Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.965
Filtrar
1.
Nucleic Acids Res ; 48(18): 10602-10613, 2020 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-32976557

RESUMO

Currently, predictive translation tuning of regulatory elements to the desired output of transcription factor (TF)-based biosensors remains a challenge. The gene expression of a biosensor system must exhibit appropriate translation intensity, which is controlled by the ribosome-binding site (RBS), to achieve fine-tuning of its dynamic range (i.e. fold change in gene expression between the presence and absence of inducer) by adjusting the translation level of the TF and reporter. However, existing TF-based biosensors generally suffer from unpredictable dynamic range. Here, we elucidated the connections and partial mechanisms between RBS, translation level, protein folding and dynamic range, and presented a design platform that predictably tuned the dynamic range of biosensors based on deep learning of large datasets cross-RBSs (cRBSs). In doing so, a library containing 7053 designed cRBSs was divided into five sub-libraries through fluorescence-activated cell sorting to establish a classification model based on convolutional neural network in deep learning. Finally, the present work exhibited a powerful platform to enable predictable translation tuning of RBS to the dynamic range of biosensors.


Assuntos
Técnicas Biossensoriais , Sequências Reguladoras de Ácido Nucleico/genética , Ribossomos/genética , Fatores de Transcrição/genética , Sítios de Ligação/genética , Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica/genética , Regiões Promotoras Genéticas/genética , Fatores de Transcrição/isolamento & purificação
2.
Nucleic Acids Res ; 48(16): 9301-9319, 2020 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-32813020

RESUMO

Stable protein complexes, including those formed with RNA, are major building blocks of every living cell. Escherichia coli has been the leading bacterial organism with respect to global protein-protein networks. Yet, there has been no global census of RNA/protein complexes in this model species of microbiology. Here, we performed Grad-seq to establish an RNA/protein complexome, reconstructing sedimentation profiles in a glycerol gradient for ∼85% of all E. coli transcripts and ∼49% of the proteins. These include the majority of small noncoding RNAs (sRNAs) detectable in this bacterium as well as the general sRNA-binding proteins, CsrA, Hfq and ProQ. In presenting use cases for utilization of these RNA and protein maps, we show that a stable association of RyeG with 30S ribosomes gives this seemingly noncoding RNA of prophage origin away as an mRNA of a toxic small protein. Similarly, we show that the broadly conserved uncharacterized protein YggL is a 50S subunit factor in assembled 70S ribosomes. Overall, this study crucially extends our knowledge about the cellular interactome of the primary model bacterium E. coli through providing global RNA/protein complexome information and should facilitate functional discovery in this and related species.


Assuntos
Complexos Multiproteicos/genética , Mapas de Interação de Proteínas/genética , Pequeno RNA não Traduzido/genética , RNA/genética , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica/genética , Fator Proteico 1 do Hospedeiro/genética , Proteínas de Ligação a RNA/genética , Proteínas Repressoras/genética , Ribossomos/genética
3.
Proc Natl Acad Sci U S A ; 117(35): 21647-21657, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32817433

RESUMO

Many bacteria cycle between sessile and motile forms in which they must sense and respond to internal and external signals to coordinate appropriate physiology. Maintaining fitness requires genetic networks that have been honed in variable environments to integrate these signals. The identity of the major regulators and how their control mechanisms evolved remain largely unknown in most organisms. During four different evolution experiments with the opportunist betaproteobacterium Burkholderia cenocepacia in a biofilm model, mutations were most frequently selected in the conserved gene rpfR RpfR uniquely integrates two major signaling systems-quorum sensing and the motile-sessile switch mediated by cyclic-di-GMP-by two domains that sense, respond to, and control the synthesis of the autoinducer cis-2-dodecenoic acid (BDSF). The BDSF response in turn regulates the activity of diguanylate cyclase and phosphodiesterase domains acting on cyclic-di-GMP. Parallel adaptive substitutions evolved in each of these domains to produce unique life history strategies by regulating cyclic-di-GMP levels, global transcriptional responses, biofilm production, and polysaccharide composition. These phenotypes translated into distinct ecology and biofilm structures that enabled mutants to coexist and produce more biomass than expected from their constituents grown alone. This study shows that when bacterial populations are selected in environments challenging the limits of their plasticity, the evolved mutations not only alter genes at the nexus of signaling networks but also reveal the scope of their regulatory functions.


Assuntos
Biofilmes/crescimento & desenvolvimento , Burkholderia cenocepacia/genética , Percepção de Quorum/genética , Proteínas de Bactérias/metabolismo , Burkholderia cenocepacia/crescimento & desenvolvimento , GMP Cíclico/análogos & derivados , GMP Cíclico/genética , Evolução Molecular Direcionada/métodos , Regulação Bacteriana da Expressão Gênica/genética , Mutação/genética , Fenótipo , Transdução de Sinais/genética , Virulência/genética
4.
Proc Natl Acad Sci U S A ; 117(35): 21628-21636, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32817529

RESUMO

Transcription is punctuated by RNA polymerase (RNAP) pausing. These pauses provide time for diverse regulatory events that can modulate gene expression. Transcription elongation factors dramatically affect RNAP pausing in vitro, but the genome-wide role of such factors on pausing has not been examined. Using native elongating transcript sequencing followed by RNase digestion (RNET-seq), we analyzed RNAP pausing in Bacillus subtilis genome-wide and identified an extensive role of NusG in pausing. This universally conserved transcription elongation factor is known as Spt5 in archaeal and eukaryotic organisms. B. subtilis NusG shifts RNAP to the posttranslocation register and induces pausing at 1,600 sites containing a consensus TTNTTT motif in the nontemplate DNA strand within the paused transcription bubble. The TTNTTT motif is necessary but not sufficient for NusG-dependent pausing. Approximately one-fourth of these pause sites were localized to untranslated regions and could participate in posttranscription initiation control of gene expression as was previously shown for tlrB and the trpEDCFBA operon. Most of the remaining pause sites were identified in protein-coding sequences. NusG-dependent pausing was confirmed for all 10 pause sites that we tested in vitro. Putative pause hairpins were identified for 225 of the 342 strongest NusG-dependent pause sites, and some of these hairpins were shown to function in vitro. NusG-dependent pausing in the ribD riboswitch provides time for cotranscriptional binding of flavin mononucleotide, which decreases the concentration required for termination upstream of the ribD coding sequence. Our phylogenetic analysis implicates NusG-dependent pausing as a widespread mechanism in bacteria.


Assuntos
Bacillus subtilis/genética , Proteínas de Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica/genética , Fatores de Alongamento de Peptídeos/genética , Fatores de Transcrição/genética , Proteínas de Bactérias/metabolismo , RNA Polimerases Dirigidas por DNA/metabolismo , Proteínas de Escherichia coli/metabolismo , Conformação de Ácido Nucleico , Óperon/genética , Fatores de Alongamento de Peptídeos/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Genética/genética , Fatores de Elongação da Transcrição/genética , Fatores de Elongação da Transcrição/metabolismo , Translocação Genética/genética
5.
Proc Natl Acad Sci U S A ; 117(34): 20926-20931, 2020 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-32747571

RESUMO

The circadian clock of cyanobacteria consists of only three clock proteins, KaiA, KaiB, and KaiC, which generate a circadian rhythm of KaiC phosphorylation in vitro. The adenosine triphosphatase (ATPase) activity of KaiC is the source of the 24-h period and temperature compensation. Although numerous circadian mutants of KaiC have been identified, the tuning mechanism of the 24-h period remains unclear. Here, we show that the circadian period of in vitro phosphorylation rhythm of mutants at position 402 of KaiC changed dramatically, from 15 h (0.6 d) to 158 h (6.6 d). The ATPase activities of mutants at position 402 of KaiC, without KaiA and KaiB, correlated with the frequencies (1/period), indicating that KaiC structure was the source of extra period change. Despite the wide-range tunability, temperature compensation of both the circadian period and the KaiC ATPase activity of mutants at position 402 of KaiC were nearly intact. We also found that in vivo and in vitro circadian periods and the KaiC ATPase activity of mutants at position 402 of KaiC showed a correlation with the side-chain volume of the amino acid at position 402 of KaiC. Our results indicate that residue 402 is a key position of determining the circadian period of cyanobacteria, and it is possible to dramatically alter the period of KaiC while maintaining temperature compensation.


Assuntos
Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Peptídeos e Proteínas de Sinalização do Ritmo Circadiano/genética , Peptídeos e Proteínas de Sinalização do Ritmo Circadiano/metabolismo , Ritmo Circadiano/genética , Adenosina Trifosfatases/metabolismo , Substituição de Aminoácidos/genética , Relógios Circadianos/genética , Cianobactérias/genética , Cianobactérias/metabolismo , Regulação Bacteriana da Expressão Gênica/genética , Mutação/genética , Fosforilação , Synechococcus/genética , Synechococcus/metabolismo
6.
Nucleic Acids Res ; 48(16): 9372-9386, 2020 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-32756896

RESUMO

GapR is a nucleoid-associated protein that is an essential regulator of chromosome replication in the cell cycle model Caulobacter crescentus. Here, we demonstrate that free GapR is a homotetramer, but not a dimer as previously reported (Guo et al., Cell 175: 583-597, 2018). We have determined the crystal structure of GapR in complex with a 10-bp A-tract DNA, which has an open tetrameric conformation, different from the closed clamp conformation in the previously reported crystal structure of GapR/DNA complex. The free GapR adopts multiple conformations in dynamic exchange equilibrium, with the major conformation resembling the closed tetrameric conformation, while the open tetrameric conformation is a representative of minor conformers. As it is impossible for the circular genomic DNA to get into the central DNA binding tunnel of the major conformation, we propose that GapR initially binds DNA through the open conformation, and then undergoes structural rearrangement to form the closed conformation which fully encircles the DNA. GapR prefers to bind DNA with 10-bp consecutive A/T base pairs nonselectively (Kd ∼12 nM), while it can also bind GC-rich DNA sequence with a reasonable affinity of about 120 nM. Besides, our results suggest that GapR binding results in widening the minor groove of AT-rich DNA, instead of overtwisting DNA.


Assuntos
Proteínas de Bactérias/genética , DNA/genética , Conformação Molecular , Sequência de Aminoácidos/genética , Proteínas de Bactérias/ultraestrutura , Caulobacter crescentus/genética , Caulobacter crescentus/ultraestrutura , Divisão Celular/genética , DNA/ultraestrutura , Regulação Bacteriana da Expressão Gênica/genética , Proteínas de Membrana/genética , Proteínas de Membrana/ultraestrutura , Conformação de Ácido Nucleico , Multimerização Proteica/genética
7.
Proc Natl Acad Sci U S A ; 117(34): 20836-20847, 2020 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-32769205

RESUMO

The type VII protein secretion system (T7SS) is conserved across Staphylococcus aureus strains and plays important roles in virulence and interbacterial competition. To date, only one T7SS substrate protein, encoded in a subset of S. aureus genomes, has been functionally characterized. Here, using an unbiased proteomic approach, we identify TspA as a further T7SS substrate. TspA is encoded distantly from the T7SS gene cluster and is found across all S. aureus strains as well as in Listeria and Enterococci. Heterologous expression of TspA from S. aureus strain RN6390 indicates its C-terminal domain is toxic when targeted to the Escherichia coli periplasm and that it depolarizes the cytoplasmic membrane. The membrane-depolarizing activity is alleviated by coproduction of the membrane-bound TsaI immunity protein, which is encoded adjacent to tspA on the S. aureus chromosome. Using a zebrafish hindbrain ventricle infection model, we demonstrate that the T7SS of strain RN6390 promotes bacterial replication in vivo, and deletion of tspA leads to increased bacterial clearance. The toxin domain of TspA is highly polymorphic and S. aureus strains encode multiple tsaI homologs at the tspA locus, suggestive of additional roles in intraspecies competition. In agreement, we demonstrate TspA-dependent growth inhibition of RN6390 by strain COL in the zebrafish infection model that is alleviated by the presence of TsaI homologs.


Assuntos
Staphylococcus aureus/metabolismo , Sistemas de Secreção Tipo VII/metabolismo , Animais , Antígenos de Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Membrana Celular/metabolismo , Regulação Bacteriana da Expressão Gênica/genética , Proteínas de Membrana/metabolismo , Família Multigênica/genética , Transporte Proteico/genética , Proteômica , Infecções Estafilocócicas/microbiologia , Toxinas Biológicas/metabolismo , Sistemas de Secreção Tipo VII/fisiologia , Virulência/genética , Peixe-Zebra/microbiologia
8.
Proc Natl Acad Sci U S A ; 117(34): 20826-20835, 2020 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-32788349

RESUMO

Bacterial flagella differ in their number and spatial arrangement. In many species, the MinD-type ATPase FlhG (also YlxH/FleN) is central to the numerical control of bacterial flagella, and its deletion in polarly flagellated bacteria typically leads to hyperflagellation. The molecular mechanism underlying this numerical control, however, remains enigmatic. Using the model species Shewanella putrefaciens, we show that FlhG links assembly of the flagellar C ring with the action of the master transcriptional regulator FlrA (named FleQ in other species). While FlrA and the flagellar C-ring protein FliM have an overlapping binding site on FlhG, their binding depends on the ATP-dependent dimerization state of FlhG. FliM interacts with FlhG independent of nucleotide binding, while FlrA exclusively interacts with the ATP-dependent FlhG dimer and stimulates FlhG ATPase activity. Our in vivo analysis of FlhG partner switching between FliM and FlrA reveals its mechanism in the numerical restriction of flagella, in which the transcriptional activity of FlrA is down-regulated through a negative feedback loop. Our study demonstrates another level of regulatory complexity underlying the spationumerical regulation of flagellar biogenesis and implies that flagellar assembly transcriptionally regulates the production of more initial building blocks.


Assuntos
Proteínas de Bactérias/metabolismo , Flagelos/genética , Flagelos/metabolismo , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo , Bactérias/metabolismo , Fenômenos Bioquímicos , Expressão Gênica/genética , Regulação Bacteriana da Expressão Gênica/genética , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Shewanella putrefaciens/genética , Shewanella putrefaciens/metabolismo
9.
PLoS One ; 15(8): e0238151, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32833990

RESUMO

Bacteria often possess relatively flexible genome structures and adaptive genetic variants that allow survival in unfavorable growth conditions. Bacterial survival tactics in disadvantageous microenvironments include mutations that are beneficial against threats in their niche. Here, we report that the aerobic rice bacterial pathogen Burkholderia glumae BGR1 changes a specific gene for improved survival in static culture conditions. Static culture triggered formation of colony variants with deletions or point mutations in the gene bspP (BGLU_RS28885), which putatively encodes a protein that contains PDC2, PAS-9, SpoIIE, and HATPase domains. The null mutant of bspP survived longer in static culture conditions and produced a higher level of bis-(3'-5')-cyclic dimeric guanosine monophosphate than the wild type. Expression of the bacterial cellulose synthase regulator (bcsB) gene was upregulated in the mutant, consistent with the observation that the mutant formed pellicles faster than the wild type. Mature pellicle formation was observed in the bspP mutant before pellicle formation in wild-type BGR1. However, the population density of the bspP null mutant decreased substantially when grown in Luria-Bertani medium with vigorous agitation due to failure of oxalate-mediated detoxification of the alkaline environment. The bspP null mutant was less virulent and exhibited less effective colonization of rice plants than the wild type. All phenotypes caused by mutations in bspP were recovered to those of the wild type by genetic complementation. Thus, although wild-type B. glumae BGR1 prolonged viability by spontaneous mutation under static culture conditions, such genetic changes negatively affected colonization in rice plants. These results suggest that adaptive gene sacrifice of B. glumae to survive unfavorable growth conditions is not always desirable as it can adversely affect adaptability in the host.


Assuntos
Adaptação Biológica/genética , Burkholderia/genética , Burkholderia/metabolismo , Burkholderia/patogenicidade , Regulação Bacteriana da Expressão Gênica/genética , Genoma Bacteriano/genética , Genômica/métodos , Mutação , Oryza/microbiologia , Doenças das Plantas/microbiologia , Percepção de Quorum/genética , Virulência/genética
10.
PLoS Pathog ; 16(7): e1008672, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32706832

RESUMO

Most clinical MRSA (methicillin-resistant S. aureus) isolates exhibit low-level ß-lactam resistance (oxacillin MIC 2-4 µg/ml) due to the acquisition of a novel penicillin binding protein (PBP2A), encoded by mecA. However, strains can evolve high-level resistance (oxacillin MIC ≥256 µg/ml) by an unknown mechanism. Here we have developed a robust system to explore the basis of the evolution of high-level resistance by inserting mecA into the chromosome of the methicillin-sensitive S. aureus SH1000. Low-level mecA-dependent oxacillin resistance was associated with increased expression of anaerobic respiratory and fermentative genes. High-level resistant derivatives had acquired mutations in either rpoB (RNA polymerase subunit ß) or rpoC (RNA polymerase subunit ß') and these mutations were shown to be responsible for the observed resistance phenotype. Analysis of rpoB and rpoC mutants revealed decreased growth rates in the absence of antibiotic, and alterations to, transcription elongation. The rpoB and rpoC mutations resulted in decreased expression to parental levels, of anaerobic respiratory and fermentative genes and specific upregulation of 11 genes including mecA. There was however no direct correlation between resistance and the amount of PBP2A. A mutational analysis of the differentially expressed genes revealed that a member of the S. aureus Type VII secretion system is required for high level resistance. Interestingly, the genomes of two of the high level resistant evolved strains also contained missense mutations in this same locus. Finally, the set of genetically matched strains revealed that high level antibiotic resistance does not incur a significant fitness cost during pathogenesis. Our analysis demonstrates the complex interplay between antibiotic resistance mechanisms and core cell physiology, providing new insight into how such important resistance properties evolve.


Assuntos
Proteínas de Bactérias/genética , RNA Polimerases Dirigidas por DNA/genética , Regulação Bacteriana da Expressão Gênica/genética , Staphylococcus aureus Resistente à Meticilina/genética , Proteínas de Ligação às Penicilinas/genética , Resistência beta-Lactâmica/genética , Antibacterianos/farmacologia , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos
11.
RNA ; 26(10): 1431-1447, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32611709

RESUMO

RNA structure influences numerous processes in all organisms. In bacteria, these processes include transcription termination and attenuation, small RNA and protein binding, translation initiation, and mRNA stability, and can be regulated via metabolite availability and other stresses. Here we use Structure-seq2 to probe the in vivo RNA structurome of Bacillus subtilis grown in the presence and absence of amino acids. Our results reveal that amino acid starvation results in lower overall dimethyl sulfate (DMS) reactivity of the transcriptome, indicating enhanced protection owing to protein binding or RNA structure. Starvation-induced changes in DMS reactivity correlated inversely with transcript abundance changes. This correlation was particularly pronounced in genes associated with the stringent response and CodY regulons, which are involved in adaptation to nutritional stress, suggesting that RNA structure contributes to transcript abundance change in regulons involved in amino acid metabolism. Structure-seq2 accurately reported on four known amino acid-responsive riboswitches: T-box, SAM, glycine, and lysine riboswitches. Additionally, we discovered a transcription attenuation mechanism that reduces yfmG expression when amino acids are added to the growth medium. We also found that translation of a leader peptide (YfmH) encoded just upstream of yfmG regulates yfmG expression. Our results are consistent with a model in which a slow rate of yfmH translation caused by limitation of the amino acids encoded in YfmH prevents transcription termination in the yfmG leader region by favoring formation of an overlapping antiterminator structure. This novel RNA switch offers a way to simultaneously monitor the levels of multiple amino acids.


Assuntos
Aminoácidos/genética , Bacillus subtilis/genética , Proteínas de Bactérias/genética , RNA Bacteriano/genética , Regulação Bacteriana da Expressão Gênica/genética , Conformação de Ácido Nucleico , Estabilidade de RNA/genética , Transcrição Genética/genética , Transcriptoma/genética
12.
PLoS Genet ; 16(7): e1008610, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32716926

RESUMO

Two-component systems and phosphorelays play central roles in the ability of bacteria to rapidly respond to changing environments. In E. coli and related enterobacteria, the complex Rcs phosphorelay is a critical player in the bacterial response to antimicrobial peptides, beta-lactam antibiotics, and other disruptions at the cell surface. The Rcs system is unusual in that an inner membrane protein, IgaA, is essential due to its negative regulation of the RcsC/RcsD/RcsB phosphorelay. While it is known that IgaA transduces signals from the outer membrane lipoprotein RcsF, how it interacts with the phosphorelay has remained unknown. Here we performed in vivo interaction assays and genetic dissection of the critical proteins and found that IgaA interacts with the phosphorelay protein RcsD, and that this interaction is necessary for regulation. Interactions between IgaA and RcsD within their respective periplasmic domains of these two proteins anchor repression of signaling. However, the signaling response depends on a second interaction between cytoplasmic loop 1 of IgaA and a truncated Per-Arndt-Sim (PAS-like) domain in RcsD. A single point mutation in the PAS-like domain increased interactions between the two proteins and blocked induction of the phosphorelay. IgaA may regulate RcsC, the histidine kinase that initiates phosphotransfer through the phosphorelay, indirectly, via its contacts with RcsD. Unlike RcsD, and unlike many other histidine kinases, the periplasmic domain of RcsC is dispensable for the response to signals that induce the Rcs phosphorelay system. The multiple contacts between IgaA and RcsD constitute a poised sensing system, preventing potentially toxic over-activation of this phosphorelay while enabling it to rapidly and quantitatively respond to signals.


Assuntos
Proteínas de Escherichia coli/genética , Proteínas de Membrana/genética , Fosfoproteínas/genética , Fosfotransferases/genética , Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica/genética , Complexos Multienzimáticos/genética , Fosforilação/genética , Transporte Proteico/genética , Salmonella typhimurium/genética , Transdução de Sinais/genética
13.
PLoS Genet ; 16(7): e1008779, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32730248

RESUMO

Staphylococcus aureus is an opportunistic pathogen that can grow in a wide array of conditions: on abiotic surfaces, on the skin, in the nose, in planktonic or biofilm forms and can cause many type of infections. Consequently, S. aureus must be able to adapt rapidly to these changing growth conditions, an ability largely driven at the posttranscriptional level. RNA helicases of the DEAD-box family play an important part in this process. In particular, CshA, which is part of the degradosome, is required for the rapid turnover of certain mRNAs and its deletion results in cold-sensitivity. To understand the molecular basis of this phenotype, we conducted a large genetic screen isolating 82 independent suppressors of cold growth. Full genome sequencing revealed the fatty acid synthesis pathway affected in many suppressor strains. Consistent with that result, sublethal doses of triclosan, a FASII inhibitor, can partially restore growth of a cshA mutant in the cold. Overexpression of the genes involved in branched-chain fatty acid synthesis was also able to suppress the cold-sensitivity. Using gas chromatography analysis of fatty acids, we observed an imbalance of straight and branched-chain fatty acids in the cshA mutant, compared to the wild-type. This imbalance is compensated in the suppressor strains. Thus, we reveal for the first time that the cold sensitive growth phenotype of a DEAD-box mutant can be explained, at least partially, by an improper membrane composition. The defect correlates with an accumulation of the pyruvate dehydrogenase complex mRNA, which is inefficiently degraded in absence of CshA. We propose that the resulting accumulation of acetyl-CoA fuels straight-chained fatty acid production at the expense of the branched ones. Strikingly, addition of acetate into the medium mimics the cshA deletion phenotype, resulting in cold sensitivity suppressed by the mutations found in our genetic screen or by sublethal doses of triclosan.


Assuntos
RNA Helicases DEAD-box/genética , Ácidos Graxos/metabolismo , Infecções Estafilocócicas/genética , Staphylococcus aureus/genética , Proteínas de Bactérias/genética , Biofilmes/crescimento & desenvolvimento , Ácidos Graxos/genética , Regulação Bacteriana da Expressão Gênica/genética , Humanos , Proteínas de Membrana/genética , RNA Mensageiro/genética , Infecções Estafilocócicas/microbiologia , Infecções Estafilocócicas/patologia , Staphylococcus aureus/patogenicidade
14.
Sci Rep ; 10(1): 9397, 2020 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-32523028

RESUMO

Pathogenicity islands (PAIs) represent horizontally acquired chromosomal regions and encode their cognate integrase, which mediates chromosomal integration and excision of the island. These site-specific recombination reactions have to be tightly controlled to maintain genomic stability, and their directionality depends on accessory proteins. The integration host factor (IHF) and the factor for inversion stimulation (Fis) are often involved in recombinogenic complex formation and controlling the directionality of the recombination reaction. We investigated the role of the accessory host factors IHF and Fis in controlling the stability of six PAIs in uropathogenic Escherichia coli strain 536. By comparing the loss of individual PAIs in the presence or absence of IHF or Fis, we showed that IHF specifically stabilized PAI I536 and that in particular the IHFB subunit seems to be important for this function. We employed complex genetic studies to address the role of IHF in PAI I536-encoded integrase (IntI) expression. Based on different YFP-reporter constructs and electrophoretic mobility shift assays we demonstrated that IntI acts a strong repressor of its own synthesis, and that IHF binding to the intI promoter region reduces the probability of intI promoter activation. Our results extend the current knowledge of the role of IHF in controlling directionality of site specific recombination reactions and thus PAI stability.


Assuntos
Proteínas de Escherichia coli/genética , Ilhas Genômicas/genética , Integrases/genética , Fatores Hospedeiros de Integração/genética , Regiões Promotoras Genéticas/genética , Escherichia coli Uropatogênica/genética , Escherichia coli Uropatogênica/patogenicidade , Fator Proteico para Inversão de Estimulação/genética , Regulação Bacteriana da Expressão Gênica/genética , Recombinação Genética/genética
15.
Sci Rep ; 10(1): 9425, 2020 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-32523077

RESUMO

Neisseria gonorrhoeae, the causative agent of gonorrhea, is an exclusive human pathogen whose growing antibiotic resistance is causing worldwide concern. The increasing rise of antibiotic resistance expressed by gonococci highlights the need to find alternative approaches to current gonorrhea treatment such as vaccine development or novel therapeutics. The gonococcal OmpA protein was previously identified as a potential vaccine candidate due to its conservation and stable expression amongst strains of Neisseria gonorrhoeae. However, factors that might modulate levels of OmpA and therefore potential vaccine efficacy are unknown. Earlier work indicated that ompA is part of the MisR/MisS regulon and suggested that it was a MisR-activated gene. Herein, we confirmed MisR/MisS regulation of ompA and report that the MisR response regulator can bind upstream of the ompA translational start codon. Further, we describe the contribution of a DNA sequence upstream of the ompA promoter that is critical for MisR activation of ompA transcription. Our results provide a framework for understanding the transcription of gonococcal ompA through a regulatory system known to be important for survival of gonococci during experimental infection.


Assuntos
Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica/genética , Neisseria gonorrhoeae/genética , Sequências Reguladoras de Ácido Nucleico/genética , Transcrição Genética/genética , Regiões Promotoras Genéticas/genética , Regulon/genética
16.
PLoS One ; 15(6): e0234306, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32555615

RESUMO

Moraxella catarrhalis is a human-adapted, opportunistic bacterial pathogen of the respiratory mucosa. Although asymptomatic colonization of the nasopharynx is common, M. catarrhalis can ascend into the middle ear, where it is a prevalent causative agent of otitis media in children, or enter the lower respiratory tract, where it is associated with acute exacerbations of chronic obstructive pulmonary disease in adults. Phase variation is the high frequency, random, reversible switching of gene expression that allows bacteria to adapt to different host microenvironments and evade host defences, and is most commonly mediated by simple DNA sequence repeats. Bioinformatic analysis of five closed M. catarrhalis genomes identified 17 unique simple DNA sequence repeat tracts that were variable between strains, indicating the potential to mediate phase variable expression of the associated genes. Assays designed to assess simple sequence repeat variation under conditions mimicking host infection demonstrated that phase variation of uspA1 (ubiquitous surface protein A1) from high to low expression occurs over 72 hours of biofilm passage, while phase variation of uspA2 (ubiquitous surface protein A2) to high expression variants occurs during repeated exposure to human serum, as measured by mRNA levels. We also identify and confirm the variable expression of two novel phase variable genes encoding a Type III DNA methyltransferase (modO), and a conserved hypothetical permease (MC25239_RS00020). These data reveal the repertoire of phase variable genes mediated by simple sequence repeats in M. catarrhalis and demonstrate that modulation of expression under conditions mimicking human infection is attributed to changes in simple sequence repeat length.


Assuntos
Regulação Bacteriana da Expressão Gênica/genética , Moraxella catarrhalis/genética , Aderência Bacteriana/genética , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Expressão Gênica/genética , Humanos , Repetições de Microssatélites/genética , Moraxella catarrhalis/patogenicidade , Infecções por Moraxellaceae , Otite Média/microbiologia , Sequências Repetitivas de Ácido Nucleico/genética
17.
Gene ; 755: 144883, 2020 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-32565321

RESUMO

The anti-anti-sigma factor BldG has a pleiotropic function in Streptomyces coelicolor A3(2), regulating both morphological and physiological differentiation. Together with the anti-sigma factor UshX, it participates in a partner-switching activation of the sigma factor σH, which has a dual role in the osmotic stress response and morphological differentiation in S. coelicolor A3(2). In addition to UshX, BldG also interacts with the anti-sigma factor ApgA, although no target sigma factor has yet been identified. However, neither UshX nor ApgA phosphorylates BldG. This phosphorylation is provided by the anti-sigma factor RsfA, which is specific for the late developmental sigma factor σF. However, BldG is phosphorylated in the rsfA mutant, suggesting that some other anti-sigma factors containing HATPase_c kinase domain are capable to phosphorylate BldG in vivo. Bacterial two-hybrid system (BACTH) was therefore used to investigate the interactions of all suitable anti-sigma factors of S. coelicolor A3(2) with BldG. At least 15 anti-sigma factors were found to interact with BldG. These interactions were confirmed by native PAGE. In addition to RsfA, BldG is specifically phosphorylated on the conserved phosphorylation Ser57 residue by at least seven additional anti-sigma factors. However, only one of them, SCO7328, has been shown to interact with three sigma factors, σG, σK and σM. A mutant with deleted SCO7328 gene was prepared in S. coelicolor A3(2), however, no specific function of SCO7328 in growth, differentiation or stress response could be attributed to this anti-sigma factor. These results suggest that BldG is specifically phosphorylated by several anti-sigma factors and it plays a role in the regulation of several sigma factors in S. coelicolor A3(2). This suggests a complex regulation of the stress response and differentiation in S. coelicolor A3(2) through this pleiotropic anti-sigma factor.


Assuntos
Fator sigma/genética , Streptomyces coelicolor/imunologia , Streptomyces coelicolor/metabolismo , Sequência de Aminoácidos/genética , Anticorpos Anti-Idiotípicos/imunologia , Anticorpos Anti-Idiotípicos/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sequência de Bases/genética , Regulação Bacteriana da Expressão Gênica/genética , Pleiotropia Genética/genética , Fosforilação/genética , Fosfotransferases/metabolismo , Regiões Promotoras Genéticas/genética , Fator sigma/imunologia , Fator sigma/metabolismo , Streptomyces/genética , Streptomyces coelicolor/genética , Transcrição Genética/genética
18.
Gene ; 755: 144909, 2020 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-32569720

RESUMO

In the microbial world, bacteria are the most effective agents in petroleum hydrocarbons (PHs) degradation, utilization/mineralization and they serve as essential degraders of crude oil contaminated environment. Some genes and traits are involved in the hydrocarbon utilization process for which transcriptome analyses are important to identify differentially expressed genes (DEGs) among different conditions, leading to a new understanding of genes or pathways associated with crude oil degradation. In this work, three crude oil utilizing Pseudomonas aeruginosa strains designated as N002, TP16 and J001 subjected to transcriptome analyses revealed a total of 81, 269 and 137 significant DEGs. Among them are 80 up-regulated genes and one downregulated gene of N002, 121 up- regulated and 148 down-regulated genes of TP16, 97 up-regulated and 40 down-regulated genes of J001 which are involved in various metabolic pathways. TP16 strain has shown more number of DEGs upon crude oil treatment in comparison to the other two strains. Through quantitative real time polymerase chain reaction (qRT-PCR), the selected DEGs of each strain from transcriptome data were substantiated. The results have shown that the up- regulated and down-regulated genes observed by qRT-PCR were consistent with transcriptome data. Taken together, our transcriptome results have revealed that TP16 is a potential P. aeruginosa strain for functional analysis of identified potential DEGs involved in crude oil degradation.


Assuntos
Biodegradação Ambiental , Petróleo/microbiologia , Pseudomonas aeruginosa/genética , Bactérias/genética , Regulação para Baixo , Poluentes Ambientais/efeitos adversos , Perfilação da Expressão Gênica/métodos , Regulação Bacteriana da Expressão Gênica/genética , Hidrocarbonetos/metabolismo , Transcriptoma/genética , Regulação para Cima
19.
Arch Microbiol ; 202(8): 2135-2145, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32519019

RESUMO

In Pakistan, 55% of textile exports are contributed by textile-units of Faisalabad. The effluents of these textile units, being discharged without any treatment, contain the contamination of a huge amount of synthetic azo dyes. The objective of the current research was to evaluate the contribution of an azoreductase-encoding gene (azrS) from a pre-characterized azo dye decolorizing bacterial strain Bacillus sp. MR-1/2 in a high copy number host system (pUC19-T7-Top-T) of Escherichia coli strain DH5α followed by in-silico prediction of azoreductase enzyme (AzrS) function. The recombinant cells that contained azrS had a significantly higher rate of color removal in congo red and reactive black-5 dyes when compared to wild-type MR-1/2 and E. coli DH5α after 72 h of incubation. Moreover, we were able to show that the recombinant strain significantly reduced the values of all tested parameters (pH, EC, turbidity, TSS, and COD) in actual wastewater. In support of our results, it was also predicted through bioinformatics analysis that the deduced azoreductase protein of strain MR-1/2 is linked with the dye decolorization ability of the strain through NAD(P)H-ubiquinone: oxidoreductase activity. Furthermore, we also found that the deduced protein resembled closely related proteins of protein databank in many features, yet some unique features were predicted in the enzyme activity of strain MR-1/2. It was concluded that the recombinant strain could be examined in pilot-scale experiments for textile wastewater treatment.


Assuntos
Compostos Azo/metabolismo , Bacillus/enzimologia , Bacillus/genética , NADH NADPH Oxirredutases/genética , NADH NADPH Oxirredutases/metabolismo , Águas Residuárias/microbiologia , Purificação da Água , Compostos Azo/química , Biodegradação Ambiental , Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica/genética , Paquistão
20.
Nat Chem Biol ; 16(8): 834-840, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32393900

RESUMO

Bifunctional Rel stringent factors, the most abundant class of RelA/SpoT homologs, are ribosome-associated enzymes that transfer a pyrophosphate from ATP onto the 3' of guanosine tri-/diphosphate (GTP/GDP) to synthesize the bacterial alarmone (p)ppGpp, and also catalyze the 3' pyrophosphate hydrolysis to degrade it. The regulation of the opposing activities of Rel enzymes is a complex allosteric mechanism that remains an active research topic despite decades of research. We show that a guanine-nucleotide-switch mechanism controls catalysis by Thermus thermophilus Rel (RelTt). The binding of GDP/ATP opens the N-terminal catalytic domains (NTD) of RelTt (RelTtNTD) by stretching apart the two catalytic domains. This activates the synthetase domain and allosterically blocks hydrolysis. Conversely, binding of ppGpp to the hydrolase domain closes the NTD, burying the synthetase active site and precluding the binding of synthesis precursors. This allosteric mechanism is an activity switch that safeguards against futile cycles of alarmone synthesis and degradation.


Assuntos
Proteínas Proto-Oncogênicas c-rel/genética , Proteínas Proto-Oncogênicas c-rel/metabolismo , Sequência de Aminoácidos , Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Domínio Catalítico , Regulação Bacteriana da Expressão Gênica/genética , Genes rel/genética , Guanosina Pentafosfato/metabolismo , Guanosina Tetrafosfato/metabolismo , Hidrolases/metabolismo , Ligases/metabolismo , Ligases/fisiologia , Nucleotídeos/metabolismo , Ribossomos/metabolismo , Thermus thermophilus/enzimologia , Thermus thermophilus/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA