Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.001
Filtrar
1.
Nat Commun ; 15(1): 8422, 2024 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-39341814

RESUMO

Recent single-cell transcriptomes revealed spatiotemporal programmes of liver function on the sublobular scale. However, how sexual dimorphism affected this space-time logic remained poorly understood. We addressed this by performing scRNA-seq in the mouse liver, which revealed that sex, space and time together markedly influence xenobiotic detoxification and lipoprotein metabolism. The very low density lipoprotein receptor (VLDLR) exhibits a pericentral expression pattern, with significantly higher mRNA and protein levels in female mice. Conversely, VLDL assembly is periportally biased, suggesting a sexually dimorphic hepatic cycle of periportal formation and pericentral uptake of VLDL. In humans, VLDLR expression is also pericentral, with higher mRNA and protein levels in premenopausal women compared to similarly aged men. Individuals with low hepatic VLDLR expression show a high prevalence of atherosis in the coronary artery already at an early age and an increased incidence of heart attack.


Assuntos
Lipoproteínas VLDL , Fígado , Receptores de LDL , Caracteres Sexuais , Animais , Feminino , Humanos , Masculino , Receptores de LDL/metabolismo , Receptores de LDL/genética , Fígado/metabolismo , Lipoproteínas VLDL/metabolismo , Camundongos , Adulto , Pessoa de Meia-Idade , Camundongos Endogâmicos C57BL , RNA Mensageiro/metabolismo , RNA Mensageiro/genética
2.
Nat Commun ; 15(1): 8131, 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39284836

RESUMO

Hematopoietic stem cells (HSCs) react to various stress conditions. However, it is unclear whether and how HSCs respond to severe anemia. Here, we demonstrate that upon induction of acute anemia, HSCs rapidly proliferate and enhance their erythroid differentiation potential. In severe anemia, lipoprotein profiles largely change and the concentration of ApoE increases. In HSCs, transcription levels of lipid metabolism-related genes, such as very low-density lipoprotein receptor (Vldlr), are upregulated. Stimulation of HSCs with ApoE enhances their erythroid potential, whereas HSCs in Apoe knockout mice do not respond to anemia induction. VldlrhighHSCs show higher erythroid potential, which is enhanced after acute anemia induction. VldlrhighHSCs are epigenetically distinct because of their low chromatin accessibility, and more chromatin regions are closed upon acute anemia induction. Chromatin regions closed upon acute anemia induction are mainly binding sites of Erg. Inhibition of Erg enhanced the erythroid differentiation potential of HSCs. Our findings indicate that lipoprotein metabolism plays an important role in HSC regulation under severe anemic conditions.


Assuntos
Anemia , Apolipoproteínas E , Diferenciação Celular , Células-Tronco Hematopoéticas , Lipoproteínas , Animais , Anemia/metabolismo , Anemia/genética , Células-Tronco Hematopoéticas/metabolismo , Camundongos , Apolipoproteínas E/metabolismo , Apolipoproteínas E/genética , Lipoproteínas/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores de LDL/metabolismo , Receptores de LDL/genética , Masculino , Cromatina/metabolismo , Eritropoese/genética , Células Eritroides/metabolismo
3.
Int J Mol Sci ; 25(18)2024 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-39337664

RESUMO

Dietary sodium restriction increases plasma triglycerides (TG) and total cholesterol (TC) concentrations as well as causing insulin resistance and stimulation of the renin-angiotensin-aldosterone system (RAAS) and the sympathetic nervous system. Stimulation of the angiotensin II type-1 receptor (AT1) is associated with insulin resistance, inflammation, and the inhibition of adipogenesis. The current study investigated whether aerobic exercise training (AET) mitigates or inhibits the adverse effects of dietary sodium restriction on adiposity, inflammation, and insulin sensitivity in periepididymal adipose tissue. LDL receptor knockout mice were fed either a normal-sodium (NS; 1.27% NaCl) or a low-sodium (LS; 0.15% NaCl) diet and were either subjected to AET for 90 days or kept sedentary. Body mass, blood pressure (BP), hematocrit, plasma TC, TG, glucose and 24-hour urinary sodium (UNa) concentrations, insulin sensitivity, lipoprotein profile, histopathological analyses, and gene and protein expression were determined. The results were evaluated using two-way ANOVA. Differences were not observed in BP, hematocrit, diet consumption, and TC. The LS diet was found to enhance body mass, insulin resistance, plasma glucose, TG, LDL-C, and VLDL-TG and reduce UNa, HDL-C, and HDL-TG, showing a pro-atherogenic lipid profile. In periepididymal adipose tissue, the LS diet increased tissue mass, TG, TC, AT1 receptor, pro-inflammatory macro-phages contents, and the area of adipocytes; contrarily, the LS diet decreased anti-inflammatory macrophages, protein contents and the transcription of genes related to insulin sensitivity. The AET prevented insulin resistance, but did not protect against dyslipidemia, adipose tissue pro-inflammatory profile, increased tissue mass, AT1 receptor expression, TG, and TC induced by the LS diet.


Assuntos
Adiposidade , Dieta Hipossódica , Inflamação , Resistência à Insulina , Condicionamento Físico Animal , Animais , Camundongos , Inflamação/metabolismo , Inflamação/prevenção & controle , Masculino , Camundongos Knockout , Gordura Intra-Abdominal/metabolismo , Receptores de LDL/genética , Receptores de LDL/metabolismo
4.
Int J Mol Sci ; 25(17)2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39273484

RESUMO

Hypercholesterolemia forms the background of several cardiovascular pathologies. LDL receptor-knockout (LDLR-KO) mice kept on a high-fat diet (HFD) develop high cholesterol levels and atherosclerosis (AS). Cannabinoid type 1 receptors (CB1Rs) induce vasodilation, although their role in cardiovascular pathologies is still controversial. We aimed to reveal the effects of CB1Rs on vascular function and remodeling in hypercholesterolemic AS-prone LDLR-KO mice. Experiments were performed on a newly established LDLR and CB1R double-knockout (KO) mouse model, in which KO and wild-type (WT) mice were kept on an HFD or a control diet (CD) for 5 months. The vascular functions of abdominal aorta rings were tested with wire myography. The vasorelaxation effects of acetylcholine (Ach, 1 nM-1 µM) were obtained after phenylephrine precontraction, which was repeated with inhibitors of nitric oxide synthase (NOS) and cyclooxygenase (COX), Nω-nitro-L-arginine (LNA), and indomethacin (INDO), respectively. Blood pressure was measured with the tail-cuff method. Immunostaining of endothelial NOS (eNOS) was carried out. An HFD significantly elevated the cholesterol levels in the LDLR-KO mice more than in the corresponding WT mice (mean values: 1039 ± 162 mg/dL vs. 91 ± 18 mg/dL), and they were not influenced by the presence of the CB1R gene. However, with the defect of the CB1R gene, damage to the Ach relaxation ability was moderated. The blood pressure was higher in the LDLR-KO mice compared to their WT counterparts (systolic/diastolic values: 110/84 ± 5.8/6.8 vs. 102/80 ± 3.3/2.5 mmHg), which was significantly elevated with an HFD (118/96 ± 1.9/2 vs. 100/77 ± 3.4/3.1 mmHg, p < 0.05) but attenuated in the CB1R-KO HFD mice. The expression of eNOS was depressed in the HFD WT mice compared to those on the CD, but it was augmented if CB1R was knocked out. This newly established double-knockout mouse model provides a tool for studying the involvement of CB1Rs in the development of hypercholesterolemia and atherosclerosis. Our results indicate that knocking out the CB1R gene significantly attenuates vascular damage in hypercholesterolemic mice.


Assuntos
Modelos Animais de Doenças , Hipercolesterolemia , Camundongos Knockout , Receptor CB1 de Canabinoide , Receptores de LDL , Vasodilatação , Animais , Hipercolesterolemia/metabolismo , Hipercolesterolemia/genética , Hipercolesterolemia/patologia , Camundongos , Receptor CB1 de Canabinoide/metabolismo , Receptor CB1 de Canabinoide/genética , Receptores de LDL/genética , Receptores de LDL/metabolismo , Receptores de LDL/deficiência , Vasodilatação/efeitos dos fármacos , Dieta Hiperlipídica/efeitos adversos , Masculino , Óxido Nítrico Sintase Tipo III/metabolismo , Aterosclerose/metabolismo , Aterosclerose/genética , Aterosclerose/patologia , Aterosclerose/etiologia , Remodelação Vascular/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Acetilcolina/farmacologia
5.
Commun Biol ; 7(1): 1075, 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39223298

RESUMO

Subretinal fibrosis permanently impairs the vision of patients with neovascular age-related macular degeneration. Despite emerging evidence revealing the association between disturbed metabolism in retinal pigment epithelium (RPE) and subretinal fibrosis, the underlying mechanism remains unclear. In the present study, single-cell RNA sequencing revealed, prior to subretinal fibrosis, genes in mitochondrial fatty acid oxidation are downregulated in the RPE lacking very low-density lipoprotein receptor (VLDLR), especially the rate-limiting enzyme carnitine palmitoyltransferase 1A (CPT1A). We found that overexpression of CPT1A in the RPE of Vldlr-/- mice suppresses epithelial-to-mesenchymal transition and fibrosis. Mechanistically, TGFß2 induces fibrosis by activating a Warburg-like effect, i.e. increased glycolysis and decreased mitochondrial respiration through ERK-dependent CPT1A degradation. Moreover, VLDLR blocks the formation of the TGFß receptor I/II complex by interacting with unglycosylated TGFß receptor II. In conclusion, VLDLR suppresses fibrosis by attenuating TGFß2-induced metabolic reprogramming, and CPT1A is a potential target for treating subretinal fibrosis.


Assuntos
Carnitina O-Palmitoiltransferase , Fibrose , Degeneração Macular , Mitocôndrias , Receptores de LDL , Epitélio Pigmentado da Retina , Fator de Crescimento Transformador beta2 , Epitélio Pigmentado da Retina/metabolismo , Epitélio Pigmentado da Retina/patologia , Animais , Degeneração Macular/metabolismo , Degeneração Macular/patologia , Degeneração Macular/genética , Camundongos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Carnitina O-Palmitoiltransferase/metabolismo , Carnitina O-Palmitoiltransferase/genética , Carnitina O-Palmitoiltransferase/deficiência , Fator de Crescimento Transformador beta2/metabolismo , Fator de Crescimento Transformador beta2/genética , Receptores de LDL/metabolismo , Receptores de LDL/genética , Receptores de LDL/deficiência , Humanos , Camundongos Knockout , Transição Epitelial-Mesenquimal , Metabolismo Energético , Camundongos Endogâmicos C57BL
6.
Cell Rep ; 43(9): 114691, 2024 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-39235944

RESUMO

The strategy of lowering cholesterol levels by promoting cholesterol excretion is still lacking, and few molecular targets act on multiple cholesterol metabolic processes. In this study, we find that Nogo-B deficiency/inhibition simultaneously promotes hepatic uptake of cholesterol and cholesterol excretion. Nogo-B deficiency decreases cholesterol levels by activating ATP-binding cassette transporters (ABCs), apolipoprotein E (ApoE), and low-density lipoprotein receptor (LDLR) expression. We discover that Nogo-B interacts with liver X receptor α (LXRα), and Nogo-B deficiency inhibits ubiquitination degradation of LXRα, thereby enhancing its function on cholesterol excretion. Decreased cellular cholesterol levels further activate SREBP2 and LDLR expression, thereby promoting hepatic uptake of cholesterol. Nogo-B inhibition decreases atherosclerotic plaques and cholesterol levels in mice, and Nogo-B levels are correlated to cholesterol levels in human plasma. In this study, Nogo-B deficiency/inhibition not only promotes hepatic uptake of blood cholesterol but also facilitates cholesterol excretion. This study reports a strategy to lower cholesterol levels by inhibiting Nogo-B expression to promote hepatic cholesterol uptake and cholesterol excretion.


Assuntos
Colesterol , Hipercolesterolemia , Proteínas Nogo , Receptores de LDL , Animais , Humanos , Masculino , Camundongos , Apolipoproteínas E/metabolismo , Colesterol/metabolismo , Hipercolesterolemia/metabolismo , Hipercolesterolemia/patologia , Fígado/metabolismo , Receptores X do Fígado/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Nogo/antagonistas & inibidores , Proteínas Nogo/metabolismo , Receptores de LDL/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 2/metabolismo , Ubiquitinação
7.
Clin Immunol ; 267: 110351, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39216780

RESUMO

Atherosclerosis is a cardiovascular disease caused by cholesterol-laden arterial plaques. This study evaluated the correlation between interleukin-6 (IL-6), its receptors (IL6R/CD126), and glycoprotein 130 (gp130) alongside atherosclerosis biomarkers in a cohort of 142 subjects, equally divided between lean and obese individuals. Subsequent analyses used THP-1-derived macrophages to assess the biochemical impact of inhibiting IL-6 receptors. IL-6 secretion increased with atherosclerosis in obese subjects, while IL6R/CD126 and gp130 on monocytes decreased. Pharmacological gp130 inhibition altered lipid metabolism, increasing LDLR gene expression and cholesterol synthesis via SREBF2 and mevalonate kinase, along with HMG-CoA reductase at protein levels. gp130-deficient cells produced more cholesterol and had lower ABCA1 levels, suggesting hindered cholesterol efflux. Filipin III staining confirmed cholesterol retention in gp130-inhibited cells. Ex-vivo investigation on lean PBMCs further defined the impact of gp130 inhibition on the reduction of cholesterol efflux. Our results indicates gp130 is crucial for macrophage reverse cholesterol transport and may be a target for atherosclerosis treatments.


Assuntos
Aterosclerose , Colesterol , Receptor gp130 de Citocina , Macrófagos , Receptores de Interleucina-6 , Humanos , Aterosclerose/metabolismo , Transporte Biológico , Colesterol/metabolismo , Receptor gp130 de Citocina/metabolismo , Interleucina-6/metabolismo , Metabolismo dos Lipídeos , Macrófagos/metabolismo , Obesidade/metabolismo , Receptores de Interleucina-6/metabolismo , Receptores de LDL/metabolismo , Transdução de Sinais , Células THP-1
8.
J Lipid Res ; 65(9): 100626, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39173829

RESUMO

Atherosclerotic cardiovascular disease is closely correlated with elevated low density lipoprotein-cholesterol. In feeding state, glucose and insulin activate mammalian target of rapamycin 1 that phosphorylates the deubiquitylase ubiquitin-specific peptidase 20 (USP20). USP20 then stabilizes HMG-CoA reductase, thereby increasing lipid biosynthesis. In this study, we applied clinically approved lipid nanoparticles to encapsulate the siRNA targeting Usp20. We demonstrated that silencing of hepatic Usp20 by siRNA decreased body weight, improved insulin sensitivity, and increased energy expenditure through elevating UCP1. In Ldlr-/- mice, silencing Usp20 by siRNA decreased lipid levels and prevented atherosclerosis. This study suggests that the RNAi-based therapy targeting hepatic Usp20 has a translational potential to treat metabolic disease.


Assuntos
Síndrome Metabólica , Nanopartículas , RNA Interferente Pequeno , Ubiquitina Tiolesterase , Animais , Camundongos , Nanopartículas/química , Ubiquitina Tiolesterase/metabolismo , Ubiquitina Tiolesterase/genética , RNA Interferente Pequeno/metabolismo , Síndrome Metabólica/metabolismo , Síndrome Metabólica/tratamento farmacológico , Masculino , Receptores de LDL/metabolismo , Receptores de LDL/genética , Camundongos Knockout , Lipídeos/sangue , Lipídeos/química , Camundongos Endogâmicos C57BL , Fígado/metabolismo , Fígado/efeitos dos fármacos , Resistência à Insulina , Aterosclerose/metabolismo , Aterosclerose/tratamento farmacológico , Aterosclerose/prevenção & controle , Metabolismo dos Lipídeos/efeitos dos fármacos , Proteína Desacopladora 1
9.
Protein Sci ; 33(9): e5111, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39150051

RESUMO

Hypercholesterolemia, characterized by elevated low-density lipoprotein (LDL) cholesterol levels, is a significant risk factor for cardiovascular disease. Proprotein convertase subtilisin/kexin type 9 (PCSK9) plays a crucial role in cholesterol metabolism by regulating LDL receptor degradation, making it a therapeutic target for mitigating hypercholesterolemia-associated risks. In this context, we aimed to engineer human H ferritin as a scaffold to present 24 copies of a PCSK9-targeting domain. The rationale behind this protein nanoparticle design was to disrupt the PCSK9-LDL receptor interaction, thereby attenuating the PCSK9-mediated impairment of LDL cholesterol clearance. The N-terminal sequence of human H ferritin was engineered to incorporate a 13-amino acid linear peptide (Pep2-8), which was previously identified as the smallest PCSK9 inhibitor. Exploiting the quaternary structure of ferritin, engineered nanoparticles were designed to display 24 copies of the targeting peptide on their surface, enabling a multivalent binding effect. Extensive biochemical characterization confirmed precise control over nanoparticle size and morphology, alongside robust PCSK9-binding affinity (KD in the high picomolar range). Subsequent efficacy assessments employing the HepG2 liver cell line demonstrated the ability of engineered ferritin's ability to disrupt PCSK9-LDL receptor interaction, thereby promoting LDL receptor recycling on cell surfaces and consequently enhancing LDL uptake. Our findings highlight the potential of ferritin-based platforms as versatile tools for targeting PCSK9 in the management of hypercholesterolemia. This study not only contributes to the advancement of ferritin-based therapeutics but also offers valuable insights into novel strategies for treating cardiovascular diseases.


Assuntos
LDL-Colesterol , Nanopartículas , Pró-Proteína Convertase 9 , Receptores de LDL , Humanos , Pró-Proteína Convertase 9/metabolismo , Pró-Proteína Convertase 9/química , Pró-Proteína Convertase 9/genética , Receptores de LDL/metabolismo , Receptores de LDL/química , Nanopartículas/química , LDL-Colesterol/metabolismo , Inibidores de PCSK9/farmacologia , Inibidores de PCSK9/química , Ferritinas/química , Ferritinas/metabolismo , Ligação Proteica
10.
Nat Commun ; 15(1): 6866, 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-39127734

RESUMO

Eastern Equine Encephalitis virus (EEEV) is an alphavirus that can cause severe diseases in infected humans. The very low-density lipoprotein receptor (VLDLR) was recently identified as a receptor of EEEV. Herein, we performed cryo-electron microscopy structural and biochemistry studies on the specific interactions between EEEV and VLDLR. Our results show that VLDLR binds EEEV at three different sites A, B and C through its membrane-distal LDLR class A (LA) repeats. Site A is located in the cleft in between the E1-E2 heterodimers. Site B is located near the connecting ß ribbon of E2 and is in proximity to site A, while site C is on the domain B of E2. The binding of VLDLR LAs to EEEV is in complex modes, including the LA1-2 and LA3-5 mediated two major modes. Disruption of the LA1-2 mediated binding significantly affect the cell attachment of EEEV. However, the mutation W132G of VLDLR impairs the binding of LA3, drives the switch of the binding modes, and significantly enhances the attachment of EEEV to the cell. The W132G variant of VLDLR could be identified in human genome and SNP sequences, implying that people with similar mutations in VLDLR may be highly susceptible to EEEV infection.


Assuntos
Vírus da Encefalite Equina do Leste , Ligação Proteica , Receptores de LDL , Humanos , Sítios de Ligação , Microscopia Crioeletrônica , Vírus da Encefalite Equina do Leste/genética , Vírus da Encefalite Equina do Leste/metabolismo , Células HEK293 , Modelos Moleculares , Mutação , Receptores de LDL/metabolismo , Receptores de LDL/genética , Receptores Virais/metabolismo , Ligação Viral
11.
Cardiovasc Diabetol ; 23(1): 298, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39143620

RESUMO

BACKGROUND: Activation of brown adipose tissue (BAT) has gained attention due to its ability to dissipate energy and counteract cardiometabolic diseases (CMDs). METHODS: This study investigated the consequences of cold exposure on the BAT and liver proteomes of an established CMD mouse model based on LDL receptor-deficient (LdlrKO) mice fed a high-fat, high-sucrose, high-cholesterol diet for 16 weeks. We analyzed energy metabolism in vivo and performed untargeted proteomics on BAT and liver of LdlrKO mice maintained at 22 °C or 5 °C for 7 days. RESULTS: We identified several dysregulated pathways, miRNAs, and transcription factors in BAT and liver of cold-exposed Ldlrko mice that have not been previously described in this context. Networks of regulatory interactions based on shared downstream targets and analysis of ligand-receptor pairs identified fibrinogen alpha chain (FGA) and fibronectin 1 (FN1) as potential crosstalk factors between BAT and liver in response to cold exposure. Importantly, genetic variations in the genes encoding FGA and FN1 have been associated with cardiometabolic-related phenotypes and traits in humans. DISCUSSION: This study describes the key factors, pathways, and regulatory networks involved in the crosstalk between BAT and the liver in a cold-exposed CMD mouse model. These findings may provide a basis for future studies aimed at testing whether molecular mediators, as well as regulatory and signaling mechanisms involved in tissue adaption upon cold exposure, could represent a target in cardiometabolic disorders.


Assuntos
Tecido Adiposo Marrom , Temperatura Baixa , Modelos Animais de Doenças , Metabolismo Energético , Redes Reguladoras de Genes , Fígado , Camundongos Knockout , Proteômica , Receptores de LDL , Transdução de Sinais , Animais , Tecido Adiposo Marrom/metabolismo , Fígado/metabolismo , Metabolismo Energético/genética , Receptores de LDL/genética , Receptores de LDL/metabolismo , Receptores de LDL/deficiência , Masculino , Fibrinogênio/metabolismo , Fibrinogênio/genética , Camundongos Endogâmicos C57BL , MicroRNAs/metabolismo , MicroRNAs/genética , Fibronectinas/metabolismo , Fibronectinas/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Camundongos , Regulação da Expressão Gênica , Mapas de Interação de Proteínas
12.
Environ Health Perspect ; 132(8): 87007, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39177951

RESUMO

BACKGROUND: Previous epidemiological studies have repeatedly found per- and polyfluoroalkyl substances (PFAS) exposure associated with higher circulating cholesterol, one of the greatest risk factors for development of coronary artery disease. The main route of cholesterol catabolism is through its conversion to bile acids, which circulate between the liver and ileum via enterohepatic circulation. Patients with coronary artery disease have decreased bile acid excretion, indicating that PFAS-induced impacts on enterohepatic circulation may play a critical role in cardiovascular risk. OBJECTIVES: Using a mouse model with high levels of low-density and very low-density lipoprotein (LDL and VLDL, respectively) cholesterol and aortic lesion development similar to humans, the present study investigated mechanisms linking exposure to a PFAS mixture with increased cholesterol. METHODS: Male and female Ldlr-/- mice were fed an atherogenic diet (Clinton/Cybulsky low fat, 0.15% cholesterol) and exposed to a mixture of 5 PFAS representing legacy, replacement, and emerging subtypes (i.e., PFOA, PFOS, PFHxS, PFNA, GenX), each at a concentration of 2mg/L, for 7 wk. Blood was collected longitudinally for cholesterol measurements, and mass spectrometry was used to measure circulating and fecal bile acids. Transcriptomic analysis of ileal samples was performed via RNA sequencing. RESULTS: After 7 wk of PFAS exposure, average circulating PFAS levels were measured at 21.6, 20.1, 31.2, 23.5, and 1.5µg/mL in PFAS-exposed females and 12.9, 9.7, 23, 14.3, and 1.7µg/mL in PFAS-exposed males for PFOA, PFOS, PFHxS, PFNA, and GenX, respectively. Total circulating cholesterol levels were higher in PFAS-exposed mice after 7 wk (352mg/dL vs. 415mg/dL in female mice and 392mg/dL vs. 488mg/dL in male mice exposed to vehicle or PFAS, respectively). Total circulating bile acid levels were higher in PFAS-exposed mice (2,978 pg/µL vs. 8,496 pg/µL in female mice and 1,960 pg/µL vs. 4,452 pg/µL in male mice exposed to vehicle or PFAS, respectively). In addition, total fecal bile acid levels were lower in PFAS-exposed mice (1,797 ng/mg vs. 682 ng/mg in females and 1,622 ng/mg vs. 670 ng/mg in males exposed to vehicle or PFAS, respectively). In the ileum, expression levels of the apical sodium-dependent bile acid transporter (ASBT) were higher in PFAS-exposed mice. DISCUSSION: Mice exposed to a PFAS mixture displayed higher circulating cholesterol and bile acids perhaps due to impacts on enterohepatic circulation. This study implicates PFAS-mediated effects at the site of the ileum as a possible critical mediator of increased cardiovascular risk following PFAS exposure. https://doi.org/10.1289/EHP14339.


Assuntos
Ácidos e Sais Biliares , Fluorocarbonos , Animais , Ácidos e Sais Biliares/metabolismo , Camundongos , Fluorocarbonos/toxicidade , Masculino , Feminino , Receptores de LDL/genética , Receptores de LDL/metabolismo , Poluentes Ambientais/toxicidade , Lipídeos/sangue , Colesterol/sangue , Colesterol/metabolismo , Ácidos Alcanossulfônicos/toxicidade
13.
Biochim Biophys Acta Mol Basis Dis ; 1870(8): 167479, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39181516

RESUMO

Intracellular cholesterol metabolism is regulated by the SREBP-2 and LXR signaling pathways. The effects of inflammation on these molecular mechanisms remain poorly studied, especially at the blood-brain barrier (BBB) level. Tumor necrosis factor α (TNFα) is a proinflammatory cytokine associated with BBB dysfunction. Therefore, the aim of our study was to investigate the effects of TNFα on BBB cholesterol metabolism, focusing on its underlying signaling pathways. Using a human in vitro BBB model composed of human brain-like endothelial cells (hBLECs) and brain pericytes (HBPs), we observed that TNFα increases BBB permeability by degrading the tight junction protein CLAUDIN-5 and activating stress signaling pathways in both cell types. TNFα also promotes cholesterol release and decreases cholesterol accumulation and APOE secretion. In hBLECs, the expression of SREBP-2 targets (LDLR and HMGCR) is increased, while ABCA1 expression is decreased. In HBPs, only LDLR and ABCA1 expression is increased. TNFα treatment also induces 25-hydroxycholesterol (25-HC) production, a cholesterol metabolite involved in the immune response and intracellular cholesterol metabolism. 25-HC pretreatment attenuates TNFα-induced BBB leakage and partially alleviates the effects of TNFα on ABCA1, LDLR, and HMGCR expression. Overall, our results suggest that TNFα favors cholesterol efflux via an LXR/ABCA1-independent mechanism at the BBB, while it activates the SREBP-2 pathway. Treatment with 25-HC partially reversed the effect of TNFα on the LXR/SREBP-2 pathways. Our study provides novel perspectives for better understanding cerebrovascular signaling events linked to BBB dysfunction and cholesterol metabolism in neuroinflammatory diseases.


Assuntos
Barreira Hematoencefálica , Colesterol , Células Endoteliais , Hidroxicolesteróis , Proteína de Ligação a Elemento Regulador de Esterol 2 , Fator de Necrose Tumoral alfa , Hidroxicolesteróis/farmacologia , Hidroxicolesteróis/metabolismo , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/efeitos dos fármacos , Humanos , Fator de Necrose Tumoral alfa/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Proteína de Ligação a Elemento Regulador de Esterol 2/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 2/genética , Células Endoteliais/metabolismo , Células Endoteliais/efeitos dos fármacos , Colesterol/metabolismo , Receptores de LDL/metabolismo , Receptores de LDL/genética , Transdução de Sinais/efeitos dos fármacos , Transportador 1 de Cassete de Ligação de ATP/metabolismo , Transportador 1 de Cassete de Ligação de ATP/genética , Pericitos/metabolismo , Pericitos/efeitos dos fármacos , Pericitos/patologia , Hidroximetilglutaril-CoA Redutases/metabolismo , Hidroximetilglutaril-CoA Redutases/genética , Apolipoproteínas E/metabolismo , Apolipoproteínas E/genética , Receptores X do Fígado/metabolismo , Receptores X do Fígado/genética , Células Cultivadas
14.
Mol Metab ; 88: 102007, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39134303

RESUMO

OBJECTIVE: Carotenoids are lipophilic plant molecules with antioxidant properties. Some carotenoids such as ß-carotene also serve as vitamin A precursors, playing a key role in human health. Carotenoids are transported in lipoproteins with other lipids such as cholesterol, however, the mechanisms responsible for carotenoid storage in tissues and their non-enzymatic elimination remain relatively unexplored. The goal of this study was to examine the contribution of the low-density lipoprotein receptor (LDLR) in the bodily distribution and disposal of carotenoids. METHODS: We employed mice lacking one or both carotenoid-cleaving enzymes as suitable models for carotenoid accumulation. We examined the contribution of LDLR in carotenoid distribution by crossbreeding these mice with Ldlr-/- mice or overexpressing LDLR in the liver. RESULTS: Our results show that LDLR plays a dual role in carotenoid homeostasis by simultaneously favoring carotenoid storage in the liver and adipose tissue while facilitating their fecal elimination. CONCLUSIONS: Our results highlight a novel role of the LDLR in carotenoid homeostasis, and unveil a previously unrecognized disposal pathway for these important bioactive molecules.


Assuntos
Carotenoides , Fezes , Homeostase , Fígado , Camundongos Endogâmicos C57BL , Receptores de LDL , Animais , Feminino , Masculino , Camundongos , Tecido Adiposo/metabolismo , Carotenoides/metabolismo , Fezes/química , Fígado/metabolismo , Camundongos Knockout , Receptores de LDL/metabolismo
15.
Glycobiology ; 34(10)2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39216105

RESUMO

Hepatocytes synthesize a vast number of glycoproteins found in their membranes and secretions, many of which contain O-glycans linked to Ser/Thr residues. As the functions and distribution of O-glycans on hepatocyte-derived membrane glycoproteins and blood glycoproteins are not well understood, we generated mice with a targeted deletion of Cosmc (C1Galt1c1) in hepatocytes. Liver glycoproteins in WT mice express typical sialylated core 1 O-glycans (T antigen/CD176) (Galß1-3GalNAcα1-O-Ser/Thr), whereas the Cosmc knockout hepatocytes (HEP-Cosmc-KO) lack extended O-glycans and express the Tn antigen (CD175) (GalNAcα1-O-Ser/Thr). Tn-containing glycoproteins occur in the sera of HEP-Cosmc-KO mice but not in WT mice. The LDL-receptor (LDLR), a well-studied O-glycosylated glycoprotein in hepatocytes, behaves as a ∼145kD glycoprotein in WT liver lysates, whereas it is reduced to ∼120 kDa in lysates from HEP-Cosmc-KO mice. Interestingly, the expression of the LDLR, as well as HMG-CoA reductase, which is typically altered in response to dysregulated cholesterol metabolism, are similar between WT and HEP-Cosmc-KO mice, indicating no significant effect by Cosmc deletion on either LDLR stability or cholesterol metabolism. Consistent with this, we observed no detectable phenotype in the HEP-Cosmc-KO mice regarding development, appearance or aging compared to WT. These results provide surprising, novel information about the pathway of O-glycosylation in the liver.


Assuntos
Hepatócitos , Polissacarídeos , Animais , Camundongos , Galactosiltransferases/metabolismo , Galactosiltransferases/genética , Glicosilação , Hepatócitos/metabolismo , Camundongos Knockout , Chaperonas Moleculares , Polissacarídeos/metabolismo , Receptores de LDL/metabolismo , Receptores de LDL/genética
16.
Nat Commun ; 15(1): 6548, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39095394

RESUMO

Eastern equine encephalitis virus (EEEV) is the most virulent alphavirus that infects humans, and many survivors develop neurological sequelae, including paralysis and intellectual disability. Alphavirus spike proteins comprise trimers of heterodimers of glycoproteins E2 and E1 that mediate binding to cellular receptors and fusion of virus and host cell membranes during entry. We recently identified very-low density lipoprotein receptor (VLDLR) and apolipoprotein E receptor 2 (ApoER2) as cellular receptors for EEEV and a distantly related alphavirus, Semliki Forest virus (SFV). Here, we use single-particle cryo-electron microscopy (cryo-EM) to determine structures of the EEEV and SFV spike glycoproteins bound to the VLDLR ligand-binding domain and found that EEEV and SFV interact with the same cellular receptor through divergent binding modes. Our studies suggest that the ability of LDLR-related proteins to interact with viral spike proteins through very small footprints with flexible binding modes results in a low evolutionary barrier to the acquisition of LDLR-related proteins as cellular receptors for diverse sets of viruses.


Assuntos
Microscopia Crioeletrônica , Vírus da Encefalite Equina do Leste , Receptores de LDL , Receptores de LDL/metabolismo , Receptores de LDL/química , Vírus da Encefalite Equina do Leste/metabolismo , Vírus da Encefalite Equina do Leste/ultraestrutura , Humanos , Animais , Vírus da Floresta de Semliki/metabolismo , Ligação Proteica , Receptores Virais/metabolismo , Receptores Virais/química , Proteínas do Envelope Viral/metabolismo , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/ultraestrutura , Modelos Moleculares
17.
PLoS Biol ; 22(8): e3002739, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39137238

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) poses a significant threat due to its tendency to evade early detection, frequent metastasis, and the subsequent challenges in devising effective treatments. Processes that govern epithelial-mesenchymal transition (EMT) in PDAC hold promise for advancing novel therapeutic strategies. SAMD1 (SAM domain-containing protein 1) is a CpG island-binding protein that plays a pivotal role in the repression of its target genes. Here, we revealed that SAMD1 acts as a repressor of genes associated with EMT. Upon deletion of SAMD1 in PDAC cells, we observed significantly increased migration rates. SAMD1 exerts its effects by binding to specific genomic targets, including CDH2, encoding N-cadherin, which emerged as a driver of enhanced migration upon SAMD1 knockout. Furthermore, we discovered the FBXO11-containing E3 ubiquitin ligase complex as an interactor and negative regulator of SAMD1, which inhibits SAMD1 chromatin-binding genome-wide. High FBXO11 expression in PDAC is associated with poor prognosis and increased expression of EMT-related genes, underlining an antagonistic relationship between SAMD1 and FBXO11. In summary, our findings provide insights into the regulation of EMT-related genes in PDAC, shedding light on the intricate role of SAMD1 and its interplay with FBXO11 in this cancer type.


Assuntos
Carcinoma Ductal Pancreático , Transição Epitelial-Mesenquimal , Proteínas F-Box , Regulação Neoplásica da Expressão Gênica , Neoplasias Pancreáticas , Receptores de LDL , Animais , Humanos , Caderinas/metabolismo , Caderinas/genética , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Transição Epitelial-Mesenquimal/genética , Proteínas F-Box/metabolismo , Proteínas F-Box/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Prognóstico , Receptores de LDL/genética , Receptores de LDL/metabolismo
18.
Invest Ophthalmol Vis Sci ; 65(10): 5, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39093298

RESUMO

Purpose: Retinal neovascularization is a significant feature of advanced age-related macular degeneration (AMD) and a major cause of blindness in patients with AMD. However, the underlying mechanism of this pathological neovascularization remains unknown. Iron metabolism has been implicated in various biological processes. This study was conducted to investigate the effects of iron metabolism on retinal neovascularization in neovascular AMD (nAMD). Methods: C57BL/6J and very low-density lipoprotein receptor (VLDLR) knockout (Vldlr-/-) mice, a murine model of nAMD, were used in this study. Bulk-RNA sequencing was used to identify differentially expressed genes. Western blot analysis was performed to test the expression of proteins. Iron chelator deferiprone (DFP) was administrated to the mice by oral gavage. Fundus fluorescein angiography was used to evaluate retinal vascular leakage. Immunofluorescence staining was used to detect macrophages and iron-related proteins. Results: RNA sequencing (RNA-seq) results showed altered transferrin expression in the retina and RPE of Vldlr-/- mice. Disrupted iron homeostasis was observed in the retina and RPE of Vldlr-/- mice. DFP mitigated iron overload and significantly reduced retinal neovascularization and vascular leakage. In addition, DFP suppressed the inflammation in Vldlr-/- retinas. The reduced signals of macrophages were observed at sites of neovascularization in the retina and RPE of Vldlr-/- mice after DFP treatment. Further, the IL-6/JAK2/STAT3 signaling pathway was activated in the retina and RPE of Vldlr-/- mice and reversed by DFP treatment. Conclusions: Disrupted iron metabolism may contribute to retinal neovascularization in nAMD. Restoring iron homeostasis by DFP could be a potential therapeutic approach for nAMD.


Assuntos
Deferiprona , Modelos Animais de Doenças , Homeostase , Quelantes de Ferro , Ferro , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neovascularização Retiniana , Animais , Deferiprona/farmacologia , Deferiprona/uso terapêutico , Quelantes de Ferro/farmacologia , Quelantes de Ferro/uso terapêutico , Camundongos , Ferro/metabolismo , Neovascularização Retiniana/metabolismo , Neovascularização Retiniana/tratamento farmacológico , Neovascularização Retiniana/etiologia , Neovascularização Retiniana/patologia , Angiofluoresceinografia , Receptores de LDL/genética , Receptores de LDL/metabolismo , Western Blotting , Epitélio Pigmentado da Retina/metabolismo , Epitélio Pigmentado da Retina/efeitos dos fármacos , Epitélio Pigmentado da Retina/patologia , Degeneração Macular Exsudativa/tratamento farmacológico , Degeneração Macular Exsudativa/metabolismo , Fator de Transcrição STAT3/metabolismo , Masculino
19.
Lipids Health Dis ; 23(1): 250, 2024 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-39154177

RESUMO

INTRODUCTION: Hypercholesterolemia is associated with increased inflammation and impaired serotonin neurotransmission, potentially contributing to depressive symptoms. However, the role of statins, particularly pitavastatin, in modulating serotonin transporter (SERT) function within this context remains underexplored. This study aimed to investigate whether pitavastatin counteracts the neurobiological effects of hypercholesterolemia. METHODS: Low-density lipoprotein receptor knockout (LDLR-/-) mice on a C57BL/6 background were assigned to three groups: a control group fed a standard chow diet, a group fed a high-fat diet (HFD), and a third group fed a high-fat diet supplemented with pitavastatin (HFD + Pita). We evaluated the effects of HFD with or without pitavastatin on lipid profiles, inflammatory markers, and SERT availability using small-animal positron emission tomography (PET) scans with the radioligand 4-[18F]-ADAM over a 20-week period. RESULTS: Pitavastatin treatment in HFD-fed mice significantly reduced both total cholesterol and LDL cholesterol levels in HFD-fed mice compared to those on HFD alone. Elevated inflammatory markers such as IL-1α, MCP-1/CCL2, and TNF-α in HFD mice were notably decreased in the HFD + Pita group. PET scans showed reduced SERT availability in the brains of HFD mice; however, pitavastatin improved this in brain regions associated with mood regulation, suggesting enhanced serotonin neurotransmission. Additionally, the sucrose preference test showed a trend towards increased preference in the HFD + Pita group compared to the HFD group, indicating a potential reduction in depressive-like behavior. CONCLUSION: Our findings demonstrate that pitavastatin not only lowers cholesterol and reduces inflammation but also enhances SERT availability, suggesting a potential role in alleviating depressive symptoms associated with hypercholesterolemia. These results highlight the multifaceted benefits of pitavastatin, extending beyond its lipid-lowering effects to potentially improving mood regulation and neurotransmitter function.


Assuntos
Dieta Hiperlipídica , Hipercolesterolemia , Camundongos Endogâmicos C57BL , Quinolinas , Proteínas da Membrana Plasmática de Transporte de Serotonina , Animais , Quinolinas/farmacologia , Quinolinas/uso terapêutico , Hipercolesterolemia/tratamento farmacológico , Hipercolesterolemia/metabolismo , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Proteínas da Membrana Plasmática de Transporte de Serotonina/genética , Camundongos , Dieta Hiperlipídica/efeitos adversos , Masculino , Camundongos Knockout , Receptores de LDL/metabolismo , Receptores de LDL/genética , Tomografia por Emissão de Pósitrons , LDL-Colesterol/sangue , Encéfalo/metabolismo , Encéfalo/efeitos dos fármacos , Encéfalo/diagnóstico por imagem , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico
20.
Viruses ; 16(8)2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39205190

RESUMO

Transduction of producer cells during lentiviral vector (LVV) production causes the loss of 70-90% of viable particles. This process is called retro-transduction and it is a consequence of the interaction between the LVV envelope protein, VSV-G, and the LDL receptor located on the producer cell membrane, allowing lentiviral vector transduction. Avoiding retro-transduction in LVV manufacturing is crucial to improve net production and, therefore, the efficiency of the production process. Here, we describe a method for quantifying the transduction of producer cells and three different strategies that, focused on the interaction between VSV-G and the LDLR, aim to reduce retro-transduction.


Assuntos
Vetores Genéticos , Lentivirus , Receptores de LDL , Transdução Genética , Vetores Genéticos/genética , Lentivirus/genética , Humanos , Receptores de LDL/metabolismo , Receptores de LDL/genética , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/metabolismo , Células HEK293 , Glicoproteínas de Membrana
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA