Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.391
Filtrar
1.
Mol Med Rep ; 25(6)2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35445734

RESUMO

Patients undergoing major surgery experience postoperative inflammation, which may contribute to postoperative morbidity. Endogenous glucocorticoids (GCs) are an essential part of the stress response, but this response varies between individuals, which may in turn affect clinical outcome and specifically postoperative inflammation. Exon 1 of the NR3C1 gene, encoding the GC receptor (GR), contains an established region of differential regulation. DNA methylation patterns in this region have been found to differ between individuals. The present study investigated the methylation status and genotype in the cytosine­phosphate­guanine (CpG) island in exon 1 of NR3C1 in 24 patients [Median age 65.5 (range 42­81) years, 11 male, 13 female] who underwent major abdominal (12 pancreatic, 12 hepatic) surgery and explored its association with postoperative complications. DNA was extracted from peripheral blood leukocytes and underwent targeted bisulfite sequencing of the CpG island. Complications were graded according to the Clavien­Dindo classification and 14 out of 24 patients had postoperative complications. Multifactorial and partial least square analyses were used to analyse the data. A homogenous demethylated pattern was observed in all patients and no single CpG methylation was associated with postoperative complications. Four SNPs were significantly associated with higher Clavien­Dindo scores. Genetic variability in the chromosome 5:143,402,505­143,405,805 region of exon 1 of the GR gene NR3C1, but not DNA methylation, was associated with more severe postoperative complications in patients having major abdominal surgery. These results indicated that the patients' response to GCs may be of clinical importance for inflammatory conditions.


Assuntos
Glucocorticoides , Receptores de Glucocorticoides , Adulto , Idoso , Idoso de 80 Anos ou mais , Metilação de DNA , Éxons , Feminino , Humanos , Inflamação/genética , Masculino , Pessoa de Meia-Idade , Complicações Pós-Operatórias/genética , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo
2.
J Neuroendocrinol ; 34(4): e13125, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35365898

RESUMO

Excess glucocorticoid exposure affects emotional and cognitive brain functions. The extreme form, Cushing's syndrome, is adequately modelled in the AdKO2.0 mouse, consequential to adrenocortical hypertrophy and hypercorticosteronemia. We previously reported that the AdKO2.0 mouse brain undergoes volumetric changes that resemble closely those of Cushing's syndrome human patients, as well as changes in expression of glial related marker proteins. In the present work, the expression of genes related to glial and neuronal cell populations and functions was assessed in regions of the anterior brain, hippocampus, amygdala and hypothalamus. Glucocorticoid target genes were consistently regulated, including CRH mRNA suppression in the hypothalamus and induction in amygdala and hippocampus, even if glucocorticoid receptor protein was downregulated. Expression of glial genes was also affected in the AdKO2.0 mouse brain, indicating a different activation status in glial cells. Generic markers for neuronal cell populations, and cellular integrity were only slightly affected. Our findings highlight the vulnerability of glial cell populations to chronic high levels of circulating glucocorticoids.


Assuntos
Síndrome de Cushing , Animais , Encéfalo/metabolismo , Síndrome de Cushing/genética , Síndrome de Cushing/metabolismo , Expressão Gênica , Glucocorticoides/metabolismo , Humanos , Camundongos , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo
3.
Cell Rep ; 39(3): 110697, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35443180

RESUMO

The glucocorticoid receptor (GR) is a nuclear receptor critical to the regulation of energy metabolism and inflammation. The actions of GR are dependent on cell type and context. Here, we demonstrate the role of liver lineage-determining factor hepatocyte nuclear factor 4A (HNF4A) in defining liver specificity of GR action. In mouse liver, the HNF4A motif lies adjacent to the glucocorticoid response element (GRE) at GR binding sites within regions of open chromatin. In the absence of HNF4A, the liver GR cistrome is remodeled, with loss and gain of GR recruitment evident. Loss of chromatin accessibility at HNF4A-marked sites associates with loss of GR binding at weak GRE motifs. GR binding and chromatin accessibility are gained at sites characterized by strong GRE motifs, which show GR recruitment in non-liver tissues. The functional importance of these HNF4A-regulated GR sites is indicated by an altered transcriptional response to glucocorticoid treatment in the Hnf4a-null liver.


Assuntos
Glucocorticoides , Receptores de Glucocorticoides , Animais , Cromatina/metabolismo , Glucocorticoides/metabolismo , Glucocorticoides/farmacologia , Fator 4 Nuclear de Hepatócito/genética , Fator 4 Nuclear de Hepatócito/metabolismo , Fatores Nucleares de Hepatócito/metabolismo , Fígado/metabolismo , Camundongos , Receptores de Glucocorticoides/metabolismo
4.
Int J Mol Sci ; 23(7)2022 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-35409338

RESUMO

Ghrelin, a peptide hormone secreted from enteroendocrine cells of the gastrointestinal tract, has anti-inflammatory activity in skin diseases, including dermatitis and psoriasis. However, the molecular mechanism underlying the beneficial effect of ghrelin on skin inflammation is not clear. In this study, we found that ghrelin alleviates atopic dermatitis (AD)-phenotypes through suppression of thymic stromal lymphopoietin (TSLP) gene activation. Knockdown or antagonist treatment of growth hormone secretagogue receptor 1a (GHSR1a), the receptor for ghrelin, suppressed ghrelin-induced alleviation of AD-like phenotypes and suppression of TSLP gene activation. We further found that ghrelin induces activation of the glucocorticoid receptor (GR), leading to the binding of GR with histone deacetylase 3 (HDAC3) and nuclear receptor corepressor (NCoR) NCoR corepressor to negative glucocorticoid response element (nGRE) on the TSLP gene promoter. In addition, ghrelin-induced protein kinase C δ (PKCδ)-mediated phosphorylation of p300 at serine 89 (S89), which decreased the acetylation and DNA binding activity of nuclear factor- κB (NF-κB) p65 to the TSLP gene promoter. Knockdown of PKCδ abolished ghrelin-induced suppression of TSLP gene activation. Our study suggests that ghrelin may help to reduce skin inflammation through GR and PKCδ-p300-NF-κB-mediated suppression of TSLP gene activation.


Assuntos
Dermatite Atópica , Proteína Quinase C-delta , Citocinas/metabolismo , Dermatite Atópica/tratamento farmacológico , Dermatite Atópica/genética , Dermatite Atópica/metabolismo , Expressão Gênica , Grelina/genética , Grelina/metabolismo , Grelina/farmacologia , Humanos , Inflamação/genética , Inflamação/metabolismo , Queratinócitos/metabolismo , NF-kappa B/metabolismo , Proteína Quinase C-delta/genética , Proteína Quinase C-delta/metabolismo , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo , Pele/metabolismo
5.
Neuropharmacology ; 210: 109044, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35341791

RESUMO

Binge drinking is a harmful pattern of alcohol use that is associated with a number of serious health problems. Of particular interest are the rapid alterations in neuroimmune gene expression and the concurrent activation of the hypothalamic-pituitary-adrenal (HPA) axis activation associated with high intensity drinking. Using a rat model of acute binge-like ethanol exposure, the present studies were designed to assess the role of corticosterone (CORT) in ethanol-induced neuroimmune gene expression changes, particularly those associated with the NFκB signaling pathway, including rapid induction of IL-6 and IκBα, and suppression of IL-1ß and TNFα gene expression evident after administration of moderate to high doses of ethanol (1.5-3.5 g/kg ip) during intoxication (3 h post-injection). Experiment 1 tested whether inhibition of CORT synthesis with metyrapone and aminoglutethimide (100 mg/kg each, sc) would block ethanol-induced changes in neuroimmune gene expression. Results indicated that rapid alterations in IκBα, IL-1ß, and TNFα expression were completely blocked by pretreatment with the glucocorticoid synthesis inhibitors, an effect that was reinstated by co-administration of exogenous CORT (3.75 mg/kg) in Experiment 2. Experiment 3 assessed whether these rapid alterations in neuroimmune gene expression would be evident when rats were challenged with a subthreshold dose of ethanol (1.5 g/kg) in combination with 2.5 mg/kg CORT, which showed limited evidence for additive effects of low-dose CORT combined with a moderate dose of ethanol. Acute inhibition of mineralocorticoid (spironolactone) or glucocorticoid (mifepristone) receptors, alone (Experiment 4) or combined (Experiment 5) had no effect on ethanol-induced changes in neuroimmune gene expression, presumably due to poor CNS penetrance of these drugs. Finally, Experiments 6 and 7 showed that dexamethasone (subcutaneous; a GR agonist) recapitulated effects of ethanol. Overall, we conclude that ethanol-induced CORT synthesis and release is responsible for suppression of IL-1ß, TNFα, and induction of IκBα in the hippocampus through GR signaling. Interventions designed to curb these changes may reduce drinking, and subdue detrimental neuroimmune activation induced by ethanol.


Assuntos
Intoxicação Alcoólica , Corticosterona , Intoxicação Alcoólica/metabolismo , Animais , Corticosterona/metabolismo , Sistema Hipotálamo-Hipofisário , Masculino , NF-kappa B/metabolismo , Sistema Hipófise-Suprarrenal , Ratos , Receptores de Glucocorticoides/metabolismo , Transdução de Sinais
6.
FASEB J ; 36(4): e22251, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35262955

RESUMO

Glucocorticoids exert their pleiotropic effects by activating the glucocorticoid receptor (GR), which is expressed throughout the body. GR-mediated transcription is regulated by a multitude of tissue- and cell type-specific mechanisms, including interactions with other transcription factors such as the androgen receptor (AR). We previously showed that the transcription of canonical glucocorticoid-responsive genes is dependent on active androgen signaling, but the extent of this glucocorticoid-androgen crosstalk warrants further investigation. In this study, we investigated the overall glucocorticoid-androgen crosstalk in the hepatic transcriptome. Male mice were exposed to GR agonist corticosterone and AR antagonist enzalutamide in order to determine the extent of androgen-dependency after acute and chronic exposure. We found that a substantial proportion of the hepatic transcriptome is androgen-dependent after chronic exposure, while after acute exposure the transcriptomic effects of glucocorticoids are largely androgen-independent. We propose that prolonged glucocorticoid exposure triggers a gradual upregulation of AR expression, instating a situation of androgen dependence which is likely not driven by direct AR-GR interactions. This indirect mode of glucocorticoid-androgen interaction is in accordance with the absence of enriched AR DNA-binding near AR-dependent corticosterone-regulated genes after chronic exposure. In conclusion, we demonstrate that glucocorticoid effects and their interaction with androgen signaling are dependent on the duration of exposure and believe that our findings contribute to a better understanding of hepatic glucocorticoid biology in health and disease.


Assuntos
Androgênios , Glucocorticoides , Androgênios/metabolismo , Androgênios/farmacologia , Animais , Corticosterona/farmacologia , Regulação da Expressão Gênica , Glucocorticoides/metabolismo , Glucocorticoides/farmacologia , Masculino , Camundongos , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo
7.
Biochem Biophys Res Commun ; 602: 113-119, 2022 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-35263658

RESUMO

Central to the pharmacological use of glucocorticoids (GCs) is the availability of the glucocorticoid receptor alpha (GRα). However, chronic GC therapy often results in the ligand-mediated downregulation of the GRα, and the subsequent development of an acquired GC resistance. While studies have demonstrated the dimerization-dependent downregulation of GRα, as well as the molecular mechanisms through which ligand-mediated downregulation occurs, little is known regarding the relative contribution of these molecular mechanisms to the cumulative ligand-mediated downregulation of the receptor, especially within an endogenous system. Thus, to probe this, the current study evaluates the conformational-dependent regulation of GRα protein using mouse embryonic fibroblast (MEF) cells containing either wild type GRα (MEFwt) or the dimerization deficient GRα mutant (MEFdim) and inhibitors of transcription, translation, and proteasomal degradation. Results show that the promotion of GRα dimerization increases the downregulation of the receptor via two main mechanisms, proteasomal degradation of the receptor protein, and downregulation of GRwt mRNA transcripts. In contrast, when receptor dimerization is restricted these two mechanisms play a lesser role and results suggest that stabilization of GRα protein by non-coding RNAs may potentially be the major regulatory mechanism. Together, these findings clarify the relative contribution of the molecular mechanisms involved in ligand-mediated downregulation of GRα and provides pharmacological targets for the development of GRα ligands with a more favourable therapeutic index.


Assuntos
Fibroblastos , Receptores de Glucocorticoides , Animais , Regulação para Baixo , Fibroblastos/metabolismo , Glucocorticoides/farmacologia , Ligantes , Camundongos , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo
8.
Addict Biol ; 27(2): e13158, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35229955

RESUMO

Our aim was to assess the cognitive and emotional state, as well as related-changes in the glucocorticoid receptor (GR), the corticotropin-releasing factor (CRF) and the brain-derived neurotrophic factor (BDNF) expression of adolescent C57BL/6J male mice after a 5-week two-bottle choice protocol (postnatal day [pd]21 to pd52). Additionally, we wanted to analyse whether the behavioural and neurobiological effects observed in late adolescence (pd62) lasted until adulthood (pd84). Behavioural testing revealed that alcohol during early adolescence increased anxiety-like and compulsive-related behaviours, which was maintained in adulthood. Concerning cognition, working memory was only altered in late adolescent mice, whereas object location test performance was impaired in both ages. In contrast, novel object recognition remained unaltered. Immunohistochemical analysis showed that alcohol during adolescence diminished BDNF+ cells in the cingulate cortex, the hippocampal CA1 layer and the central amygdala. Regarding hypothalamic-pituitary-adrenal axis (HPA) functioning, alcohol abuse increased the GR and CRF expression in the hypothalamic paraventricular nucleus and the central amygdala. Besides this, GR density was also higher in the prelimbic cortex and the basolateral amygdala, regardless of the animals' age. Our findings suggest that adolescent alcohol exposure led to long-term behavioural alterations, along with changes in BDNF, GR and CRF expression in limbic brain areas involved in stress response, emotional regulation and cognition.


Assuntos
Hormônio Liberador da Corticotropina , Sistema Hipotálamo-Hipofisário , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Hormônio Liberador da Corticotropina/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Sistema Hipófise-Suprarrenal , Receptores de Glucocorticoides/metabolismo , Estresse Psicológico/metabolismo
9.
Steroids ; 182: 108998, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35271867

RESUMO

The glucocorticoid receptor (GR) regulates transcription of genes involved in multiple processes. Medroxyprogesterone acetate (MPA), widely used in the injectable contraceptive Depo-MPA (DMPA), has off-target effects via the GR, which may result in side-effects in endocrine therapy. However, very little is known about the GR activity of other progestins used in endocrine therapy. This study compared GR activities for several progestins, using whole cell binding, dose-response, and GR phosphorylation assays, in both a cell line model and peripheral blood mononuclear cells (PBMCs). MPA, etonogestrel (ETG) and nestorone (NES) exhibit greater relative binding affinities for the GR than levonorgestrel (LNG) and norethisterone/norethindrone (NET) and are partial GR agonists for transactivation but agonists for transrepression on synthetic promoters in COS-1 cells. MPA is a potent agonist for endogenous GR-regulated GILZ and IL6 genes in PBMCs. While ETG and NES also display agonist activity on IL6, they have little effect on GILZ. In contrast, LNG and NET exhibit little to no activity in transactivation models, while both exhibit some transrepressive activity but are generally less potent and/or efficacious than MPA. Antagonist and phosphorylation assays confirmed that MPA and NES act via the GR on endogenous genes in PBMCs. Our results suggest GR-mediated dose-dependent and gene-specific transcriptional side-effects are likely to occur at physiologically relevant concentrations in vivo for MPA, may possibly occur selectively for ETG and NES, but are unlikely to occur for LNG and NET. This suggests that these progestins will exhibit differential side-effects in endocrine therapy via the GR.


Assuntos
Acetato de Medroxiprogesterona , Progestinas , Animais , Células COS , Chlorocebus aethiops , Glucocorticoides/farmacologia , Interleucina-6 , Leucócitos Mononucleares/metabolismo , Levanogestrel , Acetato de Medroxiprogesterona/metabolismo , Noretindrona/metabolismo , Receptores de Glucocorticoides/metabolismo
10.
Sci Signal ; 15(726): eabm4452, 2022 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-35316097

RESUMO

Mutations that activate members of the RAS family of GTPases are associated with various cancers and drive tumor growth. The glucocorticoid receptor (GR), a member of the nuclear receptor family, has been proposed to interact with and inhibit the activation of components of the PI3K-AKT and MAPK pathways downstream of RAS. In the absence of activating ligands, we found that GR was present in cytoplasmic KRAS-containing complexes and inhibited the activation of wild-type and oncogenic KRAS in mouse embryonic fibroblasts and human lung cancer A549 cells. The DNA binding domain of GR was involved in the interaction with KRAS, but GR-dependent inhibition of RAS activation did not depend on the nuclear translocation of GR. The addition of ligand released GR-dependent inhibition of RAS, AKT, the MAPK p38, and the MAPKK MEK. CRISPR-Cas9-mediated deletion of GR in A549 cells enhanced tumor growth in xenografts in mice. Patient samples of non-small cell lung carcinomas showed lower expression of NR3C1, the gene encoding GR, compared to adjacent normal tissues and lower NR3C1 expression correlated with a worse disease outcome. These results suggest that glucocorticoids prevent the ability of GR to limit tumor growth by inhibiting RAS activation, which has potential implications for the use of glucocorticoids in patients with cancer.


Assuntos
Neoplasias Pulmonares , Receptores de Glucocorticoides , Animais , Proliferação de Células , Fibroblastos/metabolismo , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Camundongos , Fosfatidilinositol 3-Quinases/metabolismo , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo
11.
Int J Mol Sci ; 23(5)2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-35269817

RESUMO

Glucocorticoids mainly exert their biological functions through their cognate receptor, encoded by the nr3c1 gene. Here, we analysed the glucocorticoids mechanism of action taking advantage of the availability of different zebrafish mutant lines for their receptor. The differences in gene expression patterns between the zebrafish gr knock-out and the grs357 mutant line, in which a point mutation prevents binding of the receptor to the hormone-responsive elements, reveal an intricate network of GC-dependent transcription. Particularly, we show that Stat3 transcriptional activity mainly relies on glucocorticoid receptor GR tethering activity: several Stat3 target genes are induced upon glucocorticoid GC exposure both in wild type and in grs357/s357 larvae, but not in gr knock-out zebrafish. To understand the interplay between GC, their receptor, and the mineralocorticoid receptor, which is evolutionarily and structurally related to the GR, we generated an mr knock-out line and observed that several GC-target genes also need a functional mineralocorticoid receptor MR to be correctly transcribed. All in all, zebrafish mutants and transgenic models allow in vivo analysis of GR transcriptional activities and interactions with other transcription factors such as MR and Stat3 in an in-depth and rapid way.


Assuntos
Receptores de Mineralocorticoides , Peixe-Zebra , Animais , Glucocorticoides/metabolismo , Receptores de Glucocorticoides/metabolismo , Receptores de Mineralocorticoides/metabolismo , Transcrição Genética , Peixe-Zebra/metabolismo
12.
Int J Mol Sci ; 23(5)2022 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-35270010

RESUMO

Corticotroph pituitary adenomas commonly cause Cushing's disease (CD), but some of them are clinically silent. The reason why they do not cause endocrinological symptoms remains unclear. We used data from small RNA sequencing in adenomas causing CD (n = 28) and silent ones (n = 20) to explore the role of miRNA in hormone secretion and clinical status of the tumors. By comparing miRNA profiles, we identified 19 miRNAs differentially expressed in clinically functioning and silent corticotroph adenomas. The analysis of their putative target genes indicates a role of miRNAs in regulation of the corticosteroid receptors expression. Adenomas causing CD have higher expression of hsa-miR-124-3p and hsa-miR-135-5p and lower expression of their target genes NR3C1 and NR3C2. The role of hsa-miR-124-3p in the regulation of NR3C1 was further validated in vitro using AtT-20/D16v-F2 cells. The cells transfected with miR-124-3p mimics showed lower levels of glucocorticoid receptor expression than control cells while the interaction between miR-124-3p and NR3C1 3' UTR was confirmed using luciferase reporter assay. The results indicate a relatively small difference in miRNA expression between clinically functioning and silent corticotroph pituitary adenomas. High expression of hsa-miR-124-3p in adenomas causing CD plays a role in the regulation of glucocorticoid receptor level and probably in reducing the effect of negative feedback mediated by corticosteroids.


Assuntos
Adenoma Hipofisário Secretor de ACT , Adenoma , MicroRNAs , Neoplasias Hipofisárias , Adenoma Hipofisário Secretor de ACT/genética , Adenoma/metabolismo , Corticotrofos/metabolismo , Humanos , MicroRNAs/genética , Neoplasias Hipofisárias/genética , Neoplasias Hipofisárias/metabolismo , Receptores de Glucocorticoides/metabolismo
13.
Int J Mol Sci ; 23(6)2022 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-35328742

RESUMO

The p38 MAPK is a signaling pathway important for cells to respond to environmental and intracellular stress. Upon activation, the p38 kinase phosphorylates downstream effectors, which control the inflammatory response and coordinate fundamental cellular processes such as proliferation, apoptosis, and differentiation. Dysregulation of this signaling pathway has been linked to inflammatory diseases and cancer. Secretion of glucocorticoids (GCs) is a classical endocrine response to stress. The glucocorticoid receptor (GR) is the primary effector of GCs and plays an important role in the regulation of cell metabolism and immune response by influencing gene expression in response to hormone-dependent activation. Its ligands, the GCs or steroids, in natural or synthetic variation, are used as standard therapy for anti-inflammatory treatment, severe asthma, autoimmune diseases, and several types of cancer. Several years ago, the GR was identified as one of the downstream targets of p38, and, at the same time, it was shown that glucocorticoids could influence p38 signaling. In this review, we discuss the role of the crosstalk between the p38 and GR in the regulation of gene expression in response to steroids and comprehend the importance and potential of this interplay in future clinical applications.


Assuntos
Glucocorticoides , Proteínas Quinases p38 Ativadas por Mitógeno , Fosforilação , Receptores de Glucocorticoides/metabolismo , Transdução de Sinais , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
14.
Aging Cell ; 21(3): e13572, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35172041

RESUMO

Diabetic cognitive impairment (DCI) is a common diabetic complication with hallmarks of loss of learning ability and disorders of memory and behavior. Glucocorticoid receptor (GR) dysfunction is a main reason for neuronal impairment in brain of diabetic patients. Here, we determined that ipriflavone (IP) a clinical anti-osteoporosis drug functioned as a non-steroidal GR antagonist and efficiently ameliorated learning and memory dysfunction in both type 1 and 2 diabetic mice. The underlying mechanism has been intensively investigated by assay against the diabetic mice with GR-specific knockdown in the brain by injection of adeno-associated virus (AAV)-ePHP-si-GR. IP suppressed tau hyperphosphorylation through GR/PI3K/AKT/GSK3ß pathway, alleviated neuronal inflammation through GR/NF-κB/NLRP3/ASC/Caspase-1 pathway, and protected against synaptic impairment through GR/CREB/BDNF pathway. To our knowledge, our work might be the first to expound the detailed mechanism underlying the amelioration of non-steroidal GR antagonist on DCI-like pathology in mice and report the potential of IP in treatment of DCI.


Assuntos
Disfunção Cognitiva , Diabetes Mellitus Experimental , Animais , Disfunção Cognitiva/tratamento farmacológico , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Humanos , Isoflavonas , Camundongos , Fosfatidilinositol 3-Quinases/uso terapêutico , Receptores de Glucocorticoides/metabolismo , Receptores de Glucocorticoides/uso terapêutico
15.
Mol Cell ; 82(8): 1543-1556.e6, 2022 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-35176233

RESUMO

Folding of stringent clients requires transfer from Hsp70 to Hsp90. The co-chaperone Hop physically connects the chaperone machineries. Here, we define its role from the remodeling of Hsp70/40-client complexes to the mechanism of client transfer and the conformational switching from stalled to active client-processing states of Hsp90. We show that Hsp70 together with Hsp40 completely unfold a stringent client, the glucocorticoid receptor ligand-binding domain (GR-LBD) in large assemblies. Hop remodels these for efficient transfer onto Hsp90. As p23 enters, Hsp70 leaves the complex via switching between binding sites in Hop. Current concepts assume that to proceed to client folding, Hop dissociates and the co-chaperone p23 stabilizes the Hsp90 closed state. In contrast, we show that p23 functionally interacts with Hop, relieves the stalling Hsp90-Hop interaction, and closes Hsp90. This reaction allows folding of the client and is thus the key regulatory step for the progression of the chaperone cycle.


Assuntos
Dobramento de Proteína , Piridinolcarbamato , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Humanos , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Ligação Proteica , Receptores de Glucocorticoides/metabolismo
16.
Cell Metab ; 34(3): 473-486.e9, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35120589

RESUMO

Fasting metabolism and immunity are tightly linked; however, it is largely unknown how immune cells contribute to metabolic homeostasis during fasting in healthy subjects. Here, we combined cell-type-resolved genomics and computational approaches to map crosstalk between hepatocytes and liver macrophages during fasting. We identified the glucocorticoid receptor (GR) as a key driver of fasting-induced reprogramming of the macrophage secretome including fasting-suppressed cytokines and showed that lack of macrophage GR impaired induction of ketogenesis during fasting as well as endotoxemia. Mechanistically, macrophage GR suppressed the expression of tumor necrosis factor (TNF) and promoted nuclear translocation of hepatocyte GR to activate a fat oxidation/ketogenesis-related gene program, cooperatively induced by GR and peroxisome proliferator-activated receptor alpha (PPARα) in hepatocytes. Together, our results demonstrate how resident liver macrophages directly influence ketogenesis in hepatocytes, thereby also outlining a strategy by which the immune system can set the metabolic tone during inflammatory disease and infection.


Assuntos
Jejum , Receptores de Glucocorticoides , Animais , Jejum/metabolismo , Hepatócitos/metabolismo , Humanos , Corpos Cetônicos/metabolismo , Fígado/metabolismo , Macrófagos/metabolismo , Camundongos , Camundongos Knockout , PPAR alfa/metabolismo , Receptores de Glucocorticoides/metabolismo
17.
Reprod Sci ; 29(5): 1513-1523, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35146694

RESUMO

Antenatal administration of glucocorticoids such as betamethasone (BMZ) during the late preterm period improves neonatal respiratory outcomes. However, glucocorticoids may elicit programming effects on immune function and gene regulation. Here, we test the hypothesis that exposure to antenatal BMZ alters cord blood immune cell composition in association with altered DNA methylation and alternatively expressed Exon 1 transcripts of the glucocorticoid receptor (GR) gene in cord blood CD4+ T-cells. Cord blood was collected from 51 subjects in the Antenatal Late Preterm Steroids Trial: 27 BMZ, 24 placebo. Proportions of leukocytes were compared between BMZ and placebo. In CD4+ T-cells, methylation at CpG sites in the GR promoter regions and expression of GR mRNA exon 1 variants were compared between BMZ and placebo. BMZ was associated with an increase in granulocytes (51.6% vs. 44.7% p = 0.03) and a decrease in lymphocytes (36.8% vs. 43.0% p = 0.04) as a percent of the leukocyte population vs. placebo. Neither GR methylation nor exon 1 transcript levels differed between groups. BMZ is associated with altered cord blood leukocyte proportions, although no associated alterations in GR methylation were observed.


Assuntos
Glucocorticoides , Nascimento Prematuro , Betametasona , Metilação de DNA , Éxons , Feminino , Sangue Fetal/metabolismo , Glucocorticoides/farmacologia , Humanos , Recém-Nascido , Gravidez , Nascimento Prematuro/metabolismo , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo
18.
Brain Res ; 1781: 147823, 2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35151654

RESUMO

Poor maternal sleep quality during the different phases of pregnancy acts as a prenatal stress and is critical for fetal development. Despite the potential adverse effects of maternal stress on the behavior and physiology of the offspring, the mechanisms remain poorly understood. The present study investigates the effects of maternal sleep deprivation (SD) at different stages of pregnancy on the hypothalamic-pituitary-adrenal (HPA) axis in female offspring. The pregnant rats were subjected to sleep deprivation of 12 h per day at different stages; early (ESD), mid (MSD), and late (LSD) stages, on pregnancy days 1-7, 8-14, and 14-20, respectively. At postnatal day 60, levels of corticosterone (CORT), hypothalamic corticotropin-releasing factor receptor 1 (CRF-R1), and hippocampal glucocorticoid receptors (GR) were evaluated in the offspring. Although the hypothalamic CRF-R1 level was increased in the offspring of SD dams, immunohistochemical staining showed reduced immunoreactivity of GR in ESD and LSD offspring hippocampal area. Altogether, the data suggests that a critical period for adverse effects of SD on the HPA axis in female offspring of Wistar rats may be during early and late pregnancy.


Assuntos
Sistema Hipófise-Suprarrenal , Efeitos Tardios da Exposição Pré-Natal , Animais , Corticosterona , Hormônio Liberador da Corticotropina/metabolismo , Feminino , Humanos , Sistema Hipotálamo-Hipofisário/metabolismo , Dietilamida do Ácido Lisérgico , Sistema Hipófise-Suprarrenal/metabolismo , Gravidez , Ratos , Ratos Wistar , Receptores de Glucocorticoides/metabolismo , Privação do Sono , Sono REM
19.
IUBMB Life ; 74(5): 463-473, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35148462

RESUMO

Bladder outlet obstruction (BOO) is a type of chronic disease that is mainly caused by benign prostatic hyperplasia. Previous studies discovered the involvements of both serum/glucocorticoid-regulated kinase 1 (SGK1) and activated T cell nuclear factor transcription factor 2 (NFAT2) in the proliferation of smooth muscle cells after BOO. However, the relationship between these two molecules is yet to be explored. Thus, this study explored the specific mechanism of the SGK1-NFAT2 signaling pathway in mouse BOO-mediated bladder smooth muscle cell proliferation in vivo and in vitro. In vivo experiments were performed by suturing 1/2 of the external urethra of female BALB/C mice to cause BOO for 2 weeks. In vitro, mouse bladder smooth muscle cells (MBSMCs) were treated with dexamethasone (Dex) or dexamethasone + SB705498 for 12 h and were transfected with SGK1 siRNA for 48 h. The expression and distribution of SGK1, transient receptor potential oxalate subtype 1 (TRPV1), NFAT2, and proliferating cell nuclear antigen (PCNA) were measured by Western blotting, polymerase chain reaction, and immunohistochemistry. The relationship between SGK1 and TRPV1 was analyzed by coimmunoprecipitation. The proliferation of MBSMCs was examined by 5-ethynyl-2'-deoxyuridine and cell counting kit 8 assays. Bladder weight, smooth muscle thickness, and collagen deposition in mice after 2 weeks of BOO were examined. Bladder weight, smooth muscle thickness, the collagen deposition ratio, and the expression of SGK1, TRPV1, NFAT2, and PCNA were significantly increased in mice after 2 weeks of BOO. Compared with the control, 10 µM Dex promoted the expression of these four molecules and the proliferation of MBSMCs. After inhibiting TRPV1, only the expression of SGK1 was not affected, and the proliferation of MBSMCs was inhibited. After silencing SGK1, the expression of these four molecules and the proliferation of MBSMCs decreased. Coimmunoprecipitation suggested that SGK1 acted directly on TRPV1. In this study, SGK1 targeted TRPV1 to regulate the proliferation of MBSMCs mediated by BOO in mice through NFAT2 and then affected the process of bladder remodeling after BOO. This finding may provide a strategy for BOO drug target screening.


Assuntos
Proteínas Imediatamente Precoces/metabolismo , Fatores de Transcrição NFATC/metabolismo , Canais de Cátion TRPV/metabolismo , Obstrução do Colo da Bexiga Urinária , Animais , Proliferação de Células , Colágeno/metabolismo , Dexametasona/metabolismo , Dexametasona/farmacologia , Feminino , Glucocorticoides/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Miócitos de Músculo Liso/metabolismo , Oxalatos/metabolismo , Antígeno Nuclear de Célula em Proliferação/genética , Antígeno Nuclear de Célula em Proliferação/metabolismo , Receptores de Glucocorticoides/metabolismo , Linfócitos T/metabolismo , Fatores de Transcrição TCF/metabolismo , Bexiga Urinária/metabolismo , Obstrução do Colo da Bexiga Urinária/tratamento farmacológico , Obstrução do Colo da Bexiga Urinária/genética , Obstrução do Colo da Bexiga Urinária/metabolismo
20.
Int J Mol Sci ; 23(3)2022 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-35163201

RESUMO

Central serous chorioretinopathy (CSCR) is a retinal disease affecting the retinal pigment epithelium (RPE) and the choroid. This is a recognized side-effect of glucocorticoids (GCs), administered through nasal, articular, oral and dermal routes. However, CSCR does not occur after intraocular GCs administration, suggesting that a hypothalamic-pituitary-adrenal axis (HPA) brake could play a role in the mechanistic link between CSCR and GS. The aim of this study was to explore this hypothesis. To induce HPA brake, Lewis rats received a systemic injection of dexamethasone daily for five days. Control rats received saline injections. Baseline levels of corticosterone were measured by Elisa at baseline and at 5 days in the serum and the ocular media and dexamethasone levels were measured at 5 days in the serum and ocular media. The expression of genes encoding glucocorticoid receptor (GR), mineralocorticoid receptors (MR), and the 11 beta hydroxysteroid dehydrogenase (HSD) enzymes 1 and 2 were quantified in the neural retina and in RPE/ choroid. The expression of MR target genes was quantified in the retina (Scnn1A (encoding ENac-α, Kir4.1 and Aqp4) and in the RPE/choroid (Shroom 2, Ngal, Mmp9 and Omg, Ptx3, Plaur and Fosl-1). Only 10% of the corticosterone serum concentration was measured in the ocular media. Corticosterone levels in the serum and in the ocular media dropped after 5 days of dexamethasone systemic treatment, reflecting HPA axis brake. Whilst both GR and MR were downregulated in the retina without MR/GR imbalance, in the RPE/choroid, both MR/GR and 11ß-hsd2/11ß-hsd1 ratio increased, indicating MR pathway activation. MR-target genes were upregulated in the RPE/ choroid but not in the retina. The psychological stress induced by the repeated injection of saline also induced HPA axis brake with a trend towards MR pathway activation in RPE/ choroid. HPA axis brake causes an imbalance of corticoid receptors expression in the RPE/choroid towards overactivation of MR pathway, which could favor the occurrence of CSCR.


Assuntos
Glucocorticoides/metabolismo , Mineralocorticoides/metabolismo , Retina/metabolismo , Animais , Coriorretinopatia Serosa Central/tratamento farmacológico , Coriorretinopatia Serosa Central/fisiopatologia , Corioide/efeitos dos fármacos , Corioide/metabolismo , Corticosterona/sangue , Dexametasona/metabolismo , Dexametasona/farmacologia , Olho/metabolismo , Sistema Hipotálamo-Hipofisário/metabolismo , Fenômenos Fisiológicos Oculares/efeitos dos fármacos , Sistema Hipófise-Suprarrenal/metabolismo , Ratos , Ratos Endogâmicos Lew , Receptores de Glucocorticoides/metabolismo , Retina/efeitos dos fármacos , Epitélio Pigmentado da Retina/efeitos dos fármacos , Epitélio Pigmentado da Retina/metabolismo , Transdução de Sinais/genética , Transdução de Sinais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...