dysfunctions in monosodium L-glutamate (MSG)-damaged hypercorticosteronemic rat. Nevertheless, little is known about the receptor path in endogenous GC impact on white adipose tissue-resident precursor cells to bring them into beige lineage. Thus, our aim was to explore whether transient/chronic endogenous hypercorticosteronemia affects browning capacity in white adipose tissue pads from MSG rats during development. MAIN METHODS: Control and MSG male rats aged 30 and 90 days were 7-day exposed to cold conditions in order to stimulate wet white epidydimal adipose tissue (wEAT) beiging capacity. This procedure was also replicated in adrenalectomized rats. KEY FINDINGS: Data indicated that whereas epidydimal white adipose tissue pads from prepubertal hypercorticosteronemic rats retained full expression of GR/MR genes resulting in a drastic reduction in wEAT beiging capacity, conversely, chronic hypercorticosteronemic adult MSG rats developed down-regulation of corticoid genes (and reduced GR cytosolic mediators) in wEAT pads and consequently partially restored local beiging capacity. Finally, wEAT pads from adrenalectomized rats revealed up-regulation of GR gene accompanied by full local beiging capacity. SIGNIFICANCE: This study strongly supports a GR-dependent inhibitory effect of GC excess on white adipose tissue browning, an issue strongly supporting a key role of GR in the non-shivering thermogenic process. As a consequence, normalizing the GC milieu could be a relevant factor to handle dysmetabolism in white hyperadipose phenotypes.


Assuntos
Tecido Adiposo Branco , Receptores de Glucocorticoides , Animais , Masculino , Ratos , Adipócitos Brancos/metabolismo , Tecido Adiposo/metabolismo , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Adiposidade , Metabolismo Energético , Glucocorticoides/metabolismo , Mamíferos/metabolismo , Obesidade/metabolismo , Receptores de Glucocorticoides/metabolismo , Termogênese
3.
Eur J Endocrinol ; 188(5): R111-R130, 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37119521

RESUMO

Glucocorticoids are essential hormones produced by the adrenal cortex with prominent circadian rhythmicity and in times of stress. Glucocorticoids maintain liver homeostasis through coordinated activities that control the major pathways of energy metabolism. Glucocorticoids activate the glucocorticoid receptor (GR), a nuclear hormone receptor that regulates the transcription of hundreds of genes in response to ligand. This review aims to provide a comprehensive overview of glucocorticoid receptor signaling impact on glucose, amino acid, and lipid metabolism in the liver. We integrate fundamental and current findings elucidating key GR-regulated pathways from a physiologic, biochemical, and molecular point-of-view. Here, we focus on the transcriptional regulation of well-characterized hepatic GR target genes, and on those GR co-factors that coordinate nutritional and hormonal signals.


Assuntos
Glucocorticoides , Receptores de Glucocorticoides , Humanos , Regulação da Expressão Gênica , Genômica , Glucocorticoides/metabolismo , Receptores de Glucocorticoides/metabolismo , Esteroides
4.
Steroids ; 195: 109238, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37044236

RESUMO

Hepatocellular carcinoma is one of the most common types of primary liver cancer in adults and also it is the third leading cause of cancer-related deaths worldwide. Although there are various treatment options such as surgery, radiation, targeted drug therapy, immunotherapy and chemotherapy, most hepatocellular carcinomas are highly resistant to systemic treatments. Today, the molecular pathogenesis of hepatocellular carcinoma remains largely obscure. Therefore, there is a need for detailed research for the characterization of molecular signaling networks related to the development of hepatocellular carcinoma. Recent studies have attention to the hormonal regulation of hepatocellular carcinoma cells mediated by systemic hormones such as glucocorticoids. However, glucocorticoid-mediated regulation of endoplasmic reticulum-associated degradation (ERAD) and unfolded protein response (UPR), which are known to be important survival mechanisms for cancer cells remains unknown in hepatocellular carcinoma. In the present study, we showed that dexamethasone-induced glucocorticoid receptor signaling mediated advanced regulation of ERAD and UPR signaling in hepatocellular carcinoma cells. Our findings indicated that glucocorticoid signaling positively regulated mRNA and protein levels of ERAD components and also protein kinase RNA-like ER Kinase (PERK) and inositol-requiring enzyme 1⍺ (IRE1⍺) branches of UPR signaling are accompanied by the glucocorticoid signaling. In addition, putative glucocorticoid response elements (GREs) were determined in the promoter regions of ERAD members in in-silico analyses. Additionally, silencing of ERAD components significantly reduced the tumorigenic features of hepatocellular carcinoma cells, including cell proliferation, metastasis, invasion and 3D tumor formation. Collectively, these results reveal a novel pattern of regulation of ERAD components by glucocorticoid-mediated in human hepatocellular carcinoma cells.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Degradação Associada com o Retículo Endoplasmático , Glucocorticoides/metabolismo , Receptores de Glucocorticoides/metabolismo , Retículo Endoplasmático/metabolismo , Dexametasona/metabolismo
5.
Artigo em Inglês | MEDLINE | ID: mdl-37044370

RESUMO

Cortisol is a key stress-related hormone involved in the physiological adjustments of fish. In gills, cortisol contributes to acclimatization to changes in environmental salinity, promoting both ion uptake or salt excretion. Cortisol exerts its biological effects through its interaction with specific intracellular glucocorticoid (GR) and mineralocorticoid (MR) receptors. Additionally, the further identification of GR and MR on the surface of different tissues, together with the existence of cortisol-mediated effects observed using membrane-impermeable analogs (e.g., cortisol-BSA), supports the existence of membrane-initiated cortisol actions in fish. Nevertheless, the impact of this alternative cortisol mechanism in relevant tissues for fish salinity acclimation, such as gill, is unknown. In this work, we sought to explore the contribution of rapid membrane-initiated cortisol on GR and MR regulation in rainbow trout (Oncorhynchus mykiss) gills using in vivo and in vitro approaches. Juvenile rainbow trout intraperitoneally injected with cortisol or cortisol-BSA showed increased gr2 but no gr1 or mr mRNA levels in gills after one hour of treatment. This result was further confirmed using RT-gills-W1 cell lines stimulated with both versions of cortisol. Interestingly, after three and six hours of cortisol or cortisol-BSA treatment, there were no changes in the mRNA levels of any corticosteroid receptor in RT-gills-W1 cells. Finally, using immunofluorescence analysis, we identified GR and MR in rainbow trout gill cells localized on the cell surface. Considering the in vivo and in vitro results of this work, we suggest that membrane-initiated cortisol action contributes to the early expression of gr2 in rainbow trout gills during salinity acclimation.


Assuntos
Oncorhynchus mykiss , Receptores de Esteroides , Animais , Hidrocortisona/farmacologia , Hidrocortisona/metabolismo , Oncorhynchus mykiss/fisiologia , Brânquias/metabolismo , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo , Glucocorticoides/metabolismo , RNA Mensageiro/genética
6.
Int J Mol Sci ; 24(8)2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37108291

RESUMO

Stress is known to have a significant impact on mental health. While gender differences can be found in stress response and mental disorders, there are limited studies on the neuronal mechanisms of gender differences in mental health. Here, we discuss gender and cortisol in depression as presented by recent clinical studies, as well as gender differences in the role of glucocorticoid receptors (GRs) and mineralocorticoid receptors (MRs) in stress-associated mental disorders. When examining clinical studies drawn from PubMed/MEDLINE (National Library of Medicine) and EMBASE, salivary cortisol generally showed no gender correlation. However, young males were reported to show heightened cortisol reactivity compared to females of similar age in depression. Pubertal hormones, age, early life stressors, and types of bio-samples for cortisol measurement affected the recorded cortisol levels. The role of GRs and MRs in the HPA axis could be different between males and females during depression, with increased HPA activity and upregulated MR expression in male mice, while the inverse happened in female mice. The functional heterogeneity and imbalance of GRs and MRs in the brain may explain gender differences in mental disorders. This knowledge and understanding will support the development of gender-specific diagnostic markers involving GRs and MRs in depression.


Assuntos
Hidrocortisona , Receptores de Glucocorticoides , Masculino , Feminino , Camundongos , Animais , Hidrocortisona/metabolismo , Receptores de Glucocorticoides/metabolismo , Sistema Hipotálamo-Hipofisário/metabolismo , Fatores Sexuais , Depressão , Sistema Hipófise-Suprarrenal/metabolismo , Receptores de Mineralocorticoides/metabolismo , Estresse Psicológico
7.
J Virol ; 97(4): e0007323, 2023 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-37022165

RESUMO

Stress-mediated activation of the glucocorticoid receptor (GR) and specific stress-induced transcription factors stimulate herpes simplex virus 1 (HSV-1) productive infection, explant-induced reactivation, and immediate early (IE) promoters that drive expression of infected cell protein 0 (ICP0), ICP4, and ICP27. Several published studies concluded the virion tegument protein VP16, ICP0, and/or ICP4 drives early steps of reactivation from latency. Notably, VP16 protein expression was induced in trigeminal ganglionic neurons of Swiss Webster or C57BL/6J mice during early stages of stress-induced reactivation. If VP16 mediates reactivation, we hypothesized stress-induced cellular transcription factors would stimulate its expression. To address this hypothesis, we tested whether stress-induced transcription factors transactivate a VP16 cis-regulatory module (CRM) located upstream of the VP16 TATA box (-249 to -30). Initial studies revealed the VP16 CRM cis-activated a minimal promoter more efficiently in mouse neuroblastoma cells (Neuro-2A) than mouse fibroblasts (NIH-3T3). GR and Slug, a stress-induced transcription factor that binds enhancer boxes (E-boxes), were the only stress-induced transcription factors examined that transactivated the VP16 CRM construct. GR- and Slug-mediated transactivation was reduced to basal levels when the E-box, two 1/2 GR response elements (GREs), or NF-κB binding site was mutated. Previous studies revealed GR and Slug cooperatively transactivated the ICP4 CRM, but not ICP0 or ICP27. Silencing of Slug expression in Neuro-2A cells significantly reduced viral replication, indicating Slug-mediated transactivation of ICP4 and VP16 CRM activity correlates with enhanced viral replication and reactivation from latency. IMPORTANCE Herpes simplex virus 1 (HSV-1) establishes lifelong latency in several types of neurons. Periodically cellular stressors trigger reactivation from latency. Viral regulatory proteins are not abundantly expressed during latency, indicating cellular transcription factors mediate early stages of reactivation. Notably, the glucocorticoid receptor (GR) and certain stress-induced transcription factors transactivate cis-regulatory modules (CRMs) essential for expression of infected cell protein 0 (ICP0) and ICP4, key viral transcriptional regulatory proteins linked to triggering reactivation from latency. Virion protein 16 (VP16) specifically transactivates IE promoter and was also reported to mediate early stages of reactivation from latency. GR and Slug, a stress-induced enhancer box (E-box) binding protein, transactivate a minimal promoter downstream of VP16 CRM, and these transcription factors occupy VP16 CRM sequences in transfected cells. Notably, Slug stimulates viral replication in mouse neuroblastoma cells suggesting Slug, by virtue of transactivating VP16 and ICP4 CRM sequences, can trigger reactivation in certain neurons.


Assuntos
Proteína Vmw65 do Vírus do Herpes Simples , Herpesvirus Humano 1 , Regiões Promotoras Genéticas , Replicação Viral , Animais , Camundongos , Regulação Viral da Expressão Gênica , Infecções por Herpesviridae/virologia , Herpesvirus Humano 1/fisiologia , Camundongos Endogâmicos C57BL , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Replicação Viral/genética , Feminino , Proteína Vmw65 do Vírus do Herpes Simples/genética , Proteína Vmw65 do Vírus do Herpes Simples/metabolismo , Células NIH 3T3 , Latência Viral/genética , Mutação , RNA Interferente Pequeno/metabolismo
8.
Stress ; 26(1): 2204366, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37067948

RESUMO

Stress is a normal response to situational pressures or demands. Exposure to stress activates the hypothalamic-pituitary-adrenal (HPA) axis and leads to the release of corticosteroids, which act in the brain via two distinct receptors: mineralocorticoid receptors (MR) and glucocorticoid receptors (GR). Persistent HPA axis overactivation or dysregulation can disrupt an individual's homeostasis, thereby contributing to an increased risk for mental illness. On the other hand, successful coping with stressful events involves adaptive and cognitive processes in the brain that render individuals more resilient to similar stressors in the future. Here we review the role of the MR in these processes, starting with an overview of the physiological structure, ligand binding, and expression of MR, and further summarizing its role in the brain, its relevance to psychiatric disorders, and related rodent studies. Given the central role of MR in cognitive and emotional functioning, and its importance as a target for promoting resilience, future research should investigate how MR modulation can be used to alleviate disturbances in emotion and behavior, as well as cognitive impairment, in patients with stress-related psychiatric disorders.


Assuntos
Sistema Hipotálamo-Hipofisário , Receptores de Mineralocorticoides , Sistema Hipotálamo-Hipofisário/metabolismo , Receptores de Mineralocorticoides/metabolismo , Ligantes , Estresse Psicológico , Sistema Hipófise-Suprarrenal/metabolismo , Receptores de Glucocorticoides/metabolismo , Encéfalo/metabolismo
9.
PLoS One ; 18(4): e0273602, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37023023

RESUMO

BACKGROUND: The glucocorticoid receptor (GR), which is encoded by the NR3C1 (Nuclear Receptor Subfamily 3 Group C Member 1) gene plays an important role in the modulation of the hypothalamic-pituitary-adrenal (HPA) axis activity by providing feedback regulation which allows termination of the stress response. Little is known about epigenetic programming at the level of NGFI-A (nerve growth factor-inducible protein A) putative binding site (CpG) of the NR3C1 exon 1F in dyads mother-child exposed to intimate partner violence (IPV) more specifically in an unstudied region such as the sub-Saharan Africa where levels of violence are very high. OBJECTIVE: Examine NR3C1 exon 1F methylation in response to IPV and possible association with cortisol concentration and mental health. METHOD: We recruited 20 mother-child dyads exposed to IPV and a control group of 20 mother-child dyads not exposed to IPV. We administered self-reported questionnaires to measure mother's mental health and collected saliva samples for cortisol dosage and bisulfite sequencing of DNA methylation. RESULTS: Regarding the mothers, our results showed a significant difference in methylation level at CpG 16-21 sites of the NR3C1 exon 1F promoter region between the groups. In the exposed group as compared to the control group, there was a significant positive association between the level of methylation at CpG 16-21 sites and mother's mental health in particular anxiety symptoms. However, we did not find any significant correlation between methylation level and cortisol concentration. In children, we did not find any significant results. CONCLUSION: This study highlights a NGFI-A putative binding site (CpG 16-21) that is more methylated in mothers exposed to IPV and which may have the potential to confer vulnerability for psychopathologies.


Assuntos
Glucocorticoides , Violência por Parceiro Íntimo , Feminino , Humanos , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo , Hidrocortisona/metabolismo , Camarões , Ilhas de CpG/genética , Regiões Promotoras Genéticas , Metilação de DNA , Ansiedade/genética , Relações Mãe-Filho
10.
Front Immunol ; 14: 1124011, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37006237

RESUMO

Introduction: Polymicrobial sepsis causes acute anorexia (loss of appetite), leading to lipolysis in white adipose tissue and proteolysis in muscle, and thus release of free fatty acids (FFAs), glycerol and gluconeogenic amino acids. Since hepatic peroxisome proliferator-activated receptor alpha (PPARα) and glucocorticoid receptor (GR) quickly lose function in sepsis, these metabolites accumulate (causing toxicity) and fail to yield energy-rich molecules such as ketone bodies (KBs) and glucose. The mechanism of PPARα and GR dysfunction is not known. Methods & results: We investigated the hypothesis that hypoxia and/or activation of hypoxia inducible factors (HIFs) might play a role in these issues with PPARα and GR. After cecal ligation and puncture (CLP) in mice, leading to lethal polymicrobial sepsis, bulk liver RNA sequencing illustrated the induction of the genes encoding HIF1α and HIF2α, and an enrichment of HIF-dependent gene signatures. Therefore, we generated hepatocyte-specific knock-out mice for HIF1α, HIF2α or both, and a new HRE-luciferase reporter mouse line. After CLP, these HRE-luciferase reporter mice show signals in several tissues, including the liver. Hydrodynamic injection of an HRE-luciferase reporter plasmid also led to (liver-specific) signals in hypoxia and CLP. Despite these encouraging data, however, hepatocyte-specific HIF1α and/or HIF2α knock-out mice suggest that survival after CLP was not dependent on the hepatocyte-specific presence of HIF proteins, which was supported by measuring blood levels of glucose, FFAs, and KBs. The HIF proteins were also irrelevant in the CLP-induced glucocorticoid resistance, but we found indications that the absence of HIF1α in hepatocytes causes less inactivation of PPARα transcriptional function. Conclusion: We conclude that HIF1α and HIF2α are activated in hepatocytes in sepsis, but their contribution to the mechanisms leading to lethality are minimal.


Assuntos
PPAR alfa , Sepse , Camundongos , Animais , PPAR alfa/genética , PPAR alfa/metabolismo , Receptores de Glucocorticoides/metabolismo , Hepatócitos/metabolismo , Sepse/metabolismo , Hipóxia/genética , Hipóxia/metabolismo , Glucose/metabolismo , Luciferases , Camundongos Knockout
11.
Neurogastroenterol Motil ; 35(5): e14558, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36893055

RESUMO

BACKGROUND: Women with a history of early life stress (ELS) have a higher risk of developing irritable bowel syndrome (IBS). In addition, chronic stress in adulthood can exacerbate IBS symptoms such as abdominal pain due to visceral hypersensitivity. We previously showed that sex and the predictability of ELS determine whether rats develop visceral hypersensitivity in adulthood. In female rats, unpredictable ELS confers vulnerability and results in visceral hypersensitivity, whereas predictable ELS induces resilience and does not induce visceral hypersensitivity in adulthood. However, this resilience is lost after exposure to chronic stress in adulthood leading to an exacerbation of visceral hypersensitivity. Evidence suggests that changes in histone acetylation at the promoter regions of glucocorticoid receptor (GR) and corticotrophin-releasing factor (CRF) in the central nucleus of the amygdala (CeA) underlie stress-induced visceral hypersensitivity. Here, we aimed to investigate the role of histone acetylation in the CeA on visceral hypersensitivity in a two-hit model of ELS followed by chronic stress in adulthood. METHODS: Male and female neonatal rats were exposed to unpredictable, predictable ELS, or odor only (no stress control) from postnatal days 8 to 12. In adulthood, rats underwent stereotaxic implantation of indwelling cannulas. Rats were exposed to chronic water avoidance stress (WAS, 1 h/day for 7 days) or SHAM stress and received infusions of vehicle, the histone deacetylase inhibitor trichostatin A (TSA) or the histone acetyltransferase inhibitor garcinol (GAR) after each WAS session. 24 h after the final infusion, visceral sensitivity was assessed and the CeA was removed for molecular experiments. RESULTS: In the two-hit model (ELS + WAS), female rats previously exposed to predictable ELS, showed a significant reduction in histone 3 lysine 9 (H3K9) acetylation at the GR promoter and a significant increase in H3K9 acetylation at the CRF promoter. These epigenetic changes were associated with changes in GR and CRF mRNA expression in the CeA and an exacerbation of stress-induced visceral hypersensitivity in female animals. TSA infusions in the CeA attenuated the exacerbated stress-induced visceral hypersensitivity, whereas GAR infusions only partially ameliorated ELS+WAS induced visceral hypersensitivity. CONCLUSION: The two-hit model of ELS followed by WAS in adulthood revealed that epigenetic dysregulation occurs after exposure to stress in two important periods of life and contributes to the development of visceral hypersensitivity. These aberrant underlying epigenetic changes may explain the exacerbation of stress-induced abdominal pain in IBS patients.


Assuntos
Síndrome do Intestino Irritável , Estresse Psicológico , Dor Visceral , Animais , Feminino , Masculino , Ratos , Dor Abdominal/genética , Hormônio Liberador da Corticotropina/metabolismo , Epigênese Genética , Histonas/metabolismo , Síndrome do Intestino Irritável/genética , Receptores de Glucocorticoides/metabolismo , Estresse Psicológico/genética , Dor Visceral/genética
12.
Physiol Behav ; 265: 114156, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-36918107

RESUMO

This study investigated the interactive effect of glucocorticoid and Gamma-aminobutyric acid (GABA) receptors in the Infralimbic (IL) cortex on fear extinction in rats' auditory fear conditioning task (AFC). Animals received 3 conditioning trial tones (conditioned stimulus, 30 s, 4 kHz, 80 dB) co-terminated with a footshock (unconditioned stimulus, 0.8 mA, 1 s). Extinction testing was conducted over 3 days (Ext 1-3) after conditioning. Intra-IL injection of corticosterone (CORT, 20 ng/0.3 µl/side) was performed 15 min before the first extinction trial (Ext 1) which attenuated auditory fear expression in subsequent extinction trials (Ext 1-3), demonstrating fear memory extinction enhancement. Co-injection of the GABAA agonist muscimol (250 ng/0.3 µl/side) or the GABAB agonist baclofen (250 ng/0.3 µl/side) 15 min before corticosterone, did not significantly affect the facilitative effects of corticosterone on fear extinction. However, co-injection of the GABAA antagonist bicuculline (BIC, 100 ng/0.3 µl/side) or the GABAB antagonist CGP35348 (CGP, 100 ng/0.3 µl/side) 15 min before corticosterone, blocked the facilitative effects of corticosterone on fear extinction. Moreover, extracellular signal-regulated kinase (ERK) and cAMP response element-binding (CREB) in the IL were examined by Western blotting analysis after the first extinction trial (Ext 1) in some groups. Intra-IL injection of corticosterone increased the ERK activity but not CREB. Co-injection of the bicuculline or CGP35348 blocked the enhancing effect of corticosterone on ERK expression in the IL. Glucocorticoid receptors (GRs) activation in the IL cortex by corticosterone increased ERK activity and facilitated fear extinction. GABAA or GABAB antagonists decreased ERK activity and inhibited corticosterone's effect. GRs and GABA receptors in the IL cortex jointly modulate the fear extinction processes via the ERK pathway. This pre-clinical animal study may highlight GRs and GABA interactions in the IL cortex modulating fear memory processes in fear-related disorders such as post-traumatic stress disorder (PTSD).


Assuntos
Corticosterona , Glucocorticoides , Ratos , Animais , Glucocorticoides/metabolismo , Corticosterona/farmacologia , Corticosterona/metabolismo , Extinção Psicológica/fisiologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/farmacologia , Receptores de GABA/metabolismo , Medo/fisiologia , Bicuculina/farmacologia , Bicuculina/metabolismo , Ratos Sprague-Dawley , Córtex Pré-Frontal/metabolismo , Receptores de Glucocorticoides/metabolismo , Ácido gama-Aminobutírico/metabolismo
13.
Brain Res ; 1808: 148316, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-36906227

RESUMO

Corticosterone (CORT), the principal glucocorticoid in rodents, is released after stressful experiences such as training with high foot-shock intensities in the inhibitory avoidance task (IA). CORT reaches the glucocorticoid receptor (GR) located in almost all brain cells; the GR is subsequently phosphorylated at serine 232 (pGRser232). This has been reported as an indicator of ligand-dependent activation of the GR, as well as a requirement for its translocation into the nucleus for its transcription factor activity. The GR is present in the hippocampus with a high concentration in CA1 and dentate gyrus (DG), and a smaller proportion in CA3, and sparsely present in the caudate putamen (CPu); both structures are involved in memory consolidation of IA. To study the participation of CORT in IA, we quantified the ratio of pGR-positive neurons in both dorsal hippocampus (CA1, CA3 and DG) and dorsal and ventral regions of CPu of rats trained in IA, using different foot-shock intensities. Brains were dissected 60 min after training for immunodetection of pGRser232 positive cells. The results show that the groups trained with 1.0 and 2.0 mA had higher retention latencies than the 0.0 mA or 0.5 mA groups. An increase in the ratio of pGR-positive neurons was found in CA1 and ventral region of CPu only for the 2.0 mA trained group. These findings suggest that activation of GRs in CA1 and ventral CPu is involved in the consolidation of a stronger memory of IA, possibly through the modulation of gene expression.


Assuntos
Glucocorticoides , Receptores de Glucocorticoides , Ratos , Animais , Glucocorticoides/metabolismo , Receptores de Glucocorticoides/metabolismo , Putamen/metabolismo , Hipocampo/metabolismo , Corticosterona/farmacologia , Neurônios/metabolismo
14.
JCI Insight ; 8(8)2023 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-36917179

RESUMO

Metabolic crosstalk from skeletal muscle to multiple organs is important for maintaining homeostasis, and its dysregulation can lead to various diseases. Chronic glucocorticoid administration often induces muscle atrophy and metabolic disorders such as diabetes and central obesity; however, the detailed underlying mechanism remains unclear. We previously reported that the deletion of glucocorticoid receptor (GR) in skeletal muscle increases muscle mass and reduces fat mass through muscle-liver-fat communication under physiological conditions. In this study, we show that muscle GR signaling plays a crucial role in accelerating obesity through the induction of hyperinsulinemia. Fat accumulation in liver and adipose tissue, muscle atrophy, hyperglycemia, and hyperinsulinemia induced by chronic corticosterone (CORT) treatment improved in muscle-specific GR-knockout (GR-mKO) mice. Such CORT-induced fat accumulation was alleviated by suppressing insulin production (streptozotocin injection), indicating that hyperinsulinemia enhanced by muscle GR signaling promotes obesity. Strikingly, glucose intolerance and obesity in ob/ob mice without CORT treatment were also improved in GR-mKO mice, indicating that muscle GR signaling contributes to obesity-related metabolic changes, regardless of systemic glucocorticoid levels. Thus, this study provides insight for the treatment of obesity and diabetes by targeting muscle GR signaling.


Assuntos
Diabetes Mellitus , Intolerância à Glucose , Hiperinsulinismo , Camundongos , Animais , Glucocorticoides/metabolismo , Intolerância à Glucose/metabolismo , Obesidade/metabolismo , Hiperinsulinismo/metabolismo , Corticosterona/metabolismo , Receptores de Glucocorticoides/metabolismo , Diabetes Mellitus/metabolismo , Músculo Esquelético/metabolismo , Atrofia Muscular/metabolismo
15.
Int J Mol Sci ; 24(6)2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36982391

RESUMO

In euryhaline teleost black porgy, Acanthopagrus schlegelii, the glucocorticoid receptor (gr), growth hormone receptor (ghr), prolactin (prl)-receptor (prlr), and sodium-potassium ATPase alpha subunit (α-nka) play essential physiological roles in the osmoregulatory organs, including the gill, kidney, and intestine, during osmotic stress. The present study aimed to investigate the impact of pituitary hormones and hormone receptors in the osmoregulatory organs during the transfer from freshwater (FW) to 4 ppt and seawater (SW) and vice versa in black porgy. Quantitative real-time PCR (Q-PCR) was carried out to analyze the transcript levels during salinity and osmoregulatory stress. Increased salinity resulted in decreased transcripts of prl in the pituitary, α-nka and prlr in the gill, and α-nka and prlr in the kidney. Increased salinity caused the increased transcripts of gr in the gill and α-nka in the intestine. Decreased salinity resulted in increased pituitary prl, and increases in α-nka and prlr in the gill, and α-nka, prlr, and ghr in the kidney. Taken together, the present results highlight the involvement of prl, prlr, gh, and ghr in the osmoregulation and osmotic stress in the osmoregulatory organs (gill, intestine, and kidney). Pituitary prl, and gill and intestine prlr are consistently downregulated during the increased salinity stress and vice versa. It is suggested that prl plays a more significant role in osmoregulation than gh in the euryhaline black porgy. Furthermore, the present results highlighted that the gill gr transcript's role was solely to balance the homeostasis in the black porgy during salinity stress.


Assuntos
Receptores de Glucocorticoides , Receptores da Somatotropina , Animais , Receptores da Somatotropina/metabolismo , Pressão Osmótica , Receptores de Glucocorticoides/metabolismo , Osmorregulação/genética , Receptores da Prolactina/genética , Receptores da Prolactina/metabolismo , Salinidade , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Brânquias/metabolismo , ATPase Trocadora de Sódio-Potássio/genética , ATPase Trocadora de Sódio-Potássio/metabolismo
16.
Steroids ; 194: 109223, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36948346

RESUMO

BACKGROUND: bullous dermatosis is a group of skin diseases that occur on the skin and mucous membrane, with blister and bulla as basic damage, mainly including pemphigus and bullous pemphigoid. Glucocorticoid (GC) is still the preferred drug for its treatment, but some patients respond poorly to GC and even develop glucocorticoid resistance (GCR). However, at present about the disease the understanding of the mechanisms for GCR is limited. OBJECTIVE: This study attempted to investigate the molecular mechanism of GCR in bullous dermatosis with heat shock proteins 90 (HSP90) and glucocorticoid receptor (GR) as molecular targets. METHODS: In this study, flow cytometry was used to measure and analyze the expression of HSP90 and GR in the lesions of patients with glucocorticoid-resistant bullosa dermatosis. Immunohistochemistry and immunofluorescence were used to observe the expression distribution and cell localization of HSP90 and GR. RESULTS: The expression of HSP90 in skin lesions of GCR group was significantly higher than that of glucocorticoid-sensitive (GCS) group, while the expression level of GR was lower than that of GCS group. In the epidermis, the expression and distribution of HSP90 were not different between the GCR group and the GCS group. And in the dermis, HSP90 and GR were more likely to be expressed in the nucleus in the GCR group. CONCLUSION: The overexpression and nuclear distribution of HSP90 may be related to the occurrence of GCR in patients with bullous dermatosis. And this correlation is more likely to occur in the dermis than in the epidermis.


Assuntos
Derme , Glucocorticoides , Receptores de Glucocorticoides , Dermatopatias Vesiculobolhosas , Humanos , Derme/metabolismo , Glucocorticoides/uso terapêutico , Proteínas de Choque Térmico HSP90/metabolismo , Receptores de Glucocorticoides/deficiência , Receptores de Glucocorticoides/metabolismo , Dermatopatias Vesiculobolhosas/tratamento farmacológico
17.
Brain Res ; 1806: 148301, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36868509

RESUMO

In the present study we investigated the localization of glucocorticoid receptors (GCR) in the human inner ear using immunohistochemistry. Celloidin-embedded cochlear sections of patients with normal hearing (n = 5), patients diagnosed with MD (n = 5), and noise induced hearing loss (n = 5) were immunostained using GCR rabbit affinity-purified polyclonal antibodies and secondary fluorescent or HRP labeled antibodies. Digital fluorescent images were acquired using a light sheet laser confocal microscope. In celloidin-embedded sections GCR-IF was present in the cell nuclei of hair cells and supporting cells of the organ of Corti. GCR-IF was detected in cell nuclei of the Reisner's membrane. GCR-IF was seen in cell nuclei of the stria vascularis and the spiral ligament. GCR-IF was found in the spiral ganglia cell nuclei, however, spiral ganglia neurons showed no GCR-IF. Although GCRs were found in most cell nuclei of the cochlea, the intensity of IF was differential among the different cell types being more intense in supporting cells than in sensory hair cells. The differential expression of GCR receptors found in the human cochlea may help to understand the site of action of glucocorticoids in different ear diseases.


Assuntos
Orelha Interna , Receptores de Glucocorticoides , Animais , Coelhos , Humanos , Receptores de Glucocorticoides/metabolismo , Colódio/metabolismo , Cóclea/metabolismo , Orelha Interna/metabolismo , Gânglio Espiral da Cóclea/metabolismo
18.
Laryngoscope ; 133(5): 1169-1175, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36779842

RESUMO

OBJECTIVE: Glucocorticoids (GCs) modulate multiple cellular activities including inflammatory and fibrotic responses. Outcomes of GC treatment for laryngeal disease vary, affording opportunity to optimize treatment. In the current study, three clinically employed GCs were evaluated to identify optimal in vitro concentrations at which GCs mediate favorable anti-inflammatory and fibrotic effects in multiple cell types. We hypothesize a therapeutic window will emerge as a foundation for optimized therapeutic strategies for patients with laryngeal disease. STUDY DESIGN: In vitro. METHODS: Human vocal fold fibroblasts and human macrophages derived from THP-1 monocytes were treated with 0.03-1000 nM dexamethasone, 0.3-10,000 nM methylprednisolone, and 0.3-10,000 nM triamcinolone in combination with interferon-γ, tumor necrosis factor-α, or interleukin-4. Real-time polymerase chain reaction was performed to analyze inflammatory (CXCL10, CXCl11, PTGS2, TNF, IL1B) and fibrotic (CCN2, LOX, TGM2) genes, and TSC22D3, a target gene of GC signaling. EC50 and IC50 to alter inflammatory and fibrotic gene expression was calculated. RESULTS: Interferon-γ and tumor necrosis factor-α increased inflammatory gene expression in both cell types; this response was reduced by GCs. Interleukin-4 increased LOX and TGM2 expression in macrophages; this response was also reduced by GCs. GCs induced TSC22D3 and CCN2 expression independent of cytokine treatment. EC50 for each GC to upregulate CCN2 was higher than the IC50 to downregulate other genes. CONCLUSION: Lower concentrations of GCs repressed inflammatory gene expression and only moderately induced genes involved in fibrosis. These data warrant consideration as a foundation for optimized clinical care paradigms to reduce inflammation and mitigate fibrosis. LEVEL OF EVIDENCE: NA Laryngoscope, 133:1169-1175, 2023.


Assuntos
Glucocorticoides , Interleucina-4 , Humanos , Glucocorticoides/farmacologia , Interleucina-4/farmacologia , Interleucina-4/metabolismo , Dexametasona/farmacologia , Fator de Necrose Tumoral alfa/metabolismo , Interferon gama/metabolismo , Interferon gama/farmacologia , Prega Vocal/metabolismo , Receptores de Glucocorticoides/metabolismo , Macrófagos/metabolismo , Expressão Gênica , Fibroblastos/metabolismo , Fibrose
19.
Biochem Biophys Res Commun ; 650: 1-8, 2023 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-36764207

RESUMO

Dexamethasone-mediated pharmacological activation of the glucocorticoid receptor (GR) is widely used in the treatment regimen of hematological malignancies and solid cancers. However, DEX sensitivity towards patients primarily depends on the endogenous protein levels of GR. We observed that DEX treatment leads to an increase in GR protein levels despite inhibition of neo-protein synthesis in non-small cell lung cancer (NSCLC) cells. Mechanistically, DEX-stimulation concomitantly increased the JNK phosphorylation and GR protein levels, however the JNK stimulation preceds GR upregulation. Moreover, we also observed that DEX-mediated phosphorylation is partially mediated by upregulation in MEKK1 phosphorylation. Further, GR protein levels were significantly decreased in JNK inhibitor (JNKi, SP600125) treated cells whereas MG132 treatment restored GR levels indicating that DEX induced JNK activity regulated the GR protein levels through proteasomal-degradation pathway. Next, we showed that DEX led to JNK activation which physically interacts with GR and protects it from ubiquitination-mediated degradation. Furthermore, at basal level GR interacts with JNK in cytoplasm whereas upon DEX stimulation GR and pJNK both localized to nucleus and interact with each other. Next, we show that JNK-mediated GR stabilization affects its nuclear transcriptional functional activity in NSCLC cells. In line with these in vitro data, patient dataset analysis also shows that increased levels of both JNK and GR contributes towards better prognosis of NSCLC patients. Taken together, our data shows that DEX treatment may lead to positive feedback regulation of GR by activating JNK and thus highlights importance of GR-JNK crosstalk in NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Receptores de Glucocorticoides/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Dexametasona/farmacologia , Ubiquitina , Glucocorticoides/farmacologia
20.
Food Funct ; 14(4): 1869-1883, 2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36723137

RESUMO

As a type of stress hormone, glucocorticoids (GCs) affect numerous physiological pathways by binding to the glucocorticoid receptor (GR) and regulating the transcription of various genes. However, when GCs are dysregulated, the resulting hypercortisolism may contribute to various metabolic disorders, including obesity. Thus, attempts have been made to discover potent GR antagonists that can reverse excess-GC-related metabolic diseases. Phytochemicals are a collection of valuable bioactive compounds that are known for their wide variety of chemotypes. Recently, various computational methods have been developed to obtain active phytochemicals that can modulate desired target proteins. In this study, we developed a workflow comprising two consecutive quantitative structure-activity relationship-based machine learning models to discover novel GR-antagonizing phytochemicals. These two models collectively identified 65 phytochemicals that bind to and antagonize GR. Of these, nine commercially available phytochemicals were validated for GR-antagonist and anti-obesity activities. In particular, we confirmed that demethylzeylasteral, a phytochemical of the Tripterygium wilfordii Radix, exhibits potent anti-obesity activity in vitro through GR antagonism.


Assuntos
Glucocorticoides , Receptores de Glucocorticoides , Receptores de Glucocorticoides/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...