Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 289
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Drugs ; 79(12): 1321-1335, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31317509

RESUMO

Prior to the biologic era, the medical management of patients with inflammatory bowel disease (IBD) was dominated by the use of aminosalicylates, corticosteroids, and immunosuppressants. In the past two decades, the advent of biologic agents that target specific components of the immune response has greatly improved the care of patients with Crohn's disease and ulcerative colitis (UC). However, not all patients respond or maintain response to biologic therapy and some patients develop adverse events that necessitate treatment discontinuation. Furthermore, sensitization with formation of anti-drug antibodies is an inherent limitation to administration of monoclonal antibodies. This circumstance has generated renewed interest in the development of novel oral small-molecule drugs (SMDs) that are effective and well tolerated. Several classes of SMDs are currently progressing through the pipeline and offer the promise of oral delivery and high potency. In this review, we summarize different mechanisms of oral drug delivery to the gastrointestinal tract, highlight key findings from phase II and III randomized trials of novel oral SMDs, and discuss how oral SMDs are likely to be integrated into future IBD treatment paradigms. The most advanced development programs currently involve evaluation of compounds blocking Janus kinase (JAK) receptors or modulating sphingosine-1-phosphate (S1P) receptors. Tofacitinib, an oral JAK inhibitor, was recently approved for the treatment of moderate-to-severe UC. Several more selective JAK-1 inhibitors, including filgotinib and upadacitinib, have also shown positive results in phase II studies and are currently enrolling in phase III development programs. Similarly, ozanimod, an S1P1 and S1P5 receptor agonist, has shown early favorable results and is enrolling in phase III trials. As these and other novel oral SMDs come to market, several questions will need to be answered. The cost effectiveness, comparative treatment efficacy, predictors of response, and relative safety of oral SMDs compared to existing therapies will need to be evaluated. Given the modest efficacy rates observed with both biologic therapies and novel SMDs to date, the potential for combination therapy based on a non-sensitizing oral option is promising and may be facilitated by development of organ-specific therapies with pharmacodynamic activity restricted to the gut to minimize systemic toxicity.


Assuntos
Anti-Inflamatórios não Esteroides/uso terapêutico , Doenças Inflamatórias Intestinais/tratamento farmacológico , Anti-Inflamatórios não Esteroides/administração & dosagem , Anti-Inflamatórios não Esteroides/efeitos adversos , Descoberta de Drogas , Compostos Heterocíclicos com 3 Anéis/uso terapêutico , Humanos , Indanos/uso terapêutico , Inibidores de Janus Quinases/uso terapêutico , Mesalamina/uso terapêutico , Oxidiazóis/uso terapêutico , Inibidores de Fosfodiesterase/uso terapêutico , Piperidinas/uso terapêutico , Piridinas/uso terapêutico , Pirimidinas/uso terapêutico , Pirróis/uso terapêutico , Ensaios Clínicos Controlados Aleatórios como Assunto , Receptores de Lisoesfingolipídeo/antagonistas & inibidores , Triazóis/uso terapêutico
2.
Acta Biochim Biophys Sin (Shanghai) ; 51(4): 402-410, 2019 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-30877755

RESUMO

Epicardial progenitor cells (EpiCs) which are derived from the proepicardium have the potential to differentiate into coronary vascular smooth muscle cells during development. Whether sphingosine 1-phosphate (S1P), a highly hydrophobic zwitterionic lysophospholipid in signal transduction, induces the differentiation of EpiCs is unknown. In the present study, we demonstrated that S1P significantly induced the expression of smooth muscle cell specific markers α-smooth muscle actin and myosin heavy chain 11 in the EpiCs. And the smooth muscle cells differentiated from the EpiCs stimulated by S1P were further evaluated by gel contraction assay. To further confirm the major subtype of sphingosine 1-phosphate receptors (S1PRs) involved in the differentiation of EpiCs, we used the agonists and antagonists of different S1PRs. The results showed that the S1P1/S1P3 antagonist VPC23019 and the S1P2 antagonist JTE013 significantly attenuated EpiCs differentiation, while the S1P1 agonist SEW2871 and antagonist W146 did not affect EpiCs differentiation. These results collectively suggested that S1P, principally through its receptor S1P3, increases EpiCs differentiation into VSMCs and thus indicated the importance of S1P signaling in the embryonic coronary vasculature, while S1P2 plays a secondary role.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Lisofosfolipídeos/farmacologia , Células-Tronco Embrionárias Murinas/citologia , Miócitos de Músculo Liso/efeitos dos fármacos , Pericárdio/citologia , Esfingosina/análogos & derivados , Actinas/genética , Actinas/metabolismo , Animais , Diferenciação Celular/genética , Células Cultivadas , Regulação da Expressão Gênica/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Células-Tronco Embrionárias Murinas/metabolismo , Músculo Liso Vascular/citologia , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/citologia , Miócitos de Músculo Liso/metabolismo , Pericárdio/embriologia , Fosfosserina/análogos & derivados , Fosfosserina/farmacologia , Pirazóis/farmacologia , Piridinas/farmacologia , Receptores de Lisoesfingolipídeo/agonistas , Receptores de Lisoesfingolipídeo/antagonistas & inibidores , Receptores de Lisoesfingolipídeo/genética , Esfingosina/farmacologia
3.
Heart Vessels ; 34(6): 1052-1063, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30604190

RESUMO

It has been demonstrated that S1P receptors affect heart ischaemia-reperfusion (IR) induced injury. However, whether S1P receptors affect IR-induced cardiac death has not been investigated. The aim of this paper is to demonstrate the role of S1P receptors in IR-induced cardiac death. Healthy adult male Sprague-Dawley rats were assigned to the following groups: non-operation control group, sham operation group, IR group, IR group pretreated with DMSO, IR group pretreated with S1P3 agonist, IR group pretreated with an antagonist of S1P3, IR group pretreated with S1P2 and S1P3 antagonists, IR group pretreated with heptanol and antagonists of S1P2/3, and IR group pretreated with Gap26 and antagonists of S1P2/3 (heptanol acts as a Cx43 uncoupler and the mimic peptide Gap26 as Cx43 blocker). The groups with S1P2 or S1P3 agonist application before reperfusion were used to assess whether these can be used for therapy of IR. The haemodynamics, electrocardiograms (ECG), infarction area, and mortality rates were recorded. Immunohistological connexin 43 (Cx43) expression in the heart was detected in each group. Blocking S1P2/3 receptors with specific antagonists resulted in an increment of IR-induced mortality, increased infarction size, redistribution of Cx43 expression, as well as affecting the heart function. The infarction size, heart function, and mortality were totally or partially restored in the S1P2, S1P3 agonist-pretreated IR group, and the heptanol/Gap26-treated S1P2/3-blocked IR group. The S1P receptor S1P2/3 and Cx43 are involved in the IR-induced cardiac death.


Assuntos
Morte Súbita Cardíaca/prevenção & controle , Isquemia Miocárdica/patologia , Traumatismo por Reperfusão Miocárdica/patologia , Peptídeos/farmacologia , Receptores de Lisoesfingolipídeo/metabolismo , Animais , Conexina 43/antagonistas & inibidores , Conexina 43/metabolismo , Morte Súbita Cardíaca/etiologia , Heptanol/farmacologia , Masculino , Ratos , Ratos Sprague-Dawley , Receptores de Lisoesfingolipídeo/agonistas , Receptores de Lisoesfingolipídeo/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos
4.
Kidney Int ; 95(1): 50-56, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30606429

RESUMO

Renal ischemia-reperfusion injury (IRI) is a significant clinical challenge faced by clinicians perioperatively in kidney transplantation. Recent work has demonstrated the key importance of transmembrane receptors in the injured tubular epithelial cell, most notably Toll-like receptors, activated by exogenous and endogenous ligands in response to external and internal stresses. Through sequential protein-protein interactions, the signal is relayed deep into the core physiological machinery of the cell, having numerous effects from upregulation of pro-inflammatory gene products through to modulating mitochondrial respiration. Inter-pathway cross talk facilitates a co-ordinated response at an individual cellular level, as well as modulating the surrounding tissue's microenvironment through close interactions with the endothelium and circulating leukocytes. Defining the underlying cellular cascades involved in IRI will assist the identification of novel interventional targets to attenuate IRI with the potential to improve transplantation outcomes. We present a focused review of 3 key cellular signalling pathways in the injured tubular epithelial cell that have been the focus of much research over the past 2 decades: toll-like receptors, sphingosine-1-phosphate receptors and hypoxia inducible factors. We provide a unique perspective on the potential clinical translations of this recent work in the transplant setting. This is particularly timely with the recent completion of phase I and ongoing phase 2 clinical trials of inhibitors targeting specific components of these signaling cascades.


Assuntos
Células Epiteliais/patologia , Transplante de Rim/efeitos adversos , Túbulos Renais/patologia , Traumatismo por Reperfusão/patologia , Aloenxertos/patologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/antagonistas & inibidores , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Ensaios Clínicos Fase II como Assunto , Humanos , Fator 1 Induzível por Hipóxia/antagonistas & inibidores , Fator 1 Induzível por Hipóxia/metabolismo , Falência Renal Crônica/cirurgia , Túbulos Renais/citologia , Receptores de Lisoesfingolipídeo/antagonistas & inibidores , Receptores de Lisoesfingolipídeo/metabolismo , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/etiologia , Transdução de Sinais/efeitos dos fármacos , Receptores Toll-Like/antagonistas & inibidores , Receptores Toll-Like/metabolismo
5.
EBioMedicine ; 40: 210-223, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30587459

RESUMO

BACKGROUND: Osteosarcoma (OS) is a malignant tumor mainly occurring in young people. Due to the limited effective therapeutic strategies, OS patients cannot achieve further survival improvement. G-protein-coupled receptors (GPCRs) constitute the largest family of cell membrane receptors and consequently hold the significant promise for tumor imaging and targeted therapy. We aimed to explore the biological functions of Sphingosine 1-phosphate receptor 3 (S1PR3), one of the members of GPCRs family, in OS and the possibility of S1PR3 as an effective target for the treatment of osteosarcoma. METHODS: The quantitative real time PCR (qRT-PCR) and western blotting were used to analyze the mRNA and protein expressions. Cell counting kit-8 (CCK8), colony formation assay and cell apoptosis assay were performed to test the cellular proliferation in vitro. Subcutaneous xenograft mouse model was generated to evaluate the functions of S1PR3 in vivo. RNA sequencing was used to compare gene expression patterns between S1PR3-knockdown and control MNNG-HOS cells. In addition, metabolic alternations in OS cells were monitored by XF96 metabolic flux analyzer. Co-immunoprecipitation (Co-IP) assay was used to explore the interaction between Yes-associated protein (YAP) and c-MYC. Chromatin immunoprecipitation was used to investigate the binding capability of PGAM1 and YAP or c-MYC. Moreover, the activities of promoter were determined by the luciferase reporter assay. FINDINGS: S1PR3 and its specific ligand Sphingosine 1-phosphate (S1P) were found elevated in OS, and the higher expression of S1PR3 was correlated with the poor survival rate. Moreover, our study has proved that the S1P/S1PR3 axis play roles in proliferation promotion, apoptosis inhibition, and aerobic glycolysis promotion of osteosarcoma cells. Mechanistically, the S1P/S1PR3 axis inhibited the phosphorylation of YAP and promoted the nuclear translocation of YAP, which contributed to the formation of the YAP-c-MYC complex and enhanced transcription of the important glycolysis enzyme PGAM1. Moreover, the S1PR3 antagonist TY52156 exhibited in vitro and in vivo synergistic inhibitory effects with methotrexate on OS cell growth. INTERPRETATION: Our study unveiled a role of S1P, a bioactive phospholipid, in glucose metabolism reprogram through interaction with its receptor S1PR3. Targeting S1P/S1PR3 axis might serve as a potential therapeutic target for patients with OS. FUND: This research was supported by National Natural Science Foundation of China (81472445 and 81672587).


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Neoplasias Ósseas/metabolismo , Lisofosfolipídeos/metabolismo , Osteossarcoma/metabolismo , Fosfoglicerato Mutase/metabolismo , Fosfoproteínas/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Receptores de Lisoesfingolipídeo/metabolismo , Esfingosina/análogos & derivados , Animais , Apoptose/genética , Neoplasias Ósseas/genética , Neoplasias Ósseas/patologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Glicólise , Xenoenxertos , Humanos , Imuno-Histoquímica , Masculino , Camundongos , Complexos Multiproteicos/metabolismo , Osteossarcoma/genética , Osteossarcoma/patologia , Fosforilação Oxidativa , Ligação Proteica , Receptores de Lisoesfingolipídeo/antagonistas & inibidores , Receptores de Lisoesfingolipídeo/genética , Transdução de Sinais , Esfingosina/metabolismo , Fatores de Transcrição
6.
Cell Physiol Biochem ; 51(1): 11-30, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30453284

RESUMO

BACKGROUND/AIMS: Increased expression of galectin-1 (Gal-1) in gastric cancer (GC) promotes metastasis and correlates with poor prognosis. The mechanisms by which Gal-1 promotes GC metastasis remain unknown. METHODS: Gal-1and Sphingosine-1-phosphate receptor 1 (S1PR1) were determined by immunohistochemistry(IHC) and quantitative real time polymerase chain reaction (qRT-PCR) in GC specimens. Stably transfected Gal-1 or S1PR1 into SGC7901 and MGC-803 cells, western blot and invasion assays in vitro and nude mice tumorigenicity in vivo were also employed. RESULTS: Overexpression of Gal-1 enhanced expression of S1PR1 in SGC-7901 cells, and increased cell invasion, while knockdown Gal-1 in MGC-803 cells reduced S1PR1 expression and diminished invasion. Simultaneous knockdown of Gal-1 and overexpression of S1PR1 in MGC803 cells rescued invasive ability of MGC803 cells. S1PR1 was associated with expression of epithelial-to-mesenchymal transition (EMT) markers in vitro and in clinical samples. EMT induced in MGC-803 cells by TGF-ß1 was accompanied by S1PR1 activation, while knockdown of S1PR1 reduced response to TGF-ß1, suggest that Gal-1 promotes GC invasion by activating EMT through a S1PR1-dependent mechanism. Overexpression of S1PR1 promoted subcutaneous xenograft growth and pulmonary metastases, and enhanced expression of EMT markers. CONCLUSION: Galectin-1 promotes metastasis in gastric cancer through a S1PR1- dependent mechanism, our results indicate that targeting S1PR1 may be a novel strategy to treat GC metastasis.


Assuntos
Galectina 1/metabolismo , Receptores de Lisoesfingolipídeo/metabolismo , Neoplasias Gástricas/patologia , Animais , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Feminino , Galectina 1/genética , Humanos , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/secundário , Metástase Linfática , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Pessoa de Meia-Idade , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Receptores de Lisoesfingolipídeo/antagonistas & inibidores , Receptores de Lisoesfingolipídeo/genética , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/mortalidade , Taxa de Sobrevida , Fator de Crescimento Transformador beta1/farmacologia
7.
Bioorg Med Chem Lett ; 28(23-24): 3585-3591, 2018 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-30409535

RESUMO

Sphingolipids represent an essential class of lipids found in all eukaryotes, and strongly influence cellular signal transduction. Autoimmune diseases like asthma and multiple sclerosis (MS) are mediated by the sphingosine-1-phosphate receptor 1 (S1P1) to express a variety of symptoms and disease patterns. Inspired by its natural substrate, an array of artificial sphingolipid derivatives has been developed to target this specific G protein-coupled receptor (GPCR) in an attempt to suppress autoimmune disorders. FTY720, also known as fingolimod, is the first oral disease-modifying therapy for MS on the market. In pursuit of improved stability, bioavailability, and efficiency, structural analogues of this initial prodrug have emerged over time. This review covers a brief introduction to the sphingolipid metabolism, the mechanism of action on S1P1, and an updated overview of synthetic sphingosine S1P1 agonists.


Assuntos
Doenças Autoimunes/patologia , Receptores de Lisoesfingolipídeo/metabolismo , Doenças Autoimunes/tratamento farmacológico , Doenças Autoimunes/metabolismo , Disponibilidade Biológica , Cloridrato de Fingolimode/química , Cloridrato de Fingolimode/farmacocinética , Cloridrato de Fingolimode/uso terapêutico , Humanos , Imunossupressores/química , Imunossupressores/farmacocinética , Imunossupressores/uso terapêutico , Esclerose Múltipla/tratamento farmacológico , Esclerose Múltipla/metabolismo , Esclerose Múltipla/patologia , Oxidiazóis/química , Oxidiazóis/farmacocinética , Oxidiazóis/uso terapêutico , Receptores de Lisoesfingolipídeo/agonistas , Receptores de Lisoesfingolipídeo/antagonistas & inibidores , Esfingolipídeos/metabolismo
8.
J Neuroinflammation ; 15(1): 284, 2018 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-30305119

RESUMO

BACKGROUND: The pathogenic roles of receptor-mediated sphingosine 1-phosphate (S1P) signaling in cerebral ischemia have been evidenced mainly through the efficacy of FTY720 that binds non-selectively to four of the five S1P receptors (S1P1,3,4,5). Recently, S1P1 and S1P2 were identified as specific receptor subtypes that contribute to brain injury in cerebral ischemia; however, the possible involvement of other S1P receptors remains unknown. S1P3 can be the candidate because of its upregulation in the ischemic brain, which was addressed in this study, along with underlying pathogenic mechanisms. METHODS: We used transient middle cerebral artery occlusion/reperfusion (tMCAO), a mouse model of transient focal cerebral ischemia. To identify S1P3 as a pathogenic factor in cerebral ischemia, we employed a specific S1P3 antagonist, CAY10444. Brain damages were assessed by brain infarction, neurological score, and neurodegeneration. Histological assessment was carried out to determine microglial activation, morphological transformation, and proliferation. M1/M2 polarization and relevant signaling pathways were determined by biochemical and immunohistochemical analysis. RESULTS: Inhibiting S1P3 immediately after reperfusion with CAY10444 significantly reduced tMCAO-induced brain infarction, neurological deficit, and neurodegeneration. When S1P3 activity was inhibited, the number of activated microglia was markedly decreased in both the periischemic and ischemic core regions in the ischemic brain 1 and 3 days following tMCAO. Moreover, inhibiting S1P3 significantly restored the microglial shape from amoeboid to ramified microglia in the ischemic core region 3 days after tMCAO, and it attenuated microglial proliferation in the ischemic brain. In addition to these changes, S1P3 signaling influenced the proinflammatory M1 polarization, but not M2. The S1P3-dependent regulation of M1 polarization was clearly shown in activated microglia, which was affirmed by determining the in vivo activation of microglial NF-κB signaling that is responsible for M1 and in vitro expression levels of proinflammatory cytokines in activated microglia. As downstream effector pathways in an ischemic brain, S1P3 influenced phosphorylation of ERK1/2, p38 MAPK, and Akt. CONCLUSIONS: This study identified S1P3 as a pathogenic mediator in an ischemic brain along with underlying mechanisms, involving its modulation of microglial activation and M1 polarization, further suggesting that S1P3 can be a therapeutic target for cerebral ischemia.


Assuntos
Lesões Encefálicas/etiologia , Lesões Encefálicas/patologia , Polaridade Celular/fisiologia , Infarto da Artéria Cerebral Média/complicações , Microglia/metabolismo , Receptores de Lisoesfingolipídeo/metabolismo , Animais , Lesões Encefálicas/tratamento farmacológico , Lesões Encefálicas/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Polaridade Celular/efeitos dos fármacos , Células Cultivadas , Modelos Animais de Doenças , Fluoresceínas/metabolismo , Proteína Glial Fibrilar Ácida/metabolismo , Lipopolissacarídeos/farmacologia , Ativação de Macrófagos , Masculino , Camundongos , Camundongos Endogâmicos ICR , Proteínas dos Microfilamentos/metabolismo , NF-kappa B/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Receptores de Lisoesfingolipídeo/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Tiazolidinas/uso terapêutico
9.
Front Immunol ; 9: 2189, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30319641

RESUMO

About 40% of patients with systemic lupus erythematosus experience diffuse neuropsychiatric manifestations, including impaired cognition and depression. Although the pathogenesis of diffuse neuropsychiatric SLE (NPSLE) is not fully understood, loss of brain barrier integrity, autoreactive antibodies, and pro-inflammatory cytokines are major contributors to disease development. Fingolimod, a sphingosine-1-phosphate (S1P) receptor modulator, prevents lymphocyte egress from lymphoid organs through functional antagonism of S1P receptors. In addition to reducing the circulation of autoreactive lymphocytes, fingolimod has direct neuroprotective effects such as preserving brain barrier integrity and decreasing pro-inflammatory cytokine secretion by astrocytes and microglia. Given these effects, we hypothesized that fingolimod would attenuate neurobehavioral deficits in MRL-lpr/lpr (MRL/lpr) mice, a validated neuropsychiatric lupus model. Fingolimod treatment was initiated after the onset of disease, and mice were assessed for alterations in cognitive function and emotionality. We found that fingolimod significantly attenuated spatial memory deficits and depression-like behavior in MRL/lpr mice. Immunofluorescent staining demonstrated a dramatic lessening of brain T cell and macrophage infiltration, and a significant reduction in cortical leakage of serum albumin, in fingolimod treated mice. Astrocytes and endothelial cells from treated mice exhibited reduced expression of inflammatory genes, while microglia showed differential regulation of key immune pathways. Notably, cytokine levels within the cortex and hippocampus were not appreciably decreased with fingolimod despite the improved neurobehavioral profile. Furthermore, despite a reduction in splenomegaly, lymphadenopathy, and circulating autoantibody titers, IgG deposition within the brain was unaffected by treatment. These findings suggest that fingolimod mediates attenuation of NPSLE through a mechanism that is not dependent on reduction of autoantibodies or cytokines, and highlight modulation of the S1P signaling pathway as a novel therapeutic target in lupus involving the central nervous system.


Assuntos
Depressão/imunologia , Cloridrato de Fingolimode/farmacologia , Vasculite Associada ao Lúpus do Sistema Nervoso Central/psicologia , Lisofosfolipídeos/metabolismo , Transdução de Sinais/efeitos dos fármacos , Esfingosina/análogos & derivados , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/imunologia , Autoanticorpos/imunologia , Técnicas de Observação do Comportamento , Comportamento Animal/efeitos dos fármacos , Encéfalo/citologia , Encéfalo/imunologia , Encéfalo/fisiologia , Cognição/efeitos dos fármacos , Cognição/fisiologia , Citocinas/imunologia , Depressão/tratamento farmacológico , Depressão/psicologia , Modelos Animais de Doenças , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/imunologia , Feminino , Cloridrato de Fingolimode/uso terapêutico , Humanos , Vasculite Associada ao Lúpus do Sistema Nervoso Central/tratamento farmacológico , Vasculite Associada ao Lúpus do Sistema Nervoso Central/genética , Vasculite Associada ao Lúpus do Sistema Nervoso Central/imunologia , Lisofosfolipídeos/imunologia , Camundongos , Camundongos Endogâmicos MRL lpr , Microglia/efeitos dos fármacos , Microglia/imunologia , Receptores de Lisoesfingolipídeo/antagonistas & inibidores , Receptores de Lisoesfingolipídeo/imunologia , Receptores de Lisoesfingolipídeo/metabolismo , Transdução de Sinais/imunologia , Esfingosina/imunologia , Esfingosina/metabolismo , Resultado do Tratamento
10.
Cell Physiol Biochem ; 49(5): 1677-1693, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30231248

RESUMO

BACKGROUND/AIMS: Macrophages, the most plastic cells in the haematopoietic system, are found in all tissues and show great functional heterogeneity. Sphingosine 1-phosphate (S1P)/ S1P receptors (S1PRs) system is widely involved in the process of inflammatory disease, whereas little evidence concerning its role in functional macrophage polarization is available. Thus, the present study was designed to evaluate the effects of S1P/S1PRs on functional polarization of macrophage in mouse bone marrow (BM)-derived monocyte/macrophages (BMMs). METHODS: For the detection of M1 macrophage markers, such as CD86, tumor necrosis factor (TNF)-α, monocyte chemotactic protein (MCP)-1/ chemokine (C-C motif) ligand (CCL) 2, nitric oxide synthase (NOS) 2, and macrophage inflammatory protein (MIP)-1ß, RT-qPCR and cytometric bead array (CBA) were performed in cultured primary BMMs after the treatment with selective S1PR2/3 antagonists or specific S1PRs siRNA. Western blotting and immunofluorescence were used for the detection of phosphorylation of JNK1/2. RESULTS: BMMs expressed S1PR1-3 and interestingly, S1PR2/3, but not S1PR1, mediates S1P-induced M1 macrophage polarization of BMMs as their siRNA or antagonists reduced M1 genes' expression. We found that PTX (inhibitor of G(α)i/o), LY294002 (inhibitor of PI3K) or SP600125 (inhibitor of JNK1/2) prevented up-regulation of M1 genes expression mediated by S1P/S1PR2/3 signal, and S1P-induced JNK phosphorylation was inhibited by antagonists of S1PR2/3, PTX or LY294002. CONCLUSION: Collectively, our results demonstrate that S1P/S1PR2/3 plays a key role in regulating M1 type polarization of BMMs and acts by activating G(α)i/o/PI3K/JNK signaling pathway, with potential implications for new approaches to inflammatory liver disease therapy.


Assuntos
Lisofosfolipídeos/farmacologia , Receptores de Lisoesfingolipídeo/metabolismo , Transdução de Sinais/efeitos dos fármacos , Esfingosina/análogos & derivados , Animais , Antígenos CD/genética , Antígenos CD/metabolismo , Antígenos de Diferenciação Mielomonocítica/genética , Antígenos de Diferenciação Mielomonocítica/metabolismo , Arginase/metabolismo , Movimento Celular/efeitos dos fármacos , Quimiocinas/genética , Quimiocinas/metabolismo , Cromonas/farmacologia , Citocinas/genética , Citocinas/metabolismo , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/antagonistas & inibidores , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos ICR , Morfolinas/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação/efeitos dos fármacos , Pirazóis/farmacologia , Piridinas/farmacologia , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Receptores de Lisoesfingolipídeo/antagonistas & inibidores , Receptores de Lisoesfingolipídeo/genética , Esfingosina/farmacologia
11.
PLoS One ; 13(9): e0203211, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30192865

RESUMO

BACKGROUND: Sphingosine kinase phosphorylates sphingosine to generate sphingosine 1 phosphate (S1P) following stimulation of the five plasma membrane G-protein-coupled receptors. The objective of this study is to clarify the role of S1P and its receptors (S1PRs), especially S1PR3 in airway epithelial cells. METHODS: The effects of S1P on asthma-related genes expression were examined with the human bronchial epithelial cells BEAS-2B and Calu-3 using a transcriptome analysis and siRNA of S1PRs. To clarify the role of CCL20 in the airway inflammation, BALB/c mice were immunized with ovalbumin (OVA) and subsequently challenged with an OVA-containing aerosol to induce asthma with or without intraperitoneal administration of anti-CCL20. Finally, the anti-inflammatory effect of VPC 23019, S1PR1/3 antagonist, in the OVA-induced asthma was examined. RESULTS: S1P induced the expression of some asthma-related genes, such as ADRB2, PTGER4, and CCL20, in the bronchial epithelial cells. The knock-down of SIPR3 suppressed the expression of S1P-inducing CCL20. Anti-CCL20 antibody significantly attenuated the eosinophil numbers in the bronchoalveolar lavage fluid (P<0.01). Upon OVA challenge, VPC23019 exhibited substantially attenuated eosinophilic inflammation. CONCLUSIONS: S1P/S1PR3 pathways have a role in release of proinflammatory cytokines from bronchial epithelial cells. Our results suggest that S1P/S1PR3 may be a possible candidate for the treatment of bronchial asthma.


Assuntos
Brônquios/imunologia , Brônquios/metabolismo , Quimiocina CCL20/metabolismo , Lisofosfolipídeos/metabolismo , Receptores de Lisoesfingolipídeo/metabolismo , Esfingosina/análogos & derivados , Animais , Anti-Inflamatórios/farmacologia , Asma/tratamento farmacológico , Asma/genética , Asma/metabolismo , Brônquios/patologia , Linhagem Celular , Modelos Animais de Doenças , Eosinofilia/tratamento farmacológico , Eosinofilia/patologia , Células Epiteliais/imunologia , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Feminino , Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Fosfosserina/análogos & derivados , Fosfosserina/farmacologia , Receptores Adrenérgicos beta 2/genética , Receptores de Lisoesfingolipídeo/antagonistas & inibidores , Receptores de Lisoesfingolipídeo/genética , Receptores de Prostaglandina E Subtipo EP4/genética , Esfingosina/metabolismo
12.
Oncol Rep ; 40(5): 2977-2987, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30226616

RESUMO

Recently, sphingolipid derivatives, such as ceramide and sphingosine­1­phosphate (S1P), have emerged as key modulators in apoptotic cell death and cell proliferation. This study aimed to clarify the underlying signaling pathways of ceramide and S1P involved in breast cancer cell proliferation. Ceramide acyl chain length is determined by six mammalian ceramide synthases (CerS). We overexpressed CerS1 to 6 in MCF­7 cells to examine whether ceramide signaling propagation varies as a function of acyl chain length. Among the six CerS, only CerS6 overexpression reduced phosphorylation of Akt, S6 kinase (S6K), and extracellular signal­regulated kinases (ERK) as shown by western blotting. In addition, CerS6 overexpression reduced MCF­7 cell proliferation. This effect was partially reversed by co­treatment with MHY1485, an activator of mammalian target of rapamycin (mTOR), demonstrating an important role for the mTOR pathway in the CerS6­mediated decrease in MCF­7 cell proliferation. ERK inhibition, but not Akt inhibition, along with mTOR inhibition synergistically reduced MCF­7 cell proliferation as measured by MTT assay. Notably, the expression of CerS6 and S1P receptor 2 (S1PR2), or CerS6 and sphingosine kinase 1 (SphK1), were negatively correlated according to the invasive breast carcinoma patient cohort in The Cancer Genome Atlas database. In addition, both SphK1 overexpression and S1P addition increased mTOR phosphorylation as shown by ELISA, while S1PR2 inhibition had the inverse effect. These data suggest that CerS6 and SphK1 regulate mTOR signaling in breast cancer cell proliferation. Moreover, mTOR activity can be regulated by the balance between S1P and C16­ceramide, which is generated by CerS6.


Assuntos
Neoplasias da Mama/genética , Proteínas de Membrana/genética , Receptores de Lisoesfingolipídeo/genética , Esfingosina N-Aciltransferase/genética , Serina-Treonina Quinases TOR/genética , Neoplasias da Mama/patologia , Proliferação de Células/genética , Ceramidas/biossíntese , Ceramidas/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Lisofosfolipídeos/biossíntese , Lisofosfolipídeos/genética , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Células MCF-7 , Morfolinas/farmacologia , Proteína Oncogênica v-akt/genética , Fosforilação , Fosfotransferases (Aceptor do Grupo Álcool)/antagonistas & inibidores , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Receptores de Lisoesfingolipídeo/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Esfingosina/análogos & derivados , Esfingosina/biossíntese , Esfingosina/genética , Triazinas/farmacologia
14.
Pharmacol Rep ; 70(5): 1010-1014, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30138818

RESUMO

Parkinson's disease (PD) is one of the most common serious neurodegenerative disorders in the world. The incidence of PD appears to be growing and this illness has an unknown pathogenesis. PD is characterized by selective loss of dopaminergic (DA) neurons in the substantia nigra (SN), with an enigmatic cause in most individuals. Current pharmacotherapies and surgery provide symptomatic relief but their effects against the progressive degeneration of neuronal cells are strongly limited if present at all. Therefore, uncovering novel molecular mechanisms of DA cell death and new potentially disease-modifying pharmacological targets is an important task for basic research. Significant progress has been made in understanding the role of disturbed sphingolipid metabolism, particularly relating to ceramide and sphingosine-1-phosphate (S1P) in the pathogenesis of Alzheimer's disease (AD) and other neurodegenerative diseases. Additionally, the neuroprotective potential of an S1P receptors (S1PR) modulator, fingolimod (FTY720), in multiple sclerosis (MS) and numerous other diseases has been observed over the past decade. In this review, we briefly summarise recent achievements in defining intracellular S1PR-dependent actions, discuss their significance to therapeutic approaches, and explore their neuroprotective potential as a target in PD treatment.


Assuntos
Terapia de Alvo Molecular/métodos , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , Receptores de Lisoesfingolipídeo/antagonistas & inibidores , Receptores de Lisoesfingolipídeo/metabolismo , Animais , Humanos , Modelos Neurológicos
15.
Theranostics ; 8(14): 3824-3840, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30083262

RESUMO

Rationale: Pancreatic cancer is associated with poor prognosis with a 5-year survival rate of less than 6%. Approximately 90% of pancreatic cancer patients harbor somatic mutations in the KRAS gene. Multiple lines of evidence suggest a persistent activation of STAT3 in KRAS-driven oncogenesis contributing to desmoplasia and gemcitabine resistance. Sphingosine 1-phosphate receptor 1 (S1PR1) is an integral component of tumor progression and maintains an activated state of STAT3. FTY720 is an approved drug for multiple sclerosis and acts as a functional antagonist for S1PR1. Here we explored the potential utility of FTY720 to target S1PR1/STAT3 and other major signaling pathways in pancreatic cancer, and sought proof-of-principle for repurposing FTY720 for the treatment of pancreatic cancer. Methods: We examined the activity of FTY720 in the proliferation, apoptosis, and cell cycle assays in human and mouse pancreatic cancer model systems. Further, we studied the efficacy of using a combination of FTY720 and gemcitabine as opposed to individual agents in vitro as well as in vivoResults: Treatment of human and mouse pancreatic cancer cells with FTY720 resulted in inhibition of growth, increased apoptosis, and cell cycle arrest. FTY720 in combination with gemcitabine breached the mitochondrial membrane potential, altered the S1PR1-STAT3 loop, and inhibited epithelial to mesenchymal (EMT) transition. Data from murine models exhibited a marked reduction in the tumor size, increased apoptosis, inhibited NF-κB, S1PR1/STAT3, Shh signaling and desmoplasia, modulated the expression of gemcitabine-metabolizing transport enzymes, and restored the expression of tumor suppressor gene PP2A. Conclusion: Taken together, our results established FTY720 as a propitious molecule, which increases the efficacy of gemcitabine and represents a promising agent in the management of pancreatic cancer.


Assuntos
Antimetabólitos Antineoplásicos/administração & dosagem , Desoxicitidina/análogos & derivados , Cloridrato de Fingolimode/administração & dosagem , Neoplasias Pancreáticas/tratamento farmacológico , Receptores de Lisoesfingolipídeo/antagonistas & inibidores , Fator de Transcrição STAT3/antagonistas & inibidores , Animais , Antimetabólitos Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Desoxicitidina/administração & dosagem , Desoxicitidina/farmacologia , Modelos Animais de Doenças , Quimioterapia Combinada/métodos , Humanos , Camundongos , Modelos Biológicos , Neoplasias Pancreáticas/patologia , Resultado do Tratamento
16.
Mucosal Immunol ; 11(6): 1606-1620, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30116000

RESUMO

Sphingolipids play a pivotal role in the pathogenesis of chronic obstructive pulmonary disease (COPD). However, little is known about the precise roles of sphingosine-1-phosphate (S1P), a bioactive sphingolipid metabolite, and its receptor modulation in COPD. In this study, we demonstrated that the S1P receptor modulator ONO-4641 induced the expansion of lung CD11b+Gr-1+ cells and lymphocytopenia in naive mice. ONO-4641-expanded CD11b+Gr-1+ cells showed higher arginase-1 activity, decreased T cell proliferation, and lower IFN-γ production in CD3+ T cells, similar to the features of myeloid-derived suppressor cells. ONO-4641 treatment decreased airspace enlargement in elastase-induced and cigarette smoke-induced emphysema models and attenuated emphysema exacerbation induced by post-elastase pneumococcal infection, which was also associated with an increased number of lung CD11b+Gr-1+ cells. Adoptive transfer of ONO-4641-expanded CD11b+Gr-1+ cells protected against elastase-induced emphysema. Lymphocytopenia observed in these models likely contributed to beneficial ONO-4641 effects. Thus, ONO-4641 attenuated murine pulmonary emphysema by expanding lung CD11b+Gr-1+ cell populations and inducing lymphocytopenia. The S1P receptor might be a promising target for strategies aimed at ameliorating pulmonary emphysema progression.


Assuntos
Azetidinas/uso terapêutico , Pulmão/imunologia , Naftalenos/uso terapêutico , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Enfisema Pulmonar/tratamento farmacológico , Receptores de Lisoesfingolipídeo/antagonistas & inibidores , Linfócitos T/efeitos dos fármacos , Transferência Adotiva , Animais , Azetidinas/farmacologia , Antígeno CD11b/metabolismo , Movimento Celular/efeitos dos fármacos , Proliferação de Células , Células Cultivadas , Modelos Animais de Doenças , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Naftalenos/farmacologia , Receptores de Superfície Celular/metabolismo , Linfócitos T/imunologia
18.
J Leukoc Biol ; 104(4): 843-853, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29882996

RESUMO

It has been well established that patients with diabetes or metabolic syndrome (MetS) have increased prevalence and severity of periodontitis, an oral infection initiated by bacteria and characterized by tissue inflammation and destruction. To understand the underlying mechanisms, we have shown that saturated fatty acid (SFA), which is increased in patients with type 2 diabetes or MetS, and LPS, an important pathogenic factor for periodontitis, synergistically stimulate expression of proinflammatory cytokines in macrophages by increasing ceramide production. However, the mechanisms by which increased ceramide enhances proinflammatory cytokine expression have not been well understood. Since sphingosine 1 phosphate (S1P) is a metabolite of ceramide and a bioactive lipid, we tested our hypothesis that stimulation of ceramide production by LPS and SFA facilitates S1P production, which contributes to proinflammatory cytokine expression. Results showed that LPS and palmitate, a major SFA, synergistically increased not only ceramide, but also S1P, and stimulated sphingosine kinase (SK) expression and membrane translocation in RAW264.7 macrophages. Results also showed that SK inhibition attenuated the stimulatory effect of LPS and palmitate on IL-6 secretion. Moreover, results showed that S1P enhanced the stimulatory effect of LPS and palmitate on IL-6 secretion. Finally, results showed that targeting S1P receptors using either S1P receptor antagonists or small interfering RNA attenuated IL-6 upregulation by LPS and palmitate. Taken together, this study demonstrated that LPS and palmitate synergistically stimulated S1P production and S1P in turn contributed to the upregulation of proinflammatory cytokine expression in macrophages by LPS and palmitate.


Assuntos
Lipopolissacarídeos/farmacologia , Lisofosfolipídeos/biossíntese , Macrófagos/efeitos dos fármacos , Palmitatos/farmacologia , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Esfingosina/análogos & derivados , Animais , Apoptose , Ceramidas/metabolismo , Citocinas/biossíntese , Sinergismo Farmacológico , Ativação Enzimática/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Inflamação , Interleucina-6/biossíntese , Macrófagos/enzimologia , Camundongos , Fosfotransferases (Aceptor do Grupo Álcool)/antagonistas & inibidores , Células RAW 264.7 , Interferência de RNA , Receptores de Lisoesfingolipídeo/antagonistas & inibidores , Esfingosina/biossíntese
19.
Arthritis Rheumatol ; 70(11): 1879-1889, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29781582

RESUMO

OBJECTIVE: Immune complex (IC) deposition activates polymorphonuclear neutrophils (PMNs), increases vascular permeability, and leads to organ damage in systemic lupus erythematosus and rheumatoid arthritis. The bioactive lipid sphingosine 1-phosphate (S1P), acting via S1P receptor 1 (S1P1 ), is a key regulator of endothelial cell (EC) barrier function. This study was undertaken to investigate whether augmenting EC integrity via S1P1 signaling attenuates inflammatory injury mediated by ICs. METHODS: In vitro barrier function was assessed in human umbilical vein endothelial cells (HUVECs) by electrical cell-substrate impedance sensing. Phosphorylation of myosin light chain 2 (p-MLC-2) and VE-cadherin staining in HUVECs were assessed by immunofluorescence. A reverse Arthus reaction (RAR) was induced in the skin and lungs of mice with S1P1 deleted from ECs (S1P1 EC-knockout [ECKO] mice) and mice treated with S1P1 agonists and antagonists. RESULTS: S1P1 agonists prevented loss of barrier function in HUVECs treated with IC-activated PMNs. S1P1 ECKO and wild-type (WT) mice treated with S1P1 antagonists had amplified RAR, whereas specific S1P1 agonists attenuated skin and lung RAR in WT mice. ApoM-Fc, a novel S1P chaperone, mitigated EC cell barrier dysfunction induced by activated PMNs in vitro and attenuated lung RAR. Expression levels of p-MLC-2 and disruption of VE-cadherin, each representing manifestations of cell contraction and destabilization of adherens junctions, respectively, that were induced by activated PMNs, were markedly reduced by treatment with S1P1 agonists and ApoM-Fc. CONCLUSION: Our findings indicate that S1P1 signaling in ECs modulates vascular responses to IC deposition. S1P1 agonists and ApoM-Fc enhance the EC barrier, limit leukocyte escape from capillaries, and provide protection against inflammatory injury. The S1P/S1P1 axis is a newly identified target to attenuate tissue responses to IC deposition and mitigate end-organ damage.


Assuntos
Complexo Antígeno-Anticorpo/metabolismo , Permeabilidade Capilar/genética , Células Endoteliais/metabolismo , Receptores de Lisoesfingolipídeo/genética , Junções Aderentes/efeitos dos fármacos , Junções Aderentes/metabolismo , Anilidas/farmacologia , Animais , Antígenos CD/efeitos dos fármacos , Antígenos CD/metabolismo , Apolipoproteínas M/farmacologia , Reação de Arthus , Caderinas/efeitos dos fármacos , Caderinas/metabolismo , Permeabilidade Capilar/efeitos dos fármacos , Miosinas Cardíacas/efeitos dos fármacos , Miosinas Cardíacas/metabolismo , Células Endoteliais/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana , Humanos , Indanos/farmacologia , Pulmão/irrigação sanguínea , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Lisofosfolipídeos/farmacologia , Camundongos , Camundongos Knockout , Cadeias Leves de Miosina/efeitos dos fármacos , Cadeias Leves de Miosina/metabolismo , Organofosfonatos/farmacologia , Oxidiazóis/farmacologia , Receptores de Lisoesfingolipídeo/agonistas , Receptores de Lisoesfingolipídeo/antagonistas & inibidores , Receptores de Lisoesfingolipídeo/metabolismo , Pele/irrigação sanguínea , Pele/efeitos dos fármacos , Pele/metabolismo , Esfingosina/análogos & derivados , Esfingosina/farmacologia , Tiofenos/farmacologia
20.
J Exp Med ; 215(5): 1301-1313, 2018 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-29703731

RESUMO

The development of chemotherapy-induced painful peripheral neuropathy is a major dose-limiting side effect of many chemotherapeutics, including bortezomib, but the mechanisms remain poorly understood. We now report that bortezomib causes the dysregulation of de novo sphingolipid metabolism in the spinal cord dorsal horn to increase the levels of sphingosine-1-phosphate (S1P) receptor 1 (S1PR1) ligands, S1P and dihydro-S1P. Accordingly, genetic and pharmacological disruption of S1PR1 with multiple S1PR1 antagonists, including FTY720, blocked and reversed neuropathic pain. Mice with astrocyte-specific alterations of S1pr1 did not develop neuropathic pain and lost their ability to respond to S1PR1 inhibition, strongly implicating astrocytes as a primary cellular substrate for S1PR1 activity. At the molecular level, S1PR1 engaged astrocyte-driven neuroinflammation and altered glutamatergic homeostasis, processes blocked by S1PR1 antagonism. Our findings establish S1PR1 as a target for therapeutic intervention and provide insight into cellular and molecular pathways. As FTY720 also shows promising anticancer potential and is FDA approved, rapid clinical translation of our findings is anticipated.


Assuntos
Bortezomib/efeitos adversos , Neuralgia/induzido quimicamente , Neuralgia/metabolismo , Esfingolipídeos/metabolismo , Administração Oral , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Astrócitos/patologia , Ceramidas/biossíntese , Cloridrato de Fingolimode/administração & dosagem , Cloridrato de Fingolimode/farmacologia , Glutamatos/metabolismo , Masculino , Terminações Pré-Sinápticas/efeitos dos fármacos , Terminações Pré-Sinápticas/metabolismo , Ratos Sprague-Dawley , Receptores de Lisoesfingolipídeo/antagonistas & inibidores , Receptores de Lisoesfingolipídeo/metabolismo , Medula Espinal/efeitos dos fármacos , Medula Espinal/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA