Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.843
Filtrar
2.
Glob Chang Biol ; 26(1): 31-53, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31696576

RESUMO

Hard, or stony, corals make rocks that can, on geological time scales, lead to the formation of massive reefs in shallow tropical and subtropical seas. In both historical and contemporary oceans, reef-building corals retain information about the marine environment in their skeletons, which is an organic-inorganic composite material. The elemental and isotopic composition of their skeletons is frequently used to reconstruct the environmental history of Earth's oceans over time, including temperature, pH, and salinity. Interpretation of this information requires knowledge of how the organisms formed their skeletons. The basic mechanism of formation of calcium carbonate skeleton in stony corals has been studied for decades. While some researchers consider coral skeletons as mainly passive recorders of ocean conditions, it has become increasingly clear that biological processes play key roles in the biomineralization mechanism. Understanding the role of the animal in living stony coral biomineralization and how it evolved has profound implications for interpreting environmental signatures in fossil corals to understand past ocean conditions. Here we review historical hypotheses and discuss the present understanding of how corals evolved and how their skeletons changed over geological time. We specifically explain how biological processes, particularly those occurring at the subcellular level, critically control the formation of calcium carbonate structures. We examine the different models that address the current debate including the tissue-skeleton interface, skeletal organic matrix, and biomineralization pathways. Finally, we consider how understanding the biological control of coral biomineralization is critical to informing future models of coral vulnerability to inevitable global change, particularly increasing ocean acidification.


Assuntos
Antozoários , Animais , Calcificação Fisiológica , Carbonato de Cálcio , Recifes de Corais , Concentração de Íons de Hidrogênio , Oceanos e Mares , Água do Mar
3.
Trends Ecol Evol ; 35(1): 6-9, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31699409

RESUMO

Forests and coral reefs are structurally complex ecosystems threatened by climate change. In situ 3D imaging measurements provide unprecedented, quantitative, and detailed structural information that allows testing of hypotheses relating form to function. This affords new insights into both individual organisms and their relationship to their surroundings and neighbours.


Assuntos
Antozoários , Recifes de Corais , Animais , Mudança Climática , Ecossistema , Florestas , Imagem Tridimensional
4.
Glob Chang Biol ; 26(1): 68-79, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31618499

RESUMO

Continued declines in coral reef health over the past three decades have been punctuated by severe mass coral bleaching-induced mortality events that have grown in intensity and frequency under climate change. Intensive global research efforts have therefore persistently focused on bleaching phenomena to understand where corals bleach, when and why-resulting in a large-yet still somewhat patchy-knowledge base. Particularly catastrophic bleaching-induced coral mortality events in the past 5 years have catalyzed calls for a more diverse set of reef management tools, extending far beyond climate mitigation and reef protection, to also include more aggressive interventions. However, the effectiveness of these various tools now rests on rapidly assimilating our knowledge base of coral bleaching into more integrated frameworks. Here, we consider how the past three decades of intensive coral bleaching research has established the basis for complex biological and environmental networks, which together regulate outcomes of bleaching severity. We discuss how we now have enough scaffold for conceptual biological and environmental frameworks underpinning bleaching susceptibility, but that new tools are urgently required to translate this to an operational system informing-and testing-bleaching outcomes. Specifically, adopting network models that can fully describe and predict metabolic functioning of coral holobionts, and how this functioning is regulated by complex doses and interactions among environmental factors. Identifying knowledge gaps limiting operation of such models is the logical step to immediately guide and prioritize future experiments and observations. We are at a time-critical point where we can implement new capacity to resolve how coral bleaching patterns emerge from complex biological-environmental networks, and so more effectively inform rapidly evolving ecological management and social adaptation frameworks aimed at securing the future of coral reefs.


Assuntos
Antozoários , Animais , Mudança Climática , Recifes de Corais , Ecologia
5.
Ambio ; 49(1): 130-143, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30843168

RESUMO

The transformation of coral reefs has profound implications for millions of people. However, the interactive effects of changing reefs and fishing remain poorly resolved. We combine underwater surveys (271 000 fishes), catch data (18 000 fishes), and household surveys (351 households) to evaluate how reef fishes and fishers in Moorea, French Polynesia responded to a landscape-scale loss of coral caused by sequential disturbances (a crown-of-thorns sea star outbreak followed by a category 4 cyclone). Although local communities were aware of the disturbances, less than 20% of households reported altering what fishes they caught or ate. This contrasts with substantial changes in the taxonomic composition in the catch data that mirrored changes in fish communities observed on the reef. Our findings highlight that resource users and scientists may have very different interpretations of what constitutes 'change' in these highly dynamic social-ecological systems, with broad implications for successful co-management of coral reef fisheries.


Assuntos
Antozoários , Recifes de Corais , Animais , Ecossistema , Pesqueiros , Peixes , Ilhas do Pacífico
6.
Sci Total Environ ; 700: 134464, 2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31689648

RESUMO

Ocean acidification (OA) and warming currently threaten coastal ecosystems across the globe. However, it is possible that the former process could actually benefit marine plants, such as seagrasses. The purpose of this study was to examine whether the effects of the seagrass Thalassia hemprichii can increase the resilience of OA-challenged coral reef mesocosms whose temperatures were gradually elevated. It was found that seagrass shoot density, photosynthetic efficiency, and leaf growth rate actually increased with rising temperatures under OA. Macroalgal growth rates were higher in the seagrass-free mesocosms, but the calcification rate of the model reef coral Pocillopora damicornis was higher in coral reef mesocosms featuring seagrasses under OA at 25 and 28 °C. Both the macroalgal growth rate and the coral calcification rate decreased in all mesocosms when the temperature was raised to 31 °C under OA. However, the variation in gross primary production, ecosystem respiration, and net ecosystem production in the seagrass mesocosms was lower than in seagrass-free controls, suggesting that the presence of seagrass in the mesocosms helped to stabilize the metabolism of the system in response to simulated climate change.


Assuntos
Antozoários/fisiologia , Recifes de Corais , Hydrocharitaceae/fisiologia , Animais , Mudança Climática , Concentração de Íons de Hidrogênio , Água do Mar/química , Temperatura Ambiente
7.
Science ; 366(6472)2019 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-31857447

RESUMO

Allgeier and Cline suggest that our model overestimates the contributions of cryptobenthic fishes to coral reef functioning. However, their 20-year model ignores the basic biological limits of population growth. If incorporated, cryptobenthic contributions to consumed fish biomass remain high (20 to 70%). Disturbance cycles and uncertainties surrounding the fate of large fishes on decadal scales further demonstrate the important role of cryptobenthic fishes.


Assuntos
Recifes de Corais , Ecossistema , Animais , Biomassa , Demografia , Peixes , Dinâmica Populacional
8.
Science ; 366(6472)2019 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-31857452

RESUMO

Brandl et al (Reports, 21 June 2019, p. 1189) report that cryptobenthic fishes underpin coral reef ecosystem function by contributing ~60% of "consumed fish" biomass and ~20% of production. These results are artifacts of their simulation. Using their data and model, we show that cryptobenthic species contribute less than 4% to fish production, calling into question the extent to which they contribute to the high productivity of coral reefs.


Assuntos
Recifes de Corais , Ecossistema , Animais , Biomassa , Demografia , Peixes
9.
Zootaxa ; 4683(4): zootaxa.4683.4.4, 2019 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-31715910

RESUMO

Coloration, gene-sequence data (H3, 12s, 16s), and subtle features in morphology support the description of two new species, both formerly regarded to represent accepted variants of Phimochirus holthuisi s.l. While color in life consistently separates these species from P. holthuisi s.s. and from each other, morphological distinctions are subtle and less than absolute in small specimens, being based on ventral spine counts of walking leg dactyls and relative development of the superior crest on the major chela. Molecular phylogenetic analyses clearly support the separation of sister clades, representing two new species, from P. holthuisi s.s. as well as other congeners available for analysis. Both of the new species are presently known to occur widely throughout the northern Gulf of Mexico, though one occurs more commonly in the northeastern and southeastern Gulf, and may range as far south as Suriname. The other has been taken primarily in the northwestern Gulf, and is not known from outside Gulf waters. While both of the new species appear restricted to relatively deep subtidal waters of the continental shelf, Phimochirus holthuisi s.s. is instead more commonly found in shallow nearshore tropical waters on or near coral reefs. Previous literature reports of P. holthuisi usually represent, at least in part, one or both of these two new species.


Assuntos
Anomuros , Animais , Recifes de Corais , Golfo do México , México , Filogenia , Suriname
10.
Biol Lett ; 15(11): 20190703, 2019 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-31744414

RESUMO

Cultural and recreational values of biodiversity are considered as important dimensions of nature's contribution to people. Among these values, the aesthetics can be of major importance as the appreciation of beauty is one of the simplest forms of human emotional response. Using an online survey, we disentangled the effects of different facets of biodiversity on aesthetic preferences of coral reef fish assemblages that are among the most emblematic assemblages on Earth. While we found a positive saturating effect of species' richness on human preference, we found a net negative effect of species abundance, no effect of species functional diversity and contrasting effects of species composition depending on species' attractiveness. Our results suggest that the biodiversity-human interest relationship is more complex than has been previously stated. By integrating several scales of organization, our study is a step forward in better evaluating the aesthetic value of biodiversity.


Assuntos
Recifes de Corais , Peixes , Animais , Biodiversidade , Ecossistema , Estética
11.
Dis Aquat Organ ; 136(3): 243-253, 2019 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-31724557

RESUMO

Disease in coral species is one factor associated with the current degradation process of tropical reefs. The history of research on coral pathologies dates to 1970 with the first reports of diseases in the Greater Caribbean and Indo-Pacific regions, although some anecdotal observations were made earlier. Today, there is information on the health conditions of >200 coral species in 70 countries. The special natural conditions under which reefs develop in the eastern tropical Pacific (ETP) and the predominance of a single coral genus, Pocillopora (a host highly susceptible to disease), leave them vulnerable to health impairments and the loss of viability, structure and function in the wider ecosystem. Therefore, coral reefs in the ETP are ideal systems for studies of biodiversity and survivorship. To clarify the status of knowledge on coral diseases in the ETP, we reviewed scientific studies conducted there from 1970-2018, comparing 127 publications to literature on other reef regions in the Pacific. Despite the vulnerability of reefs in the ETP, only limited information exists describing and investigating the etiology of lesions and other signs of health deterioration in corals, and there are few baseline studies of coral reefs or analyses of the spatial and temporal dynamics of disease syndromes. In general, efforts to study coral diseases in the ETP are inadequate.


Assuntos
Antozoários , Animais , Biodiversidade , Recifes de Corais
12.
Environ Sci Technol ; 53(23): 13850-13858, 2019 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-31660715

RESUMO

Reactive oxygen species (ROS) are produced via various photochemical, abiotic, and biological pathways. The low concentration and short lifetime of the ROS superoxide (O2•-) make it challenging to measure in natural systems. Here, we designed, developed, and validated a DIver-operated Submersible Chemiluminescent sensOr (DISCO), the first handheld submersible chemiluminescent sensor. The fluidic system inside DISCO is controlled by two high-precision pumps that introduce sample water and analytical reagents into a mixing cell. The resultant chemiluminescent signal is quantified by a photomultiplier tube, recorded by a miniature onboard computer and monitored in real time via a handheld underwater LED interface. Components are contained within a pressure-bearing housing (max depth 30 m), and an external battery pack supplies power. Laboratory calibrations with filtered seawater verified instrument stability and precision. Field deployment in Cuban coral reefs quantified background seawater-normalized extracellular superoxide concentrations near coral surfaces (0-173 nM) that varied distinctly with coral species. Observations were consistent with previous similar measurements from aquaria and shallow reefs using a standard benchtop system. In situ quantification of superoxide associated with corals was enabled by DISCO, demonstrating the potential application to other shallow water ecosystems and chemical species.


Assuntos
Antozoários , Animais , Recifes de Corais , Ecossistema , Água do Mar , Superóxidos
13.
J Environ Manage ; 252: 109650, 2019 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-31600683

RESUMO

Buildup of decaying pelagic Sargassum on the beaches and coasts of the Mexican Caribbean during the massive arrivals of 2015 and 2018 had detrimental impacts on the environment and tourist industry. To avoid ecological and economic impacts from massive beaching of Sargassum, it would be better to remove the pelagic algal masses while still at sea. However, out at sea, pelagic Sargassum rafts constitute an ecosystem with a diversified associated fauna and their removal could impact this fauna. We conducted a survey on the motile macrofauna associated to pelagic Sargassum rafts in the Puerto Morelos reef lagoon, Mexican Caribbean. Pelagic Sargassum was sampled with nets at 2 m, 50 m and 500 m from shore, at four sites during the months of September, October and November 2018. The 108 samples contained 10,296 individuals belonging to 32 taxa distributed over eight Phyla. The main phyla were Arthropoda (48%), Annelida (41%) and Mollusca (15%). Fish abundance was low (10 individuals) with only five species, of which three are typically associated with Sargassum rafts and two are common in seagrass meadows and coral reefs. Species composition and abundance of motile macrofauna varied with month and zone; the nearshore zone had the lowest abundance but there was no difference in the abundance of the fauna associated with rafts 50 or 500 m offshore. Three of the four most abundant species (together accounting for 89% of the individuals) were species typically associated with pelagic Sargassum, and the fourth was an amphipod that was only registered once near shore. Although more studies over larger time and spatial scales are required, these results suggest that the removal of pelagic Sargassum within the reef lagoon may not have a significant effect on local populations of motile macrofauna.


Assuntos
Sargassum , Animais , Região do Caribe , Recifes de Corais , Ecossistema , México
14.
Environ Pollut ; 255(Pt 2): 113281, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31600700

RESUMO

Only 1% of plastic entering the ocean is found floating on its surface, with high loads in ocean accumulation zones and semi-enclosed seas, except for the Red Sea, which supports one of the lowest floating plastic loads worldwide. Given the extension of reefs in the Red Sea, we hypothesize a major role of scleractinian corals as sinks, through suspension-feeding, and assessed microplastic removal rates by three Red Sea coral species. Experimental evidence showed removal rates ranging from 0.25 × 10-3 to 14.8 × 10-3 microplastic particles polyp-1 hour-1, among species. However, this was only 2.2 ±â€¯0.6% of the total removal rate, with passive removal through adhesion to the coral surface being 40 times higher than active removal through suspension-feeding. These results point at adhesion of plastic to coral reef structures as a major sink for microplastics suspended in the water column after sinking, helping explain low concentrations in Red Sea surface waters.


Assuntos
Antozoários , Monitoramento Ambiental , Poluentes Químicos da Água/análise , Animais , Recifes de Corais , Oceano Índico , Oceanos e Mares , Plásticos , Água do Mar
15.
Mar Pollut Bull ; 145: 161-173, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31590773

RESUMO

Climate change and human disturbance threatens coral reefs across the Pacific, yet there is little consensus on what characterizes a "healthy" reef. Benthic cover, particularly low coral cover and high macroalgae cover, are often used as an indicator of reef degradation, despite uncertainty about the typical algal community compositions associated with either near-pristine or damaged reefs. In this study, we examine differences in coral and algal community compositions and their response to human disturbance and past heat stress, by analysing 25 sites along a gradient of human disturbance in Majuro and Arno Atolls of the Republic of the Marshall Islands. Our results show that total macroalgae cover indicators of reef degradation may mask the influence of local human disturbance, with different taxa responding to disturbance differently. Identifying macroalgae to a lower taxonomic level (e.g. the genus level) is critical for a more accurate measure of Pacific coral reef health.


Assuntos
Recifes de Corais , Alga Marinha , Animais , Antozoários/fisiologia , Biodiversidade , Meio Ambiente , Humanos , Micronésia , Oceano Pacífico , Alga Marinha/fisiologia
16.
Mar Pollut Bull ; 145: 185-199, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31590775

RESUMO

Dredging poses a potential threat to coral reefs, yet quantifying impacts is often difficult due to the large spatial footprint of potential effects and co-occurrence of other disturbances. Here we analyzed in situ monitoring data and remotely-sensed sediment plumes to assess impacts of the 2013-2015 Port of Miami dredging on corals and reef habitat. To control for contemporaneous bleaching and disease, we analyzed the spatial distribution of impacts in relation to the dredged channel. Areas closer to dredging experienced higher sediment trap accumulation, benthic sediment cover, coral burial, and coral mortality, and our spatial analyses indicate that >560,000 corals were killed within 0.5 km, with impacts likely extending over 5-10 km. The occurrence of sediment plumes explained ~60% of spatial variability in measured impacts, suggesting that remotely-sensed plumes, when properly calibrated against in situ monitoring data, can reliably estimate the magnitude and extent of dredging impacts.


Assuntos
Antozoários , Sedimentos Geológicos , Animais , Recifes de Corais , Ecossistema , Monitoramento Ambiental , Florida
17.
Mar Pollut Bull ; 145: 287-294, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31590790

RESUMO

Information about coral community response to bleaching on Indian reefs is much more limited compared with Indo-Pacific reefs, with no understanding of algal symbionts. We investigated a reef in Palk Bay to understand the coral community response to 2016 bleaching event and to reveal dominant symbiont type association in four common coral genera. Out of 508 colonies surveyed, we found 20.9% (106) mortality in 53.8% (n = 290) of bleached corals. We found differential bleaching and recovery pattern among coral genera. Bleaching was most prevalent in Acropora (86.36%), followed by Porites (65.45%), while moderate to no bleaching was recorded in Favites 5.88%, Symphyllia 51.11% and Favia 55.77%, Platygyra 41.67%, Goniastrea 41.83%. Pre-bleaching and post bleaching samplings revealed changes in dominant symbiont type following bleaching only in Acropora (Cladocopium, Clade C to Durusdinium Clade D) while no such changes were found in other coral genera hosted Clade D. This is the first observation of coral symbiont diversity in the Indian reef.


Assuntos
Alveolados/fisiologia , Antozoários/fisiologia , Recifes de Corais , Animais , Baías , Índia , Estresse Fisiológico , Simbiose
18.
Oecologia ; 191(3): 621-632, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31571039

RESUMO

Many predators and herbivores do not kill their prey, but rather remove or damage tissue. Prey are often able to heal or regenerate this lost tissue. If the prey are modular organisms (e.g., some plants and cnidarians), regeneration is frequently influenced by other modules interconnected to damaged ones. For example, many coral predators remove tissue from colonies consisting of many polyps, and these polyps often share resources with their neighbors. Thus, the distribution of tissue loss on a coral colony could affect the coral's response. I hypothesized that spatially aggregated damage might be slow to heal due to competing demands on nearby polyps. To explore the spatial patterns of corallivory and their implications, I conducted: (1) field surveys documenting the spatial distribution of lesions on corals; (2) field experiments testing the effect of the distance between lesions on coral tissue healing, skeletal growth, and morphology; and (3) field surveys relating corallivore presence to coral growth and morphology. In the field surveys, lesions were aggregated at multiple spatial scales, and most lesions had other lesions within 2 cm. When lesions were near one another, coral tissue regeneration was depressed, although there was no effect on whole colony growth. After a year, however, linear extension was lower in the neighborhood of the lesions. Additionally, gastropod corallivores (Coralliophila violacea) with low movement decreased coral growth and increased coral topographical complexity. These results suggest that corallivores that create clusters of coral damage have a greater effect on coral growth and recovery from damage than corallivores that spread damage throughout the colony.


Assuntos
Antozoários , Gastrópodes , Animais , Recifes de Corais
19.
Biol Lett ; 15(10): 20190409, 2019 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-31573428

RESUMO

Non-consumptive fear effects are an important determinant of foraging decisions by consumers across a range of ecosystems. However, how fear effects associated with the presence of predators interact with those associated with habitat structure remain unclear. Here, we used predator fish models (Plectropomus leopardus) and experimental patches of the macroalga Sargassum ilicifolium of varying densities to investigate how predator- and habitat-associated fear effects influence herbivory on coral reefs. We found the removal of macroalgal biomass (i.e. herbivory) was shaped by the interaction between predator- and habitat-associated fear effects. Rates of macroalgal removal declined with increasing macroalgal density, likely due to increased visual occlusion by denser macroalgae patches and reduced ability of herbivorous fishes to detect the predators. The presence of the predator model reduced herbivory within low macroalgal density plots, but not within medium- and high-density macroalgal plots. Our results suggest that fear effects due to predator presence were greatest at low macroalgal density, yet these effects were lost at higher densities possibly due to greater predation risk associated with habitat structure and/or the inability of herbivorous fishes to detect the predator model.


Assuntos
Recifes de Corais , Herbivoria , Animais , Ecossistema , Medo , Peixes , Comportamento Predatório
20.
Glob Chang Biol ; 25(12): 4092-4104, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31566878

RESUMO

The capacity of coral reefs to maintain their structurally complex frameworks and to retain the potential for vertical accretion is vitally important to the persistence of their ecological functioning and the ecosystem services they sustain. However, datasets to support detailed along-coast assessments of framework production rates and accretion potential do not presently exist. Here, we estimate, based on gross bioaccretion and bioerosion measures, the carbonate budgets and resultant estimated accretion rates (EAR) of the shallow reef zone of leeward Bonaire - between 5 and 12 m depth - at unique fine spatial resolution along this coast (115 sites). Whilst the fringing reef of Bonaire is often reported to be in a better ecological condition than most sites throughout the wider Caribbean region, our data show that the carbonate budgets of the reefs and derived EAR varied considerably across this ~58 km long fringing reef complex. Some areas, in particular the marine reserves, were indeed still dominated by structurally complex coral communities with high net carbonate production (>10 kg CaCO3  m-2  year-1 ), high live coral cover and complex structural topography. The majority of the studied sites, however, were defined by relatively low budget states (<2 kg CaCO3  m-2  year-1 ) or were in a state of net erosion. These data highlight the marked spatial heterogeneity that can occur in budget states, and thus in reef accretion potential, even between quite closely spaced areas of individual reef complexes. This heterogeneity is linked strongly to the degree of localized land-based impacts along the coast, and resultant differences in the abundance of reef framework building coral species. The major impact of this variability is that those sections of reef defined by low-accretion rates will have limited capacity to maintain their structural integrity and to keep pace with current projections of climate change induced sea-level rise (SLR), thus posing a threat to reef functioning and biodiversity, potentially leading to trophic cascades. Since many Caribbean reefs are more severely degraded than those found around Bonaire, it is to be expected that the findings presented here are rather the rule than the exception, but the study also highlights the need for similar high spatial resolution (along-coast) assessments of budget states and accretion rates to meaningfully explore increasing coastal risk at the country level. The findings also more generally underline the significance of reducing local anthropogenic disturbance and restoring framework building coral assemblages. Appropriately focussed local preservation efforts may aid in averting future large-scale above reef water depth increases on Caribbean coral reefs and will limit the social and economic implications associated with the loss of reef goods and services.


Assuntos
Antozoários , Ecossistema , Animais , Carbonatos , Região do Caribe , Recifes de Corais , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA