RESUMO
The incorporation of coral species with massive (e.g., boulder, brain) morphologies into reef restoration is critical to sustain biodiversity and increase coral cover on degraded reef ecosystems. However, fragments and colonies of massive corals outplanted in Miami-Dade County, Florida, US, can experience intense predation by fish within the first week of outplanting, resulting in >70% mortality. Here, we tested for the first time the potential benefit of feeding corals powdered Dictyota, a brown reef alga that is chemically defended against grazing, to determine if exposure to Dictyota can confer chemical protection to coral fragments and reduce the impacts of fish predation after outplanting. We found that feeding corals every 2 to 3 days for 2 months with dried and powdered Dictyota prior to outplanting significantly reduced predation levels on Orbicella faveolata and Montastraea cavernosa fragments (with less than 20% of the fragments experiencing predation up to 1-month post-outplanting). We also found that a single exposure to Dictyota at a high concentration 1 to 2 days prior to outplanting significantly reduced predation for six coral species within the first 24 h following outplanting. Thus, feeding corals dry Dictyota ex situ prior to outplanting appears to confer protection from fish predation during the critical first days to weeks after outplanting when predation impacts are commonly high. This simple and cheap method can be easily scaled up for corals kept ex situ prior to outplanting, resulting in an increase in restoration efficiency for massive corals in areas with high fish predation.
Assuntos
Antozoários , Animais , Recifes de Corais , Ecossistema , Comportamento Predatório , PeixesRESUMO
Coral bleaching heat stress products provide real-time and rapid coral bleaching alerts for coral reefs globally. However, geographical variations in the alert accuracy of multi-source coral bleaching heat stress products exist. Taking the coral reefs in the South China Sea (SCS) as the study area, we evaluated and improved the coral bleaching alert capabilities of two coral bleaching heat stress products: Coral Reef Watch (CRW) and Coral Reef Temperature Anomaly Database (CoRTAD). Using in situ coral bleaching survey data and evaluation indicators, the optimized thresholds of degree heating weeks (DHWs) for coral bleaching alerts were determined. The results in the SCS indicated that, first, CRW was better than CoRTAD for coral bleaching event alerts. However, both products underestimated coral bleaching events using the common DHW thresholds of 4°C-weeks and 8°C-weeks. Second, the DHW optimized threshold for CRW was 3.32°C-weeks for coral bleaching event alerts and 4.52°C-weeks for severe coral bleaching event alerts. For CoRTAD products, the DHW optimized threshold was 2.36°C-weeks for coral bleaching event alerts and 4.14°C-weeks for severe coral bleaching event alerts. This study proposed a method to evaluate and optimize the alert capability of multi-source coral bleaching heat stress products, which can provide more accurate basic data for coral reef ecosystem health assessment and contribute to global coral reef ecosystem protection and restoration.
Assuntos
Antozoários , Recifes de Corais , Animais , Temperatura , Ecossistema , Branqueamento de Corais , Resposta ao Choque Térmico , ChinaRESUMO
The juxtaposition of highly productive coral reef ecosystems in oligotrophic waters has spurred substantial interest and progress in our understanding of macronutrient uptake, exchange, and recycling among coral holobiont partners (host coral, dinoflagellate endosymbiont, endolithic algae, fungi, viruses, bacterial communities). By contrast, the contribution of trace metals to the physiological performance of the coral holobiont and, in turn, the functional ecology of reef-building corals remains unclear. The coral holobiont's trace metal economy is a network of supply, demand, and exchanges upheld by cross-kingdom symbiotic partnerships. Each partner has unique trace metal requirements that are central to their biochemical functions and the metabolic stability of the holobiont. Organismal homeostasis and the exchanges among partners determine the ability of the coral holobiont to adjust to fluctuating trace metal supplies in heterogeneous reef environments. This review details the requirements for trace metals in core biological processes and describes how metal exchanges among holobiont partners are key to sustaining complex nutritional symbioses in oligotrophic environments. Specifically, we discuss how trace metals contribute to partner compatibility, ability to cope with stress, and thereby to organismal fitness and distribution. Beyond holobiont trace metal cycling, we outline how the dynamic nature of the availability of environmental trace metal supplies can be influenced by a variability of abiotic factors (e.g. temperature, light, pH, etc.). Climate change will have profound consequences on the availability of trace metals and further intensify the myriad stressors that influence coral survival. Lastly, we suggest future research directions necessary for understanding the impacts of trace metals on the coral holobiont symbioses spanning subcellular to organismal levels, which will inform nutrient cycling in coral ecosystems more broadly. Collectively, this cross-scale elucidation of the role of trace metals for the coral holobiont will allow us to improve forecasts of future coral reef function.
Assuntos
Antozoários , Animais , Antozoários/fisiologia , Ecossistema , Recifes de Corais , Bactérias/metabolismo , Temperatura , SimbioseRESUMO
Evidence shows that in the modern ocean, coral reefs are disappearing, and these losses are tied to climate change. However, research also shows that coral reefs can adapt rapidly to changing conditions leading some researchers to suggest that some reef systems will survive future climate change through adaptation. It is known that there were changes in the area covered by coral reefs in the past. Therefore, it is important to investigate the long-term response of coral reefs to environmental changes and high sea-surface temperatures (SSTs). However, because of diagenetic issues with SST proxies in neritic, metastable carbonate-rich environments, there is an incomplete and sometimes even incorrect understanding of how changes in SSTs affect carbonate reef systems. A good example is the Queensland Plateau offshore northeast Australia next to the threatened Great Barrier Reef. In the Late Miocene, between 11 and 7 Ma, a partial drowning caused the reef area on the Queensland Plateau to decline by ~ 50% leading to a Late Miocene change in platform geometry from a reef rimmed platform to a carbonate ramp. This reef decline was interpreted to be the result of SSTs at the lower limit of the modern reef growth window (20-18 °C). This article presents a new Late Miocene-ased SST record from the Coral Sea based on the TEX86H molecular paleothermometer, challenging this long held view. Our new record indicates warm tropical SSTs (27-32 °C) at the upper end of the modern reef growth window. We suggest that the observed temperatures potentially exceeded the optimal calcification temperatures of corals. In combination with a low aragonite supersaturation in the ocean, this could have reduced coral growth rates and ultimately lowered the aggradation potential of the reef system. These sub-optimal growth rates could have made the coral reefs more susceptible to other stressors, such as relative sea-level rise and/or changes in currents leading to reef drowning. Given that these changes affected coral reefs that were likely adapted to high temperature/low aragonite saturation conditions suggests that reefs that have adapted to non-ideal conditions may still be susceptible to future climate changes due to the interaction of multiple stressors associated with climate change.
Assuntos
Antozoários , Afogamento , Animais , Temperatura , Oceanos e Mares , Recifes de Corais , Mudança Climática , Carbonato de Cálcio , CarbonatosRESUMO
Recreational diving, under the continual growth of the scuba diving industry, may escalate coral reef damage as one of the substantial anthropogenic impacts and is of pressing concern. Besides unregulated and excessive diving activities, accidental contact with corals by inexperienced divers can cause recurring physical damage and heighten the pressure on coral communities. Understanding the ecological impacts of underwater contact with marine biota will thus be crucial to develop more sustainable scuba diving practices in Hong Kong. To probe the scuba diving impacts of divers' contact with coral communities, WWF-Hong Kong started a citizen science monitoring programme and invited 52 advanced divers to conduct direct underwater observations. Questionnaires were also developed to examine and address the research gap between the associated attitudes and the perceived contact rate of divers. Results from analysing the underwater behaviours of 102 recreational divers showed inconsistent perceived and actual contact rates. It was revealed that recreational divers might often overlook the ecological effects of their activities underwater on coral communities. The questionnaire findings will be utilised to improve the framework of the dive-training programmes and enhance divers' awareness to minimise their influence on the marine environment.
Assuntos
Antozoários , Mergulho , Animais , Hong Kong , Intenção , Recifes de Corais , ChinaRESUMO
Large artificial coral reef communities, such as those thriving on sunken shipwrecks, tend to mirror those of nearby natural coral reefs and their long-term dynamics may help future reef resilience to environmental change. We examined the community structure of the world-renown "SS Thistlegorm" wreck in the northern Red Sea from 2007 through 2014, analyzing data collected during the recreational citizen science Red Sea monitoring project "Scuba Tourism for the Environment". Volunteer divers collected data on 6 different diving parameters which included the date of the dive, maximum depth, average depth, temperature, dive time, hour of dive, and gave an abundance estimation of sighted taxa from a list of 72 target taxa. Although yearly variations in community structure were significant, there was no clear temporal trend, and 71 of all 72 target taxa were sighted throughout the 8 years. The 5 main taxa driving variations among year clusters in taxa presence/absence (Soft Tree Coral-Dendronephthya spp., Giant Moray-Gymnothorax javanicus, Squirrel Fish-Sargocentron spp., Humpback Batfish-Platax spp., and Caranxes-Carangidae) and taxa abundance (Soft Tree Coral, Giant Moray, Red Sea Clownfish-Amphiprion bicinctus, Napoleon Wrasse-Cheilinus undulatus, and Caranxes) data were determined. The "SS Thistlegorm" provides a compelling example of how artificial coral reefs can sustain a well-established community structure similar to those of their natural counterparts.
Assuntos
Antozoários , Ciência do Cidadão , Animais , Oceano Índico , Conservação dos Recursos Naturais , Recifes de Corais , PeixesRESUMO
Symbiotic cnidarians such as corals and anemones form highly productive and biodiverse coral reef ecosystems in nutrient-poor ocean environments, a phenomenon known as Darwin's paradox. Resolving this paradox requires elucidating the molecular bases of efficient nutrient distribution and recycling in the cnidarian-dinoflagellate symbiosis. Using the sea anemone Aiptasia, we show that during symbiosis, the increased availability of glucose and the presence of the algae jointly induce the coordinated up-regulation and relocalization of glucose and ammonium transporters. These molecular responses are critical to support symbiont functioning and organism-wide nitrogen assimilation through glutamine synthetase/glutamate synthase-mediated amino acid biosynthesis. Our results reveal crucial aspects of the molecular mechanisms underlying nitrogen conservation and recycling in these organisms that allow them to thrive in the nitrogen-poor ocean environments.
Assuntos
Antozoários , Dinoflagelados , Anêmonas-do-Mar , Animais , Anêmonas-do-Mar/genética , Recifes de Corais , Ecossistema , Antozoários/genética , Simbiose , Dinoflagelados/genética , NitrogênioRESUMO
Pressures on the world's tropical coral reefs that threaten their existence have been reported worldwide due to many stressors. Loss of coral cover and declines in coral richness are two of the most common changes often reported in coral reefs. However, a precise estimate of species richness and the coral cover dynamics for most Indonesian regions, particularly in the Bangka Belitung Islands, have been poorly documented. Annual monitoring data from 2015 to 2018 at 11 fixed sites in the Bangka Belitung Islands using the photo quadrat transect method identified 342 coral species from 63 genera. Of these, 231 species (>65%) were rare or uncommon, occurring in <40% of all sites. The species richness of hard corals was categorized as moderate compared to other studies in Indonesia, averaging 53 species across sites and years, and there was an increasing number of sites with high species richness. The percent cover of live and dead hard corals was greater than other benthic and substrate categories in all sites; revealing a live-dead hard corals pattern with dead coral cover averaged 12% higher than live hard coral across the years, but they did not show a significant difference (P > 0.05). There was a slightly increasing trend in hard coral cover in ten out of 11 sites in 2018, indicating the reefs are in a recovery process. The results support the need to identify recovering or stable areas despite apparent anthropogenic and natural variations recently. This vital information is essential for early detection and preparation for management strategies in the current context of climate change and for ensuring future coral reef survival.
Assuntos
Antozoários , Animais , Indonésia , Recifes de Corais , Mudança Climática , ExistencialismoRESUMO
With marine heat waves increasing in intensity and frequency due to climate change, it is important to understand how thermal disturbances will alter coral reef ecosystems since stony corals are highly susceptible to mortality from thermally-induced, mass bleaching events. In Moorea, French Polynesia, we evaluated the response and fate of coral following a major thermal stress event in 2019 that caused a substantial amount of branching coral (predominantly Pocillopora) to bleach and die. We investigated whether Pocillopora colonies that occurred within territorial gardens protected by the farmerfish Stegastes nigricans were less susceptible to or survived bleaching better than Pocillopora on adjacent, undefended substrate. Bleaching prevalence (proportion of the sampled colonies affected) and severity (proportion of a colony's tissue that bleached), which were quantified for >1,100 colonies shortly after they bleached, did not differ between colonies within or outside of defended gardens. By contrast, the fates of 399 focal colonies followed for one year revealed that a bleached coral within a garden was a third less likely to suffer complete colony death and about twice as likely to recover to its pre-bleaching cover of living tissue compared to Pocillopora outside of a farmerfish garden. Our findings indicate that while residing in a farmerfish garden may not reduce the bleaching susceptibility of a coral to thermal stress, it does help buffer a bleached coral against severe outcomes. This oasis effect of farmerfish gardens, where survival and recovery of thermally-damaged corals are enhanced, is another mechanism that helps explain why large Pocillopora colonies are disproportionately more abundant in farmerfish territories than elsewhere in the lagoons of Moorea, despite gardens being relatively uncommon. As such, some farmerfishes may have an increasingly important role in maintaining the resilience of branching corals as the frequency and intensity of marine heat waves continue to increase.
Assuntos
Antozoários , Ecossistema , Animais , Jardins , Temperatura Alta , Antozoários/fisiologia , Recifes de CoraisRESUMO
Many Artificial Reefs (ARs) have been used worldwide for marine habitat and coral reef restoration. However, the microbial community structure that colonize the ARs and their progressive development have been seldom investigated. In this study, the successive development of the microbial communities on environmentally friendly Artificial Biological Reef structures (ABRs)R made of special concrete supported with bioactive materials collected from marine algal sources were studied. Three seasons (spring, summer and autumn), three coral reef localities and control models (SCE) without bioactive material and (NCE) made of normal cement were compared. The structure of the microbial pattern exhibited successive shifts from the natural environment to the ABRs supported with bioactive materials (ABAM). Cyanobacteria, Proteobacteria, and Planctomycetota were shown to be the most three dominant phyla. Their relative abundances pointedly increased on ABAM and SCE models compared to the environment. Amplicon Sequence Variant (ASV) Richness and Shannon index were obviously higher on ABAM models and showed significant positive relationship with that of macrobenthos than those on the controls and the natural reef (XR). Our results offer successful establishment of healthy microbial films on the ABR surfaces enhanced the restoration of macrobenthic community in the damaged coral reefs which better understands the ecological role of the ABRs.
Assuntos
Cimentos Ósseos , Microbiota , China , Recifes de Corais , Cimentos de Ionômeros de VidroRESUMO
The global degradation of coral reefs is steadily increasing with ongoing climate change. Yet coral larvae settlement, a key mechanism of coral population rejuvenation and recovery, is largely understudied. Here, we show how the lipophilic, settlement-inducing bacterial pigment cycloprodigiosin (CYPRO) is actively harvested and subsequently enriched along the ectoderm of larvae of the scleractinian coral Leptastrea purpura. A light-dependent reaction transforms the CYPRO molecules through photolytic decomposition and provides a constant supply of hydrogen peroxide (H2O2), leading to attachment on the substrate and metamorphosis into a coral recruit. Micromolar concentrations of H2O2 in seawater also resulted in rapid metamorphosis, but without prior larval attachment. We propose that the morphogen CYPRO is responsible for initiating attachment while simultaneously acting as a molecular generator for the comprehensive metamorphosis of pelagic larvae. Ultimately, our approach opens a novel mechanistic dimension to the study of chemical signaling in coral settlement and provides unprecedented insights into the role of infochemicals in cross-kingdom interactions.
Assuntos
Terapia de Aceitação e Compromisso , Antozoários , Animais , Fotólise , Peróxido de Hidrogênio , Recifes de Corais , LarvaRESUMO
Little is known about early coral settlement on shipwrecks with regard to their species and size compositions. Hurricanes in the Caribbean have a long history of sinking ships but a link with new coral settlement is understudied. In 2017, Hurricane Irma caused the sinking of over 300 vessels in the coastal waters of Saint Martin, eastern Caribbean. In 2021, coral settlement was studied on one of them, which included two native, one non-native, and two cryptogenic species. The corals were smaller than 8 cm in diameter. The invasive Tubastraea coccinea was the most abundant scleractinian and was predominantly represented by juveniles. A cryptogenic species, Stragulum bicolor, new for the Caribbean, was the most common octocoral. Because they can be harmful to the environment, shipwrecks should be monitored frequently for the occurrence of non-native species, especially when they are only a few years old.
Assuntos
Antozoários , Tempestades Ciclônicas , Animais , Região do Caribe , Recifes de CoraisRESUMO
The Great Barrier Reef (GBR) is the world's largest coral ecosystem and is threatened by climate change. This study investigated the impact of the 2016 Marine Heatwave (MHW) on plankton associated microbial communities along a â¼800 km transect in the GBR. 16S rRNA gene metabarcoding of archived plankton samples collected from November 2014 to August 2016 in this region showed a significant increase in Planctomycetes and bacteria belonging to the genus Vibrio and Synechococcus during and after the heatwave. Notably, Droplet Digital PCR and targeted metagenomic analysis applied on samples collected four months after the MHW event revealed the presence of several potential pathogenic Vibrio species previously associated with diseases in aquatic animals. Overall, the 2016 MHW significantly impacted the surface picoplankton community and fostered the spread of potentially pathogenic bacteria across the GBR providing an additional threat for marine biodiversity in this area.
Assuntos
Antozoários , Microbiota , Animais , Ecossistema , Recifes de Corais , Plâncton , RNA Ribossômico 16S , Austrália , Bactérias/genéticaRESUMO
Sewage pollution from on-site sewage disposal systems and injection wells is impacting coral reefs worldwide. Our study documented the presence and impact of sewage on South Kohala's coral reefs, on Hawai'i Island, through benthic water quality and macroalgal sampling (fecal indicator bacteria, nutrients, δ15N macroalgal tissue), NO3- stable isotope mixing models, water motion measurements, and coral reef surveys. Sewage pollution was moderate on the offshore reef from benthic seeps, and water motion mixed and diluted it across the benthos. These conditions likely contribute to the dominance of turf algae cover, and the severity and prevalence of growth anomalies and algal overgrowth on corals. Use of multiple indicators and studying water motion was necessary to assess sewage pollution and identify environmental drivers associated with impaired coral health conditions. Methods used in this study can be utilized by natural resource managers to identify and reduce anthropogenic stressors to coral reefs.
Assuntos
Antozoários , Recifes de Corais , Animais , Esgotos/análise , Havaí , Qualidade da ÁguaRESUMO
The uninhabited Northwestern Hawaiian Islands (NWHI) contain 70 % of the shallow water coral reefs in the United States. An estimated 52 metric tons of derelict fishing nets accumulate here annually, becoming entangled in the reef structure and reducing coral cover. Here, we investigated the longevity of derelict net impacts on coral reef communities three years after net removal at Pearl and Hermes Atoll. Structure-from-Motion technology was used to resurvey net impact and control sites to determine whether coral cover rebounded at impact sites over time. Our results showed significantly lower coral cover at impact sites. Much of the bare substrate immediately exposed after net removal was also colonized by algae -not reef calcifiers. Continued monitoring of these sites will add clarity to the lasting nature of derelict nets on reefs, and supplementing net removal efforts with active restoration activities may assist in restoring the ecosystem function of impacted sites faster.
Assuntos
Antozoários , Recifes de Corais , Animais , Ecossistema , Água , HavaíRESUMO
Scleractinian corals have been observed to be capable of accumulating microplastics from reef environments; however, the tolerant mechanism is poorly known. Here, we examined the response of Porites pukoensis to microplastic pollution by analyzing algal symbiont density, energetic metabolism, and caspase3 activities (representing the apoptosis level) in the coral-Symbiodiniaceae association. The environments of three fringing reef regions along the south coast of Sanya City, Hainan Province of China, were polluted by microplastics (for example, microplastic concentrations in the seawater ranged from 3.3 to 46.6 particles L-1), resulting in microplastic accumulation in P. pukoensis (0.4-2.4 particles cm-2). The accumulation of microplastics was negatively correlated to algal symbiont density in the corals but not to caspase3 activities in the two symbiotic partners, demonstrating that P. pukoensis could tolerate accumulated microplastics despite the decrease of algal symbiont density. Furthermore, results from the carbon stable isotope and cellular energy allocation assay indicated that P. pukoensis obtained energy availability (mainly as lipid reserves) using the switch between heterotrophy and autotrophy to maintain energy balance and cope with accumulated microplastics. Collectively, P. pukoensis achieved tolerance to microplastic pollution by maintaining energy availability, which was largely attributed to its high heterotrophic plasticity.
Assuntos
Antozoários , Animais , Antozoários/fisiologia , Microplásticos , Plásticos , Recifes de Corais , Processos Heterotróficos , Isótopos de CarbonoRESUMO
In highly diverse systems such as coral reefs, many species appear to fulfil similar ecological roles, suggesting that they might be ecologically equivalent. However, even if species provide similar functions, the magnitude of those roles could modulate their impact within ecosystems. Here, we compare the functional contributions of two common, co-occurring Caribbean sea cucumber species, Holothuria mexicana and Actynopyga agassizii, in terms of ammonium provisioning and sediment processing on Bahamian patch reefs. We quantified these functions through empirical measures of ammonium excretion, and in situ observations of sediment processing coupled with fecal pellet collections. On a per-individual level, H. mexicana excreted approximately 23% more ammonium and processed approximately 53% more sediment per hour than A. agassizii. However, when we combined these species-specific functional rates to species abundances to produce reef-wide estimates, we found that A. agassizii contributed more than H. mexicana to sediment processing at 57% of reefs (1.9 times more per unit area across all surveyed reefs), and more to ammonium excretion at 83% of reefs (5.6 times more ammonium per unit area across all surveyed reefs), owing to its higher abundance. We conclude that sea cucumber species can differ in the rates at which they deliver per capita ecosystem functions but their ecological impacts at the population level depend on their abundance at a given location.
Assuntos
Holothuria , Pepinos-do-Mar , Animais , Humanos , Ecossistema , Recifes de Corais , Região do CaribeRESUMO
Tracking changes in ecosystem health is an important objective for environmental managers, but is often limited by an understanding of what constitutes a "healthy" system and how to aggregate a range of health indicators into a single meaningful metric. We used a multi-indicator 'state space' approach to quantify changes over 13 years in reef ecosystem health in an urban area that has undergone intense housing development. Based on nine health indicators (macroalgal canopy length and biomass, macroalgal canopy and habitat functional diversity, mobile and predatory invertebrate density and size, total species and non-indigenous species richness), we found that the overall health of the reef community declined at five of the ten study sites. This decline was associated with a large collapse in the gastropod community, a shortening of macroalgal canopies and an increase in the number of non-indigenous species. While the cause of this decline and mechanisms responsible are not fully understood, the decline correlated with an increase in sediment cover on the reefs and warming ocean temperatures over the monitoring period. The proposed approach provides an objective and multifaceted quantitative assessment of ecosystem health that can be easily interpreted and communicated. These methods could be adapted to other ecosystem types to inform management decisions regarding future monitoring, conservation and restoration priorities to achieve greater ecosystem health.
Assuntos
Recifes de Corais , Ecossistema , Animais , Peixes , Biomassa , InvertebradosRESUMO
Climate change is radically altering coral reef ecosystems, mainly through increasingly frequent and severe bleaching events. Yet, some reefs have exhibited higher thermal tolerance after bleaching severely the first time. To understand changes in thermal tolerance in the eastern tropical Pacific (ETP), we compiled four decades of temperature, coral cover, coral bleaching, and mortality data, including three mass bleaching events during the 1982 to 1983, 1997 to 1998 and 2015 to 2016 El Niño heatwaves. Higher heat resistance in later bleaching events was detected in the dominant framework-building genus, Pocillopora, while other coral taxa exhibited similar susceptibility across events. Genetic analyses of Pocillopora spp. colonies and their algal symbionts (2014 to 2016) revealed that one of two Pocillopora lineages present in the region (Pocillopora "type 1") increased its association with thermotolerant algal symbionts (Durusdinium glynnii) during the 2015 to 2016 heat stress event. This lineage experienced lower bleaching and mortality compared with Pocillopora "type 3", which did not acquire D. glynnii. Under projected thermal stress, ETP reefs may be able to preserve high coral cover through the 2060s or later, mainly composed of Pocillopora colonies that associate with D. glynnii. However, although the low-diversity, high-cover reefs of the ETP could illustrate a potential functional state for some future reefs, this state may only be temporary unless global greenhouse gas emissions and resultant global warming are curtailed.
Assuntos
Antozoários , Recifes de Corais , Animais , Ecossistema , Resposta ao Choque Térmico , Oceanos e MaresRESUMO
Anomalously high ocean temperatures have increased in frequency, intensity, and duration over the last several decades because of greenhouse gas emissions that cause global warming and marine heatwaves. Reef-building corals are sensitive to such temperature anomalies that commonly lead to coral bleaching, mortality, and changes in community structure. Yet, despite these overarching effects, there are geographical differences in thermal regimes, evolutionary histories, and past disturbances that may lead to different bleaching responses of corals within and among oceans. Here we examined the overall bleaching responses of corals in the Atlantic, Indian, and Pacific Oceans, using both a spatially explicit Bayesian mixed-effects model and a deep-learning neural-network model. We used a 40-year global dataset encompassing 23,288 coral-reef surveys at 11,058 sites in 88 countries, from 1980 to 2020. Focusing on ocean-wide differences we assessed the relationships between the percentage of bleached corals and different temperature-related metrics alongside a suite of environmental variables. We found that while high sea-surface temperatures were consistently, and strongly, related to coral bleaching within all oceans, there were clear geographical differences in the relationships between coral bleaching and most environmental variables. For instance, there was an increase in coral bleaching with depth in the Atlantic Ocean whereas the opposite was observed in the Indian Ocean, and no clear trend could be seen in the Pacific Ocean. The standard deviation of thermal-stress anomalies was negatively related to coral bleaching in the Atlantic and Pacific Oceans, but not in the Indian Ocean. Globally, coral bleaching has progressively occurred at higher temperatures over the last four decades within the Atlantic, Indian, and Pacific Oceans, although, again, there were differences among the three oceans. Together, such patterns highlight that historical circumstances and geographical differences in oceanographic conditions play a central role in contemporary coral-bleaching responses.