Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 128.871
Filtrar
1.
Shanghai Kou Qiang Yi Xue ; 29(3): 267-274, 2020 Jun.
Artigo em Chinês | MEDLINE | ID: mdl-33043343

RESUMO

PURPOSE: To investigate the molecular mechanism of LncRNA NEAT1 regulating proliferation, migration and invasion of tongue squamous cell carcinoma cells by regulating miR-339-5p/ITGA3 axis. METHODS: qRT-PCR and Western blot were used to detect the expression of NEAT1, miR-339-5p, ITGA3 mRNA and ITGA3 protein in 25 cases of human tongue squamous cell carcinoma, its corresponding adjacent tissues, human normal oral mucosal cell line HOK and human tongue squamous cell carcinoma cell lines TSCCA, CAL27, SCC15 and HN13. CAL27 cell lines that inhibited NEAT1 and overexpressed miR-339-5p were constructed, respectively. Cell viability was detected by MTT assay, cell numbers of migration and invasion were detected by Transwell assay, and the expression of Cyclin D1 and MMP-9 proteins were detected by Western blotting. The dual luciferase reporter gene was used to verify the targeting relationship of NEAT1, miR-339-5p and ITGA3, and the regulatory relationship was detected by Western blotting and qRT-PCR. SPSS 17.0 software package was used for statistical analysis of the data. RESULTS: Compared with normal human oral mucosal cell line HOK, the expression of NEAT1 and ITGA3 was up-regulated, while the expression of miR-339-5p was down-regulated in human tongue squamous cell carcinoma cell lines. Inhibition of NEAT1 or over-expression of miR-339-5p significantly inhibited proliferation, migration and invasion of CAL27 cells, and significantly inhibited expression of Cyclin D1 and MMP-9 proteins. Dual luciferase reporter gene assay confirmed that NEAT1 directly interacted with miR-339-5p and suppressed its expression. miR-339-5p negatively regulated ITGA3 expression. Inhibition of NEAT1 reversed the inhibitory effect of the inhibition of miR-339-5p on proliferation, migration and invasion of CAL27 cells. CONCLUSIONS: LncRNA NEAT1 promotes proliferation, migration and invasion of tongue squamous cell carcinoma cells by down-regulating miR-339-5p/ITGA3 axis.


Assuntos
Carcinoma de Células Escamosas , MicroRNAs , RNA Longo não Codificante/fisiologia , Carcinoma de Células Escamosas/genética , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Humanos , Integrina alfa3 , MicroRNAs/genética , RNA Longo não Codificante/genética
2.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 45(9): 1053-1060, 2020.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-33051418

RESUMO

OBJECTIVES: Hepatocellular carcinoma (HCC) is one of the most common malignant tumors worldwide, especially in Asia and Africa. However, the underlying mechanism is still unclear. Consequently, it is important to explore its key genes and prognosis-related genes via bioinformatics. This study aimed to explore the molecular mechanism of HCC by using bioinformatics analysis for HCC gene chip data. METHODS: Microarray data of HCC genes were downloaded from public GEO database and screened for differentially expressed genes (DEGs) by GEO2R analysis. Then DAVID online tool was used for GO annotation and KEGG pathway enrichment analysis. STRING-DB online database and Cytoscape software were used for protein interaction network analysis.GEPIA and Ualcan were applied to evaluate prognosis and promoter methylation level. RESULTS: A total of 87 DEGs of HCC were screened, of which 15 genes were up-regulated and 72 genes were down-regulated. GO annotation indicated that most of the genes were involved in oxidation reduction,cellular amino acid derivative metabolic process, carboxylic acid catabolic process, and response to wounding. KEGG pathways were enriched in linoleic acid metabolism, retinol metabolism, complement and coagulation cascades,steroid hormone biosynthesis, drug metabolism, and other pathways. Two key modules and key genes AURKA and SPP2 were obtained by protein interaction network analysis. Prognostic analysis showed that the 2 genes were significantly correlated with the total survival time of patients with HCC. There was no significant difference in the methylation level of AURKA promoter between the primary tumor group and the normal group (P=0.296) and the methylation level of SPP2 promoter was significantly lower in the primary tumor group than that in the normal group (P<0.001). CONCLUSIONS: HCC-relevant AURKA and SPP2 are obtained via bioinformatics analysis, which are closely related to the prognosis of patients with HCC. Gene promoter methylation is not the main factor for AURKA and SPP2 expression levels.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Carcinoma Hepatocelular/genética , Biologia Computacional , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Neoplasias Hepáticas/genética , Análise de Sequência com Séries de Oligonucleotídeos , Fosfoproteínas
3.
BMC Bioinformatics ; 21(Suppl 14): 368, 2020 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-32998690

RESUMO

BACKGROUND: Lung cancer is the leading cause of the largest number of deaths worldwide and lung adenocarcinoma is the most common form of lung cancer. In order to understand the molecular basis of lung adenocarcinoma, integrative analysis have been performed by using genomics, transcriptomics, epigenomics, proteomics and clinical data. Besides, molecular prognostic signatures have been generated for lung adenocarcinoma by using gene expression levels in tumor samples. However, we need signatures including different types of molecular data, even cohort or patient-based biomarkers which are the candidates of molecular targeting. RESULTS: We built an R pipeline to carry out an integrated meta-analysis of the genomic alterations including single-nucleotide variations and the copy number variations, transcriptomics variations through RNA-seq and clinical data of patients with lung adenocarcinoma in The Cancer Genome Atlas project. We integrated significant genes including single-nucleotide variations or the copy number variations, differentially expressed genes and those in active subnetworks to construct a prognosis signature. Cox proportional hazards model with Lasso penalty and LOOCV was used to identify best gene signature among different gene categories. We determined a 12-gene signature (BCHE, CCNA1, CYP24A1, DEPTOR, MASP2, MGLL, MYO1A, PODXL2, RAPGEF3, SGK2, TNNI2, ZBTB16) for prognostic risk prediction based on overall survival time of the patients with lung adenocarcinoma. The patients in both training and test data were clustered into high-risk and low-risk groups by using risk scores of the patients calculated based on selected gene signature. The overall survival probability of these risk groups was highly significantly different for both training and test datasets. CONCLUSIONS: This 12-gene signature could predict the prognostic risk of the patients with lung adenocarcinoma in TCGA and they are potential predictors for the survival-based risk clustering of the patients with lung adenocarcinoma. These genes can be used to cluster patients based on molecular nature and the best candidates of drugs for the patient clusters can be proposed. These genes also have a high potential for targeted cancer therapy of patients with lung adenocarcinoma.


Assuntos
Adenocarcinoma de Pulmão/patologia , Genômica/métodos , Neoplasias Pulmonares/patologia , Transcriptoma , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/mortalidade , Área Sob a Curva , Análise por Conglomerados , Variações do Número de Cópias de DNA , Bases de Dados Genéticas , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/mortalidade , Estadiamento de Neoplasias , Prognóstico , Modelos de Riscos Proporcionais , Mapas de Interação de Proteínas/genética , Curva ROC , Fatores de Risco , Taxa de Sobrevida
4.
BMC Bioinformatics ; 21(Suppl 14): 364, 2020 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-32998700

RESUMO

BACKGROUND: Machine learning has been utilized to predict cancer drug response from multi-omics data generated from sensitivities of cancer cell lines to different therapeutic compounds. Here, we build machine learning models using gene expression data from patients' primary tumor tissues to predict whether a patient will respond positively or negatively to two chemotherapeutics: 5-Fluorouracil and Gemcitabine. RESULTS: We focused on 5-Fluorouracil and Gemcitabine because based on our exclusion criteria, they provide the largest numbers of patients within TCGA. Normalized gene expression data were clustered and used as the input features for the study. We used matching clinical trial data to ascertain the response of these patients via multiple classification methods. Multiple clustering and classification methods were compared for prediction accuracy of drug response. Clara and random forest were found to be the best clustering and classification methods, respectively. The results show our models predict with up to 86% accuracy; despite the study's limitation of sample size. We also found the genes most informative for predicting drug response were enriched in well-known cancer signaling pathways and highlighted their potential significance in chemotherapy prognosis. CONCLUSIONS: Primary tumor gene expression is a good predictor of cancer drug response. Investment in larger datasets containing both patient gene expression and drug response is needed to support future work of machine learning models. Ultimately, such predictive models may aid oncologists with making critical treatment decisions.


Assuntos
Antineoplásicos/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Aprendizado de Máquina , Antineoplásicos/uso terapêutico , Área Sob a Curva , Análise por Conglomerados , Bases de Dados Genéticas , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacologia , Desoxicitidina/uso terapêutico , Fluoruracila/uso terapêutico , Humanos , Neoplasias/tratamento farmacológico , Curva ROC
5.
Urol Clin North Am ; 47(4): 469-474, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33008497

RESUMO

Multiple immunologic platforms have provided minimal impact in patients with metastatic castration-resistant prostate cancer, necessitating that novel approaches continue to be developed. Although checkpoint inhibitors have been largely ineffective, there remain small cohorts of patients who have durable responses but lack the conventional indicators for response to this class of drugs, that is, high mutational burden or significant genomic alterations, as seen in other solid tumors. This article presents an update on the evolution of immunotherapeutics that target a more lethal form of prostate cancer and provides the groundwork for future considerations as to how this field should proceed.


Assuntos
Quinases Ciclina-Dependentes/genética , Regulação Neoplásica da Expressão Gênica , Imunoterapia/métodos , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/terapia , Idoso , Produtos Biológicos/uso terapêutico , Vacinas Anticâncer/administração & dosagem , Quinases Ciclina-Dependentes/efeitos dos fármacos , Humanos , Masculino , Pessoa de Meia-Idade , Invasividade Neoplásica/patologia , Estadiamento de Neoplasias , Fenótipo , Medicina de Precisão/métodos , Prognóstico , Neoplasias de Próstata Resistentes à Castração/patologia , Análise de Sobrevida , Resultado do Tratamento , Microambiente Tumoral/efeitos dos fármacos
6.
Tumour Biol ; 42(9): 1010428320954735, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32873193

RESUMO

Acute myeloid leukemia is the most common form of acute leukemia in adults, constituting about 80% of cases. Although remarkable progress has been made in the therapeutic scenario for patients with acute myeloid leukemia, research and development of new and effective anticancer agents to improve patient outcome and minimize toxicity is needed. In this study, the antitumor activity of axolotl (AXO) Ambystoma mexicanum crude extract was assessed in vitro on the human acute myeloid leukemia HL-60 cell line. The anticancer activity was evaluated in terms of ability to influence proliferative activity, cell viability, cell cycle arrest, and differentiation. Moreover, gene expression analysis was performed to evaluate the genes involved in the regulation of these processes. The AXO crude extract exhibited antiproliferative but not cytotoxic activities on HL-60 cells, with cell cycle arrest in the G0/G1 phase. Furthermore, the AXO-treated HL-60 cells showed an increase in both the percentage of nitroblue tetrazolium positive cells and the expression of CD11b, whereas the proportion of CD14-positive cells did not change, suggesting that extract is able to induce differentiation toward the granulocytic lineage. Finally, the treatment with AXO extract caused upregulation of CEBPA, CEBPB, CEBPE, SPI1, CDKN1A, and CDKN2C, and downregulation of c-MYC. Our data clearly show the potential anticancer activity of Ambystoma mexicanum on HL-60 cells and suggest that it could help develop promising therapeutic agents for the treatment of acute myeloid leukemia.


Assuntos
Ambystoma mexicanum , Proliferação de Células/efeitos dos fármacos , Misturas Complexas/farmacologia , Leucemia Mieloide Aguda/tratamento farmacológico , Animais , Proteína beta Intensificadora de Ligação a CCAAT/genética , Proteínas Estimuladoras de Ligação a CCAAT/genética , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Inibidor de Quinase Dependente de Ciclina p18/genética , Inibidor de Quinase Dependente de Ciclina p21/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células HL-60 , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Proteínas Proto-Oncogênicas c-myc/genética
7.
Zhonghua Zhong Liu Za Zhi ; 42(8): 635-643, 2020 Aug 23.
Artigo em Chinês | MEDLINE | ID: mdl-32867454

RESUMO

Objective: To investigate the effects of microRNA-182-5p (miR-182-5p) on cell proliferation and invasion of esophageal squamous cell carcinoma (ESCC) and its related molecular mechanisms. Methods: Real-time quantitative polymerase chain reaction (RT-qPCR) was employed to detect the miR-182-5p expression in ESCC tissues and cells. MiR-182-5p inhibitor, miR-182-5p mimic and negative control (NC) were transfected into ESCC Eca109 and TE1 cells, and miR-182-5p expression after transfection was examined using RT-qPCR. Cell counting kit-8 (CCK-8) was utilized to investigate the cell proliferation and Transwell chamber was used to detect the cell invasion ability. Dual-luciferase reporter assay was used to detect the direct interaction of miR-182-5p and cell adhesion molecule 2 (CADM2), RT-qPCR was employed to detect CADM2 expression in ESCC tissues, the correlation between CADM2 and miR-182-5p was also examined. Finally, western blot was used to detect the protein expressions of CADM2, focal adhesion kinase (FAK), p-Akt and Akt after transfection. Results: The miR-182-5p level in ESCC tissues was (2.180±1.295), significantly higher than (0.890±0.284) in normal esophageal epithelial tissues (P<0.001). The survival ratio of ESCC patients with high miR-182-5p level was evidently lower than that of ESCC patients with low miR-182-5p level (P<0.05). MiR-182-5p expression was significantly associated with TNM staging and lymph node metastasis (P<0.05). The expressions of miR-182-5p in ESCC cells including EC9706, Eca109, TE1, KYSE450 and KYSE70 were (2.449±0.082), (2.965±0.088), (4.873±0.258), (1.338±0.045) and (1.999±0.082), respectively, obviously higher than (0.989±0.087) in normal esophageal epithelial cell Het-1A (all P<0.01). Besides, miR-182-5p inhibitor significantly downregulated the miR-182-5p expression in Eca109 and TE1, and suppressed cell proliferation and invasion ability. Conversely, miR-182-5p mimic significantly upregulated the miR-182-5p expression in Eca109 and TE1, and promoted cell proliferation and invasion ability. Dual-luciferase reporter assay revealed that co-transfection of CADM2-3'UTR-WT and miR-182-5p mimic significantly reduced the luciferase activities in Eca109 and TE1 cells (P<0.01), and CADM2 was the direct target of miR-182-5p. The expression of CADM2 in ESCC tissues was (0.190±0.143), markedly lower than (0.845±0.327) in normal esophageal epithelial tissues (P<0.001). The miR-182-5p level exhibited negative correlation with CADM2 level in ESCC tissues (r=-0.5004, P<0.001). In addition, CADM2 expression was closely correlated with TNM staging and lymph node metastasis (P<0.05). The survival ratio of ESCC patients with high CADM2 level was evidently higher than that of ESCC patients with low CADM2 level (P<0.05). MiR-182-5p inhibitor significantly upregulated the expression of CADM2 protein, but suppressed the protein expressions of FAK, p-Akt and Akt, whereas miR-182-5p mimic markedly downregulated the expression of CADM2 protein, but promoted the protein expressions of FAK, p-Akt and Akt. Conclusion: MiR-182-5p is implicated in the carcinogenesis and development of ESCC, and thus may be a potential molecular target for ESCC patients.


Assuntos
Neoplasias Esofágicas/patologia , Carcinoma de Células Escamosas do Esôfago/patologia , Regulação Neoplásica da Expressão Gênica , MicroRNAs , Invasividade Neoplásica , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Humanos
8.
Zhonghua Zhong Liu Za Zhi ; 42(8): 648-652, 2020 Aug 23.
Artigo em Chinês | MEDLINE | ID: mdl-32867456

RESUMO

Objective: To investigate the relationship between KDM6A mutation or expression and clinicopathological characteristics of gastric cancer. Methods: Fifty-seven cases of gastric cancer tissues were analyzed by second-generation sequencing, and bioinformation database such as Cbioportal, Kaplan Meier-Plotter, and the Human Protein Atlas were used to analyze the relationship between KDM6A mutation and clinicopathological characteristics of gastric cancer. Results: Among 57 gastric cancer samples, 14 were KDM6A mutation, and the mutation proportion was 24.6%. Compared with the non-mutation group, the Borrmann classification, T stage, TNM stage and tumor diameter of KDM6A mutant group were significantly different (all P<0.05). The median survival time of the KDM6A mutant patients was 53.5 months, significantly shorter than 72.0 months of the KDM6A non-mutation patients (P=0.007). The analysis result of Kaplan Meier-Plotter database showed that, among all of the 875 patients, 655 patients had low KDM6A expression and 220 patients had high expression. The median survival time of patients with low expression was 23.5 months, significantly shorter than 30.8 months of patients with high expression (P=0.002). In male, gastric cancer patients with stage Ⅲ, intestinal type, diffuse type, simple surgical treatment and fluorouracil chemotherapy, the expression of KDM6A is related to the patient's overall survival time (all P<0.05). The analysis result of Cbioportal database showed that, among all of the 1 172 gastric cancer patients, 70 patients with KDM6A mutation, 1100 patients with non-mutation. The median overall survival time of mutant patients was 28.9 months, significantly shorter than 35.9 months of non-mutation patients (P<0.001). The analysis result of Human Protein Atlas database showed that, among all of the 355 gastric cancer patients, 97 patients had high KDM6A expression and 258 patients had low KDM6A expression. The median survival time of patients with low expression was 13.7 months, significantly shorter than 19.8 months of patients with high expression (P=0.022). Conclusions: The survival time of gastric cancer patients with KDM6A mutation or low expression is shorter. The mutation and expression of KDM6A are related to clinical pathological factors, which may become a potential target for the diagnosis and treatment of gastric cancer.


Assuntos
Biomarcadores Tumorais/metabolismo , Regulação Neoplásica da Expressão Gênica/genética , Histona Desmetilases/metabolismo , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Histona Desmetilases/genética , Humanos , Metástase Linfática , Masculino , Mutação/genética , Estadiamento de Neoplasias , Prognóstico , Estudos Retrospectivos , Neoplasias Gástricas/mortalidade , Neoplasias Gástricas/patologia , Análise de Sobrevida
9.
Yonsei Med J ; 61(9): 750-761, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32882759

RESUMO

PURPOSE: Gastric cancer (GC) is a malignant tumor with a high mortality rate. Drug resistance is a major obstacle to GC therapy. This study aimed to investigate the role and mechanism of exosomal circPRRX1 in doxorubicin resistance in GC. MATERIALS AND METHODS: HGC-27 and AGS cells were exposed to different doses of doxorubicin to construct doxorubicin-resistant cell lines. Levels of circPRRX1, miR-3064-5p, and nonreceptor tyrosine phosphatase 14 (PTPN14) were detected by quantitative real-time PCR or Western blot assay. Then, 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide, transwell, and Western blot assays were used to explore the function of circPRRX1 in GC cells. Interactions among circPRRX1, miR-3064-5p, and PTPN14 were confirmed by dual-luciferase reporter assay. The in vivo function of circPRRX1 was analyzed in a xenograft tumor model. RESULTS: CircPRRX1 was highly expressed in doxorubicin-resistant GC cell lines. Knockdown of circPRRX1 reversed doxorubicin resistance in doxorubicin-resistant GC cells. Additionally, extracellular circPRRX1 was carried by exosomes to spread doxorubicin resistance. CircPRRX1 silencing reduced doxorubicin resistance by targeting miR-3064-5p or regulating PTPN14. In GC patients, high levels of circPRRX1 in serum exosomes were associated with poor responses to doxorubicin treatment. Moreover, depletion of circPRRX1 reduced doxorubicin resistance in vivo. CONCLUSION: CircPRRX1 strengthened doxorubicin resistance by modulating miR-3064-5p/PTPN14 signaling and might be a therapeutic target for GC patients.


Assuntos
Doxorrubicina/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , MicroRNAs/genética , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/metabolismo , Linhagem Celular Tumoral , Exossomos/genética , Exossomos/metabolismo , Exossomos/patologia , Regulação Neoplásica da Expressão Gênica , Proteínas de Homeodomínio , Humanos , MicroRNAs/metabolismo , Proteínas Tirosina Fosfatases não Receptoras/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Transdução de Sinais/genética , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia
10.
Zhonghua Bing Li Xue Za Zhi ; 49(9): 897-903, 2020 Sep 08.
Artigo em Chinês | MEDLINE | ID: mdl-32892554

RESUMO

Objective: To investigate the expression of microRNA-140-5p (miR-140-5p) in esophageal squamous cell carcinoma (ESCC) and its role in cell proliferation and invasion of ESCC. Methods: Real-time quantitative PCR (qPCR) was used to detect the expression levels of miR-140-5p in ESCC tissues and cells. Negative control and miR-140-5p mimic were transfected into Eca109 and KYSE70 cells. CCK-8 kit and Transwell assay were employed to examine the changes of cell proliferation and invasion ability after transfection, respectively. The dual-luciferase reporter assay was used to assess the interaction of miR-140-5p with Glut1. Western blot was utilized to detect the Glut1 protein expression after transfection. Results: Analysis of the related GEO datasets revealed that the expression of miR-140-5p in ESCC tissues was significantly lower than that in normal tissues (P<0.01). The qPCR testing demonstrated that the expression of miR-140-5p in ESCC tissues and cells was markedly lower than that in normal tissues and normal esophageal epithelial cell Het-1A (P<0.01). The miR-140-5p expression was closely associated with tumor differentiation, TNM staging and lymph node metastasis in ESCC patients. The survival rate of ESCC patients with high miR-140-5p level was higher than those with low miR-140-5p level (P<0.05). Besides, addition of miR-140-5p mimic significantly upregulated the expression of miR-140-5p in Eca109 and KYSE70 cells, and suppressed cell proliferation and invasion in Eca109 and KYSE70 cells. The dual-luciferase reporter assay showed that Glut1 was a direct target of miR-140-5p in ESCC cells, and its expression was upregulated in ESCC tissues. Glut1 expression was inversely associated with miR-140-5p expression in ESCC tissues. MiR-140-5p mimic dramatically inhibited the expression of Glut1 in Eca109 and KYSE70 cells. Conclusions: MiR-140-5p plays an essential role in ESCC development and progression. Targeting at miR-140-5p/Glut1 may be a novel therapeutic strategy for ESCC patients.


Assuntos
Neoplasias Esofágicas/genética , Carcinoma de Células Escamosas do Esôfago , MicroRNAs , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Transportador de Glucose Tipo 1 , Humanos , Invasividade Neoplásica
11.
Anticancer Res ; 40(9): 5035-5041, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32878791

RESUMO

BACKGROUND/AIM: Based on the cytotoxic agent (-)-zampanolide, N,N'-(arylmethylene)bisamides were designed and synthesized as candidate anti-cancer agents. Among them, N,N'-[(3,4-dimethoxyphenyl)methylene]biscinnamide (DPMBC) was identified as the most potent cytotoxic analog against cancer cells. In this study, we investigated the mechanisms underlying DPMBC-induced cell death in HL-60 human promyelocytic leukemia and PC-3 human prostate cancer cells. MATERIALS AND METHODS: Cell growth was assessed by the WST-8 assay. Induction of apoptosis was assessed by nuclear morphology, DNA ladder formation, and flow cytometry using Annexin V staining. Activation of factors in the apoptotic signaling pathway was assessed by western blot analyses. Knockdown of death receptor 5 (DR5) was performed using siRNA. RESULTS: DPMBC up-regulated expression levels of DR5 protein and induced apoptosis through the extrinsic apoptotic pathway mediated by DR5 and caspases. CONCLUSION: DPMBC is an extrinsic apoptosis inducer, which has potential as a therapeutic agent for cancer therapy.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Apoptose/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Macrolídeos/farmacologia , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/genética , Antineoplásicos/química , Caspases/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Fragmentação do DNA , Relação Dose-Resposta a Droga , Humanos , Macrolídeos/química , Estrutura Molecular , RNA Interferente Pequeno/genética , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/metabolismo
12.
Anticancer Res ; 40(9): 5091-5095, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32878797

RESUMO

BACKGROUND/AIM: The purpose of the present study was to clarify whether treatment with YM155, a novel small-molecule inhibitor of survivin, reversed cabazitaxel resistance in castration-resistant prostate cancer (CRPC). MATERIALS AND METHODS: Cabazitaxel resistance was induced in the castration-resistant prostate cancer cell line, 22Rv1-CR. In vitro and in vivo models were used to test the efficacy of YM155 and cabazitaxel. RESULTS: Survivin gene expression was significantly higher in 22Rv1-CR than its parent cells (22Rv1). In 22Rv1-CR cells, YM155 significantly reduced expression of the survivin gene in a concentration-dependent manner. YM155 alone was poorly effective; however, it significantly enhanced the anticancer effects of cabazitaxel on 22Rv1-CR in vitro and in vivo. CONCLUSION: Inhibition of survivin by YM155 overcomes cabazitaxel resistance in CRPC cells.


Assuntos
Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Imidazóis/farmacologia , Naftoquinonas/farmacologia , Neoplasias de Próstata Resistentes à Castração/genética , Survivina/genética , Taxoides/farmacologia , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Humanos , Masculino , Camundongos , Neoplasias de Próstata Resistentes à Castração/metabolismo , Neoplasias de Próstata Resistentes à Castração/patologia , RNA Mensageiro/genética , Ensaios Antitumorais Modelo de Xenoenxerto
13.
Anticancer Res ; 40(9): 5141-5149, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32878802

RESUMO

BACKGROUND/AIM: This study investigated the effects of temozolomide (TMZ) and/or checkpoint kinase inhibitor AZD7762 in human glioma cells. MATERIALS AND METHODS: Glioma cells were treated with TMZ and/or AZD7762 for 24 or 48 h, then the cellular survival was studied and the expression of various proteins was investigated. RESULTS: Both TMZ and AZD7762 induced concentration- and time-dependent cytotoxic effects, and combined TMZ and AZD7762 (TMZ+AZD) caused synergistic cytotoxic effects in glioma cells (p<0.05). AZD7762 suppressed the O6-methylguanine-DNA-methyltransferase (MGMT) expression. TMZ+AZD increased the expression of phospho-p53 (p-p53), p-p38 mitogen-activated protein kinase, and phosphatase and tensin homolog; and decreased the expression of p-extracellular signal-regulated kinase 1/2 and p-signal transducer and activator of transcription 3 in glioma cells. CONCLUSION: TMZ and AZD7762 combined induced synergistic cytotoxic effects on human glioma cells and such effects may be related to the AZD7762-induced suppression of MGMT expression and the modulation of multiple signaling pathways.


Assuntos
Antineoplásicos/farmacologia , Temozolomida/farmacologia , Tiofenos/farmacologia , Ureia/análogos & derivados , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Sinergismo Farmacológico , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glioma/genética , Glioma/metabolismo , Humanos , Ureia/farmacologia
14.
Anticancer Res ; 40(9): 5151-5158, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32878803

RESUMO

BACKGROUND/AIM: Magnetic stimulation is used in the treatment of a diversity of diseases, but a complete understanding of the underlying mechanisms of action requires further investigation. We examined the effect of static magnetic stimulation (SMS) in different cell lines. MATERIALS AND METHODS: A culture plate holder with attached NeFeB magnets was developed. Different magnetic field intensities and periods were tested in tumoral and non-tumoral cell lines. To verify the cellular responses to SMS, cell viability, cell death, cell cycle and BDNF expression were evaluated. RESULTS: Exposure of SH-SY5Y cells to SMS for 24 hours led to a decrease in cell viability. Analysis 24 h after stimulation revealed a decrease in apoptotic and double-positive cells, associated with an increase in the number of necrotic cells. CONCLUSION: The effects of SMS on cell viability are cell type-specific, inducing a decrease in cell viability in SH-SY5Y cells. This suggests that SMS may be a potential tool in the treatment of neuronal tumors.


Assuntos
Sobrevivência Celular/efeitos da radiação , Fenômenos Magnéticos , Apoptose/efeitos da radiação , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Ciclo Celular/efeitos da radiação , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica/efeitos da radiação , Humanos , Neuroblastoma/genética , Neuroblastoma/metabolismo , Especificidade de Órgãos/efeitos da radiação
15.
Nat Commun ; 11(1): 4709, 2020 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-32948765

RESUMO

Glioblastoma cancer-stem like cells (GSCs) display marked resistance to ionizing radiation (IR), a standard of care for glioblastoma patients. Mechanisms underpinning radio-resistance of GSCs remain largely unknown. Chromatin state and the accessibility of DNA lesions to DNA repair machineries are crucial for the maintenance of genomic stability. Understanding the functional impact of chromatin remodeling on DNA repair in GSCs may lay the foundation for advancing the efficacy of radio-sensitizing therapies. Here, we present the results of a high-content siRNA microscopy screen, revealing the transcriptional elongation factor SPT6 to be critical for the genomic stability and self-renewal of GSCs. Mechanistically, SPT6 transcriptionally up-regulates BRCA1 and thereby drives an error-free DNA repair in GSCs. SPT6 loss impairs the self-renewal, genomic stability and tumor initiating capacity of GSCs. Collectively, our results provide mechanistic insights into how SPT6 regulates DNA repair and identify SPT6 as a putative therapeutic target in glioblastoma.


Assuntos
Reparo do DNA , Instabilidade Genômica , Glioblastoma/genética , Células-Tronco Neoplásicas , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Animais , Apoptose , Proteína BRCA1 , Neoplasias Encefálicas/genética , Pontos de Checagem do Ciclo Celular , Linhagem Celular Tumoral , Feminino , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Inativação Gênica , Glioblastoma/patologia , Células HEK293 , Xenoenxertos , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Células-Tronco Neoplásicas/patologia , RNA Interferente Pequeno/genética , Tolerância a Radiação , Radiação Ionizante , Transcriptoma
16.
Anticancer Res ; 40(10): 5489-5496, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32988871

RESUMO

BACKGROUND/AIM: Cytokine-induced killer (CIK) cells are a heterogenous population of immune cells showing promising applications in immunotherapeutic cancer treatment. Neuropilin (NRP) proteins have been proven to play an important role in cancer development and prognosis. In this study, CIK cells were tested for expression of NRPs, transmembrane proteins playing a role in the proliferation and survival of cancer cells. MATERIALS AND METHODS: CIK cells were analyzed at different time points via flow cytometry and quantitative real-time polymerase chain reaction for neuropilin expression. RESULTS: Phenotyping results showed CIK cells having developed properly, and low levels of NRP2 were detected. On the other hand, no NRP1 expression was found. Two cancer cell lines were tested by flow cytometry: A549 cells expressed NRP1 and NRP2; U251-MG cells expressed high amounts of NRP2. CIK cell showed low levels of NRP2 expression on day 14. CONCLUSION: The presence of NRP2, but not NRP1, was shown for CIK cells. Recognizing NRP2 in CIK cells might help to improve CIK cell cytotoxicity.


Assuntos
Imunoterapia , Neoplasias/genética , Neuropilina-1/genética , Neuropilina-2/genética , Células A549 , Células Matadoras Induzidas por Citocinas/imunologia , Células Matadoras Induzidas por Citocinas/patologia , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Neoplasias/imunologia , Neuropilinas/genética , Prognóstico
17.
Anticancer Res ; 40(10): 5509-5516, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32988874

RESUMO

BACKGROUND/AIM: Extracellular vesicles (EVs) can mediate drug resistance within the tumor microenvironment by delivering bioactive molecules, including proteins. Here, we performed a comparative proteomic analysis of EVs secreted by A549 lung cancer cells and their cisplatin-resistant counterparts in order to identify proteins involved in drug resistance. MATERIALS AND METHODS: Cells were co-cultivated using a transwell system to evaluate EV exchange. EVs were isolated by ultracentrifugation and analyzed using microscopy and nanoparticle tracking. EV proteome was analyzed by mass spectrometry. RESULTS: EV-mediated communication was observed between co-cultured A549 and A549/CDDP cells. EVs isolated from both cells were mainly exosome-like structures. Extracellular matrix components, cell adhesion proteins, complement factors, histones, proteasome subunits and membrane transporters were found enriched in the EVs released by cisplatin-resistant cells. CONCLUSION: Proteins identified in this work may have a relevant role in modulating the chemosensitivity of the recipient cells and could represent useful biomarkers to monitor cisplatin response in lung cancer.


Assuntos
Biomarcadores Tumorais/genética , Cisplatino/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Proteoma/genética , Células A549 , Cisplatino/efeitos adversos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Exossomos/efeitos dos fármacos , Exossomos/genética , Vesículas Extracelulares/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Espectrometria de Massas , Proteômica/métodos , Microambiente Tumoral/efeitos dos fármacos
18.
Anticancer Res ; 40(10): 5529-5538, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32988876

RESUMO

BACKGROUND/AIM: Triple-negative breast cancer (TNBC) is a unique subtype that lacks expression of several conventional biomarkers and has a higher incidence of lymph node invasion and distal metastasis among all breast cancers. Anoikis resistance is the fundamental reason behind tumor cells' survival without their attachment to the extracellular matrix and metastasis to distal organs. Therefore, finding novel anti-cancer drugs that can suppress anoikis resistance in cancer cells is critical for patients with TNBC. MATERIALS AND METHODS: Curcumol, a natural compound, was used to assess whether it can inhibit the anoikis resistance and affects cell mortality and motility of IV2-1 TNBC cells. RESULTS: Curcumol suppressed anoikis resistance and inhibited TNBC cell survival in suspension. Additionally, these anti-cancer effects induced by curcumol could be related to the YAP1/Skp2 molecular pathway. CONCLUSION: Curcumol is an effective Skp2-targeted therapy that attenuates anoikis resistance and metastasis in TNBC cells.


Assuntos
MicroRNAs/genética , Proteínas Quinases Associadas a Fase S/genética , Sesquiterpenos/farmacologia , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Anoikis/efeitos dos fármacos , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Metástase Neoplásica , Transdução de Sinais/efeitos dos fármacos , Transcrição Genética/efeitos dos fármacos , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia
19.
Anticancer Res ; 40(10): 5539-5544, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32988877

RESUMO

BACKGROUND/AIM: Endothelin-1 (ET-1) is overexpressed in many types of cancer, inhibiting the release of the microRNA 15a (miR-15a) and inducing the production of Mxi-2. Our aim was to identify a molecular complex regulating p53 activity in prostate cancer (PCa). MATERIALS AND METHODS: DU145 cells were treated with ET-1, MAPK p38 inhibitor, Endothelin A receptor inhibitor (ETAR inhibitor) and Endothelin B receptor inhibitor (ETBR inhibitor). Extracts were analysed using Western Blot, immunoprecipitation and qRT-PCR. Furthermore, prostate cancer patient samples were analysed using qRT-PCR and ELISA. RESULTS: The hypothesised molecular complex was identified, with miR-15a, microRNA 1285 (miR-1285) and Mxi-2 levels up-regulated in patients in relation to increasing aggressiveness of PCa. CONCLUSION: A complex composed of Argonaut 2 (Ago2)/Mxi-2/miR-1285 is involved in PCa. The expression of Mxi-2 correlates with increasing PCa aggressiveness and might be used as a non-invasive marker for the diagnosis and progression of PCa.


Assuntos
Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Proteína Quinase 14 Ativada por Mitógeno/genética , Neoplasias da Próstata/genética , Proteína Supressora de Tumor p53/genética , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Proteínas Argonauta/genética , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Antagonistas do Receptor de Endotelina A/farmacologia , Antagonistas do Receptor de Endotelina B/farmacologia , Humanos , Masculino , MicroRNAs/genética , Neoplasias da Próstata/patologia , Receptor de Endotelina A/genética , Receptor de Endotelina B/genética , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores
20.
Anticancer Res ; 40(10): 5545-5556, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32988878

RESUMO

BACKGROUND/AIM: The p38 family of mitogen-activated protein kinases (MAPK) includes four isoforms: p38α, -ß, -γ and -δ. The aim of this study was to elucidate possible functions of p38α and p38ß in human pancreatic cancer. MATERIALS AND METHODS: Isoform expression was determined in seven human pancreatic cancer cell lines. After shRNA based selective knockdown of p38α and p38ß, in vitro growth and migration as well as in vivo tumorigenicity were assessed. RESULTS: All pancreatic cancer cells expressed p38 isoforms. Knockdown of p38α and p38ß inhibited in vitro growth. Migration was markedly reduced in p38α shRNA expressing clones, but not altered by p38ß knockdown. While in vivo inhibition of p38ß decreased tumor formation and growth, the knockdown of p38α significantly enhanced tumorigenicity. CONCLUSION: p38 MAPKs may exert isoform specific functions in pancreatic cancer. Selective targeting may contribute to individualized treatment of pancreatic cancer in the future.


Assuntos
Proteína Quinase 11 Ativada por Mitógeno/genética , Proteína Quinase 14 Ativada por Mitógeno/genética , Neoplasias Pancreáticas/genética , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Carcinogênese/genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Neoplasias Pancreáticas/patologia , Fosforilação , Isoformas de Proteínas/genética , RNA Interferente Pequeno/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA