Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.106
Filtrar
1.
Nat Commun ; 11(1): 4111, 2020 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-32807776

RESUMO

Mutational inactivation of VHL is the earliest genetic event in the majority of clear cell renal cell carcinomas (ccRCC), leading to accumulation of the HIF-1α and HIF-2α transcription factors. While correlative studies of human ccRCC and functional studies using human ccRCC cell lines have implicated HIF-1α as an inhibitor and HIF-2α as a promoter of aggressive tumour behaviours, their roles in tumour onset have not been functionally addressed. Herein we show using an autochthonous ccRCC model that Hif1a is essential for tumour formation whereas Hif2a deletion has only minor effects on tumour initiation and growth. Both HIF-1α and HIF-2α are required for the clear cell phenotype. Transcriptomic and proteomic analyses reveal that HIF-1α regulates glycolysis while HIF-2α regulates genes associated with lipoprotein metabolism, ribosome biogenesis and E2F and MYC transcriptional activities. HIF-2α-deficient tumours are characterised by increased antigen presentation, interferon signalling and CD8+ T cell infiltration and activation. Single copy loss of HIF1A or high levels of HIF2A mRNA expression correlate with altered immune microenvironments in human ccRCC. These studies reveal an oncogenic role of HIF-1α in ccRCC initiation and suggest that alterations in the balance of HIF-1α and HIF-2α activities can affect different aspects of ccRCC biology and disease aggressiveness.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Carcinoma de Células Renais/metabolismo , Carcinoma de Células Renais/patologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Neoplasias Renais/metabolismo , Neoplasias Renais/patologia , Células 3T3 , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Western Blotting , Linfócitos T CD8-Positivos/metabolismo , Carcinoma de Células Renais/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Proliferação de Células/fisiologia , Regulação Neoplásica da Expressão Gênica/genética , Regulação Neoplásica da Expressão Gênica/fisiologia , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Imuno-Histoquímica , Inflamação/genética , Inflamação/metabolismo , Neoplasias Renais/genética , Espectrometria de Massas , Camundongos , Proteômica/métodos , Reação em Cadeia da Polimerase em Tempo Real , Análise de Sequência de RNA , Microambiente Tumoral/genética , Microambiente Tumoral/fisiologia
2.
Medicine (Baltimore) ; 99(18): e19986, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32358373

RESUMO

BACKGROUND: The incidence of triple negative breast cancer (TNBC) is at a relatively high level, and our study aimed to identify differentially expressed genes (DEGs) in TNBC and explore the key pathways and genes of TNBC. METHODS: The gene expression profiling (GSE86945, GSE86946 and GSE102088) data were obtained from Gene Expression Omnibus Datasets, DEGs were identified by using R software, Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses of DEGs were performed by the Database for Annotation, Visualization and Integrated Discovery (DAVID) tools, and the protein-protein interaction (PPI) network of the DEGs was constructed by the STRING database and visualized by Cytoscape software. Finally, the survival value of hub DEGs in breast cancer patients were performed by the Kaplan-Meier plotter online tool. RESULTS: A total of 2998 DEGs were identified between TNBC and health breast tissue, including 411 up-regulated DEGs and 2587 down-regulated DEGs. GO analysis results showed that down-regulated DEGs were enriched in gene expression (BP), extracellular exosome (CC), and nucleic acid binding, and up-regulated were enriched in chromatin assembly (BP), nucleosome (CC), and DNA binding (MF). KEGG pathway results showed that DEGs were mainly enriched in Pathways in cancer and Systemic lupus erythematosus and so on. Top 10 hub genes were picked out from PPI network by connective degree, and 7 of top 10 hub genes were significantly related with adverse overall survival in breast cancer patients (P < .05). Further analysis found that only EGFR had a significant association with the prognosis of triple-negative breast cancer (P < .05). CONCLUSIONS: Our study showed that DEGs were enriched in pathways in cancer, top 10 DEGs belong to up-regulated DEGs, and 7 gene connected with poor prognosis in breast cancer, including HSP90AA1, SRC, HSPA8, ESR1, ACTB, PPP2CA, and RPL4. These can provide some guidance for our research on the diagnosis and prognosis of TNBC, and further research is needed to evaluate their value in the targeted therapy of TNBC.


Assuntos
Mineração de Dados/métodos , Regulação Neoplásica da Expressão Gênica/fisiologia , Neoplasias de Mama Triplo Negativas/genética , Bases de Dados Genéticas , Regulação para Baixo , Perfilação da Expressão Gênica , Ontologia Genética , Humanos , Análise de Sobrevida , Neoplasias de Mama Triplo Negativas/mortalidade , Regulação para Cima
3.
Invest Ophthalmol Vis Sci ; 61(5): 31, 2020 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-32428232

RESUMO

Purpose: More recently, literature has emerged providing findings about the novelty of microRNAs (miR)-targeted therapeutics in the treatment of retinoblastoma (RB). The prime objective of this study was to identify the potential role of miR-378a-3p and its regulation in RB cells via forkhead box G1 (FOXG1). Methods: The expression of miR-378a-3p and FOXG1 in the clinical RB tissues was determined using RNA quantitation and Western blot assays. The interaction between miR-378a-3p and FOXG1 was identified using dual luciferase reporter gene assay. The potential effects of miR-378a-3p on the RB cell biological processes were evaluated by conducting gain- and loss-of-function studies of miR-378a-3p and FOXG1, followed by cell viability, cell cycle progression, and apoptosis measurements. Furthermore, experiments were performed in nude mice to assess its effects on tumor formation. Results: miR-378a-3p was poorly expressed, whereas FOXG1 was highly expressed in RB tissues and cells. miR-378a-3p bound to the FOXG1 3' untranslated region and negatively modulated its expression. The overexpression of miR-378a-3p was found to decrease RB cell viability and to promote cell apoptosis in vitro, whereas overexpressed FOXG1 reversed the regulatory effects of miR-378a-3p on RB cellular behaviors. In nude mice, the restoration of miR-378a-3p by miR-378a-3p agomir was shown to play a role in the reduction of tumor volume and size relative to nude mice injected with negative control-agomir. Conclusions: Our findings identified that increased miR-378a-3p exerted an inhibitory effect on RB cell proliferation by targeting FOXG1, suggesting the role of miR-378a-3p as a novel therapeutic target for RB.


Assuntos
Apoptose , Fatores de Transcrição Forkhead/genética , Regulação Neoplásica da Expressão Gênica/fisiologia , MicroRNAs/fisiologia , Proteínas do Tecido Nervoso/genética , Neoplasias da Retina/patologia , Retinoblastoma/patologia , Animais , Western Blotting , Ciclo Celular/fisiologia , Proliferação de Células/fisiologia , Sobrevivência Celular/fisiologia , Pré-Escolar , Feminino , Citometria de Fluxo , Fatores de Transcrição Forkhead/metabolismo , Perfilação da Expressão Gênica , Humanos , Marcação In Situ das Extremidades Cortadas , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Proteínas do Tecido Nervoso/metabolismo , Plasmídeos/genética , Reação em Cadeia da Polimerase em Tempo Real , Neoplasias da Retina/metabolismo , Retinoblastoma/metabolismo , Organismos Livres de Patógenos Específicos , Transfecção , Transplante Heterólogo , Células Tumorais Cultivadas
4.
Nat Commun ; 11(1): 2142, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32358524

RESUMO

Epithelial-mesenchymal plasticity contributes to many biological processes, including tumor progression. Various epithelial-mesenchymal transition (EMT) responses have been reported and no common, EMT-defining gene expression program has been identified. Here, we have performed a comparative analysis of the EMT response, leveraging highly multiplexed single-cell RNA sequencing (scRNA-seq) to measure expression profiles of 103,999 cells from 960 samples, comprising 12 EMT time course experiments and independent kinase inhibitor screens for each. We demonstrate that the EMT is vastly context specific, with an average of only 22% of response genes being shared between any two conditions, and over half of all response genes were restricted to 1-2 time course experiments. Further, kinase inhibitor screens revealed signaling dependencies and modularity of these responses. These findings suggest that the EMT is not simply a single, linear process, but is highly variable and modular, warranting quantitative frameworks for understanding nuances of the transition.


Assuntos
Transição Epitelial-Mesenquimal/fisiologia , Células A549 , Células Epiteliais/metabolismo , Transição Epitelial-Mesenquimal/genética , Regulação Neoplásica da Expressão Gênica/genética , Regulação Neoplásica da Expressão Gênica/fisiologia , Humanos , Células MCF-7 , Análise de Sequência de RNA , Transdução de Sinais/genética , Transdução de Sinais/fisiologia
5.
J Biomed Sci ; 27(1): 59, 2020 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-32370770

RESUMO

Over the past few years, long non-coding RNAs (lncRNAs) are recognized as key regulators of gene expression at chromatin, transcriptional and posttranscriptional level with pivotal roles in various biological and pathological processes, including cancer. Hypoxia, a common feature of the tumor microenvironment, profoundly affects gene expression and is tightly associated with cancer progression. Upon tumor hypoxia, the central regulator HIF (hypoxia-inducible factor) is upregulated and orchestrates transcription reprogramming, contributing to aggressive phenotypes in numerous cancers. Not surprisingly, lncRNAs are also transcriptional targets of HIF and serve as effectors of hypoxia response. Indeed, the number of hypoxia-associated lncRNAs (HALs) identified has risen sharply, illustrating the expanding roles of lncRNAs in hypoxia signaling cascade and responses. Moreover, through extra-cellular vesicles, lncRNAs could transmit hypoxia responses between cancer cells and the associated microenvironment. Notably, the aberrantly expressed cellular or exosomal HALs can serve as potential prognostic markers and therapeutic targets. In this review, we provide an update of the current knowledge about the expression, involvement and potential clinical impact of lncRNAs in tumor hypoxia, with special focus on their unique molecular regulation of HIF cascade and hypoxia-induced malignant progression.


Assuntos
Regulação Neoplásica da Expressão Gênica/fisiologia , RNA Longo não Codificante/genética , Transdução de Sinais , Hipóxia Tumoral/genética , Microambiente Tumoral/fisiologia , RNA Longo não Codificante/metabolismo
6.
Arch Biochem Biophys ; 688: 108406, 2020 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-32417187

RESUMO

Increasing evidence indicates that aberrantly expressed microRNAs play a role in tumorigenesis and progression of gastric cancer. Recently, a novel cancer-related microRNA, miR-621, was found to be involved in cancer pathogenesis. However, the precise molecular mechanisms underlying the oncogenic activity of miR-621 remain unclear and require further investigation. In the current study, we demonstrate that miR-621 expression is downregulated in gastric cancer tissues and cell lines, and its reduction is associated with malignant clinical features including tumor size, lymph node metastasis, tumor-node-metastasis stage and poor prognosis. Functional studies involving gain- and loss-of-function experiments revealed that miR-621 represses cell viability, colony formation, cell cycle progression and proliferation in vitro, and miR-621 overexpression inhibited tumor growth in a gastric cancer xenograft model. SYF2 was identified as a direct target gene of miR-621 in gastric cancer. MiR-621 directly interacts with the SYF2 3'-UTR and post-transcriptionally repressed SYF2 expression in gastric cancer cells. SYF2 was significantly overexpressed in gastric cancer tissues and negatively correlated with miR-621 expression. Moreover, inhibition of SYF2 expression reversed the effects of miR-621 loss in gastric cancer cells. SYF2 overexpression was similar to that induced by miR-621 loss in gastric cancer. Taken together, these studies suggest that miR-621 may be a viable therapeutic target in gastric cancer.


Assuntos
Proliferação de Células/fisiologia , MicroRNAs/metabolismo , Proteínas de Ligação a RNA/metabolismo , Neoplasias Gástricas/fisiopatologia , Animais , Ciclo Celular/fisiologia , Linhagem Celular Tumoral , Ciclina D1/metabolismo , Regulação para Baixo , Regulação Neoplásica da Expressão Gênica/fisiologia , Humanos , Masculino , Camundongos Endogâmicos BALB C , Prognóstico , Neoplasias Gástricas/diagnóstico , Regulação para Cima
7.
Cancer Sci ; 111(6): 2004-2015, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32227417

RESUMO

Epidermal growth factor receptor (EGFR) expression and activation are the major causes of metastasis in cancers such as head and neck squamous cell carcinoma (HNSCC). However, the reciprocal effect of EGF-induced COX-2 and angiopoietin-like 4 (ANGPTL4) on HNSCC metastasis remains unclear. In this study, we revealed that the expression of ANGPTL4 is essential for COX-2-derived prostaglandin E2 (PGE2 )-induced tumor cell metastasis. We showed that EGF-induced ANGPTL4 expression was dramatically inhibited with the depletion and inactivation of COX-2 by knockdown of COX-2 and celecoxib treatment, respectively. Prostaglandin E2 induced ANGPTL4 expression in a time- and dose-dependent manners in various HNSCC cell lines through the ERK pathway. In addition, the depletion of ANGPTL4 and MMP1 significantly impeded the PGE2 -induced transendothelial invasion ability of HNSCC cells and the binding of tumor cells to endothelial cells. The induction of molecules involved in the regulation of epithelial-mesenchymal transition was also dependent on ANGPTL4 expression in PGE2 -treated cells. The depletion of ANGPTL4 further blocked PGE2 -primed tumor cell metastatic seeding of lungs. These results indicate that the EGF-activated PGE2 /ANGPTL4 axis enhanced HNSCC metastasis. The concurrent expression of COX-2 and ANGPTL4 in HNSCC tumor specimens provides insight into potential therapeutic targets for the treatment of EGFR-associated HNSCC metastasis.


Assuntos
Proteína 4 Semelhante a Angiopoietina/metabolismo , Ciclo-Oxigenase 2/metabolismo , Fator de Crescimento Epidérmico/metabolismo , Neoplasias de Cabeça e Pescoço/patologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Animais , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica/fisiologia , Neoplasias de Cabeça e Pescoço/metabolismo , Xenoenxertos , Humanos , Masculino , Camundongos , Camundongos SCID , Invasividade Neoplásica/patologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo , Regulação para Cima
8.
Cancer Sci ; 111(6): 1991-2003, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32232887

RESUMO

Alternative polyadenylation (APA), which induces shortening of the 3'-UTR, is emerging as an important feature in cancer development and progression. Nevertheless, the effects and mechanisms of APA-induced 3'-UTR shortening in nasopharyngeal carcinoma (NPC) remain largely unclear. Fibronectin type III domain containing 3B (FNDC3B) tended to use proximal polyadenylation site and produce shorter 3'-UTR according to our previous sequencing study. Herein, we found that FNDC3B with shorter 3'-UTR could escape from miRNA-mediated gene repression, and caused its increased expression in NPC. Knocking down of FNDC3B inhibited NPC cell proliferation, migration, invasion, and metastasis in vitro and in vivo. Overexpression of FNDC3B, especially those with shorter 3'-UTR, promoted NPC progression. Furthermore, the mechanism study revealed that FNDC3B could bind to and stabilize myosin heavy chain 9 (MYH9) to activate the Wnt/ß-catenin signaling pathway. In addition, MYH9 could reverse the inhibitory effects of FNDC3B knockdown in NPC. Altogether, our results suggested that the 3'-UTR shortening of FNDC3B mRNA mediated its overexpression in NPC and promoted NPC progression by targeting MYH9. This newly identified FNDC3B-MYH9-Wnt/ß-catenin axis could represent potential targets for individualized treatment in NPC.


Assuntos
Fibronectinas/metabolismo , Regulação Neoplásica da Expressão Gênica/fisiologia , Cadeias Pesadas de Miosina/metabolismo , Carcinoma Nasofaríngeo/patologia , Neoplasias Nasofaríngeas/patologia , Regiões 3' não Traduzidas , Animais , Movimento Celular/genética , Proliferação de Células/genética , Progressão da Doença , Fibronectinas/genética , Xenoenxertos , Humanos , Camundongos , MicroRNAs , Cadeias Pesadas de Miosina/genética , Carcinoma Nasofaríngeo/genética , Carcinoma Nasofaríngeo/metabolismo , Neoplasias Nasofaríngeas/genética , Neoplasias Nasofaríngeas/metabolismo , Via de Sinalização Wnt/fisiologia
9.
Arch Biochem Biophys ; 687: 108385, 2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-32335050

RESUMO

MicroRNA-342-3p (miR-342) has been shown to act as a tumor-suppressor in different cancer types. However, the role and therapeutic implications of miR-342 via modulation of Cofilin 1 (CFL1) has not been studied in any type of cancer. Given the importance of Cofilin signalling in breast, this study was undertaken to explore the therapeutic implications of miR-342 and its target CFL1 in breast cancer. Herein, we found that miR-342 was significantly (P < 0.05) downregulated in breast cancer tissues and cell lines. Functional assays revealed that overexpression of miR-342 caused a significant (P < 0.05) inhibition of the proliferation, colony formation, invasion and migration of the MDA-MB-436 and CAMA-1 breast cancer cells via induction of apoptosis. Bioinformatic approaches and the dual luciferase reporter assay confirmed the interaction between miR-342 and its target CFL1. Moreover, we found that CFL1 was aberrantly overexpressed in breast cancer tissues and cell lines. Overexpression of miR-342 caused remarkable depletion in the expression of CFL1 in MDA-MB-436 breast cancer cells. Silencing of CFL1 in CAMA-1 and MDA-MB-436 cells caused remarkable decrease in the proliferation, colony formation and migration of these cells, similar to that of miR-342 ovexpression. However, overexpression of CFL1 in MDA-MB-346 cells could avoid the tumor suppressive effects of miR-342. Our data provide novel information about the implications of miR-342 and its target CFL1 in breast cancer treatment.


Assuntos
Neoplasias da Mama/fisiopatologia , Movimento Celular/fisiologia , Proliferação de Células/fisiologia , Cofilina 1/metabolismo , MicroRNAs/metabolismo , Adulto , Idoso , Apoptose/fisiologia , Linhagem Celular Tumoral , Regulação para Baixo/fisiologia , Regulação Neoplásica da Expressão Gênica/fisiologia , Humanos , Pessoa de Meia-Idade , Regulação para Cima/fisiologia
10.
Am J Physiol Gastrointest Liver Physiol ; 318(4): G827-G839, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32174132

RESUMO

There is increasing evidence that microRNA (miRNA) abnormity is involved in the occurrence and the development of various malignancies, including colon cancer. MiRNA-524-5p has been reported to possess anticancer activity in various tumors, which function is seldom investigated in colon cancer cells. The aim of this study was to explore the effect of the miRNA-524-5p/with-no-lysine kinase 1 (WNK1) system on angiogenesis in a colon cancer cell line (HT-29 and COLO205 cells) and further investigate the potential mechanisms. We found miRNA-524-5p expression was relatively high in COLO205 cells and relatively low in HT-29 cells. Elevating miRNA-524-5p expression inhibited proliferation, induced cycle arrest, diminished vascular endothelial growth factor production, and thereby suppressed angiogenesis in HT-29 cells. WNK1 silencing exerted the ability of antiangiogenesis in HT-29 cells. Besides, miRNA-524-5p deficiency-induced angiogenesis was impeded by WNK1 silence in COLO205 cells. In a murine tumor model, miRNA-524-5p agomir treatment significantly suppressed colon cancer tumorigenicity with the downregulation of WNK1 expression. In summary, our results indicated that miRNA-524-5p inhibited angiogenesis in colon cancer cells via targeting WNK1.NEW & NOTEWORTHY MiRNA-524-5p inhibited angiogenesis in colon cancer cells via targeting with-no-lysine kinase 1.


Assuntos
Regulação Neoplásica da Expressão Gênica/fisiologia , MicroRNAs/metabolismo , Neovascularização Patológica/metabolismo , Proteína Quinase 1 Deficiente de Lisina WNK/metabolismo , Animais , Linhagem Celular Tumoral , Regulação para Baixo , Regulação da Expressão Gênica , Células Endoteliais da Veia Umbilical Humana , Humanos , Masculino , Camundongos , Camundongos Nus , MicroRNAs/genética , Neoplasias Experimentais , Regulação para Cima , Proteína Quinase 1 Deficiente de Lisina WNK/genética
11.
Invest Ophthalmol Vis Sci ; 61(3): 32, 2020 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-32186675

RESUMO

Purpose: The pivotal role of microRNAs (miRNAs or miRs) has been proved in the pathogenesis of retinoblastoma. miR-224-3p is demonstrated to be involved in several tumors. However, the underlying mechanism of miR-224-3p in retinoblastoma is yet to be investigated. Therefore, this study was designed to identify the regulation of miR-224-3p in human retinoblastoma. Methods: The expression pattern of miR-224-3p and large tumor suppressor 2 (LATS2) in retinoblastoma was measured by reverse transcription quantitative polymerase chain reaction. Afterward, the interaction between miR-224-3p and LATS2 was identified using a dual luciferase reporter gene assay. Next, gain-of-function and loss-of-function approaches were employed to examine the effects of miR-224-3p and LATS2 as well as their interaction on cell apoptosis, proliferation and angiogenesis abilities, and tumorigenesis. Whether the Hippo-YAP signaling pathway was involved in tumorigenesis was analyzed by determining downstream genes. Results: LATS2 was downregulated in retinoblastoma, and its overexpression promoted apoptosis and suppressed proliferation of retinoblastoma cells. miR-224-3p, highly expressed in retinoblastoma, inhibited the expression of its target gene LATS2, which inhibited activation of the Hippo-YAP signaling pathway. Suppression of miR-224-3p promoted apoptosis while suppressing the proliferation of retinoblastoma cells and angiogenesis. Tumor progression induced by upregulation of miR-224-3p was diminished by restoration of LATS2. It was observed that tumor growth and angiogenesis were reduced by depleted miR-224-3p in the animal experiments. Conclusions: The present study suggests that miR-224-3p targets LATS2 and blocks the Hippo-YAP signaling pathway activation, thus preventing the progression of retinoblastoma, which could be a new therapeutic target for retinoblastoma.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Regulação Neoplásica da Expressão Gênica/fisiologia , MicroRNAs/genética , Proteínas Serina-Treonina Quinases/genética , Neoplasias da Retina/genética , Retinoblastoma/genética , Fatores de Transcrição/genética , Proteínas Supressoras de Tumor/genética , Animais , Apoptose , Western Blotting , Criança , Pré-Escolar , Progressão da Doença , Regulação para Baixo , Feminino , Citometria de Fluxo , Perfilação da Expressão Gênica , Humanos , Lactente , Masculino , Camundongos Endogâmicos BALB C , Camundongos Nus , Neoplasias da Retina/irrigação sanguínea , Neoplasias da Retina/patologia , Neovascularização Retiniana/metabolismo , Retinoblastoma/irrigação sanguínea , Retinoblastoma/patologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/fisiologia , Transfecção , Células Tumorais Cultivadas
12.
Arch Biochem Biophys ; 684: 108334, 2020 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-32173334

RESUMO

Emerging evidence shows that histone modification and its related regulators are involved in the progression and chemoresistance of ovarian cancer (OC) cells. Our present study found that the expression of Jumonji C domain-containing 2A (JMJD2A), while not JMJD2B or JMJD2C, is increased in OC cells and tissues as compared with that in their corresponding controls. Knockdown of JMJD2A can decrease proliferation while increase cisplatin (CDDP) sensitivity of OC cells. By screening the expression of cytokines involved in the progression of ovarian cancer, we found that knockdown of JMJD2A can inhibit the expression of interleukin-6 (IL-6) and IL-8 in ovarian cancer cells. Recombinant IL-6 (rIL-6) and rIL-8 can attenuate si-JMJD2A-suppressed malignancy of OC cells. Mechanistically, JMJD2A can directly bind with the promoter of IL-6 to trigger its transcription. For IL-8, JMJD2A can increase it mRNA stability in OC cells. Collectively, we revealed that JMJD2A can trigger the malignancy of OC cells via upregulation of IL-6 and IL-8. It suggested that JMJD2A might be a potential target for OC treatment and therapy.


Assuntos
Interleucina-6/metabolismo , Interleucina-8/metabolismo , Histona Desmetilases com o Domínio Jumonji/metabolismo , Neoplasias Ovarianas/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/fisiologia , Feminino , Regulação Neoplásica da Expressão Gênica/fisiologia , Técnicas de Silenciamento de Genes , Humanos , Interleucina-6/genética , Interleucina-8/genética , Histona Desmetilases com o Domínio Jumonji/genética , Estabilidade de RNA/genética , RNA Mensageiro/metabolismo , Transcrição Genética/fisiologia , Regulação para Cima
13.
Arch Med Res ; 51(1): 41-53, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-32086108

RESUMO

BACKGROUND AND AIMS: HIF-1 is an important factor that play critical roles in metabolic and metastasis activity of cancer cells. HIF-1 activity can have regulated by TSGA10. Although decreased metastatic activity of cancer cells through TSGA10 inhibitory effect on HIF-1 have already been demonstrated, changes in cancer metabolism and its impact on metastasis in breast cancer is still not determined. So, we aimed to investigate TSGA10 overexpression effect on breast cancer metabolism as well as metastasis. METHODS: TSGA10 vector was designed and stable transfected into MCF-7 cells. The efficiency of transfection was assessed by Real-time PCR and western blot. After HIF-1 induction at high and low glucose conditions, cell proliferation, cell cycle profile, metabolic and metastasis activity of cells were assessed. Furthermore, biomarker expressions of ER, PR, HER2, Ki67 and E-cadherin in cancer cells were measured. RESULTS: Our results showed decrease of cell proliferation and cell cycle arrest in G2/M phase. Reduce expression of GLUT1, lactate production and reactive oxygen species (ROS) below their basal level indicated decreased metabolic activity. Furthermore, metastatic activity reduction was shown by decrease expression of different involve genes in metastasis, protelytic activity of MMOLP-2/9, carbonic anhydrase (CA) IX activity and increase of wound closure. Moreover, except for E-cadherin, expression of ER, PR, HER2 and Ki67 was declined in cells. CONCLUSION: Our findings indicated that TSGA10 overexpression could decrease the metastatic and metabolic activity of cancer cells through its inhibitory effect on HIF-1 activity. Therefore, TSGA10 could be considered in the research for therapeutic candidates in cancer.


Assuntos
Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Carcinoma Ductal de Mama/metabolismo , Carcinoma Ductal de Mama/patologia , Proteínas do Citoesqueleto/genética , Metabolismo Energético/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Antígenos CD/genética , Antígenos de Neoplasias/genética , Neoplasias da Mama/genética , Caderinas/genética , Anidrase Carbônica IX/genética , Carcinoma Ductal de Mama/genética , Proliferação de Células/genética , Proteínas do Citoesqueleto/fisiologia , Feminino , Regulação Neoplásica da Expressão Gênica/fisiologia , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Células MCF-7 , Metástase Neoplásica , Regulação para Cima/genética
14.
Arch Biochem Biophys ; 684: 108320, 2020 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-32105659

RESUMO

Studies have proved the role of GAS5 in the development of different cancers. This study was undertaken to investigate the role and explore therapeutic implications of GAS5 in human cervical cancer. The results showed that GAS5 was significantly (p < 0.05) downregulated in human cervical cancer tissues. The results also showed that cervical cancer progresses with the suppression of GAS5 expression levels. Additionally, the expression of GAS5 was also significantly (p < 0.05) downregulated in human cervical cancer cell lines. Nonetheless, overexpression of GAS5 caused a remarkable decrease in the proliferation of C33A and HeLa cervical cancer cells. The decrease in the proliferation rate was attributed to the induction of apoptosis of C33A and HeLa cells which was accompanied with upregulation of Bax and suppression of Bcl-2. Additionally, GAS5 overexpression also promoted the arrest of C33A and HeLa cells at the G2/M check point of cell cycle via suppression of cyclin B1 and CDK1 expression. The transwell assays showed that GAS5 overexpression significantly (p < 0.05) inhibited the migration and invasion of the C33A and HeLa cervical cancer cells. The bioinformatics analysis as well as the dual luciferase assay showed GAS5 acts as a target of miR-135a. Interestingly, the expression of miR-135a was upregulated in the human cervical cancer cells and its suppression exerted growth inhibitory effects on the C33A and HeLa cells. However, silencing of GAS5 could nullify the effects of miR-135a suppression on the proliferation of C33A and HeLa cells. Taken together, the results of this study point towards the therapeutic implications of GAS5 in the treatment of cervical cancer.


Assuntos
Apoptose/fisiologia , Pontos de Checagem da Fase G2 do Ciclo Celular/fisiologia , RNA Longo não Codificante/metabolismo , Neoplasias do Colo do Útero/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/fisiologia , Regulação para Baixo , Feminino , Regulação Neoplásica da Expressão Gênica/fisiologia , Humanos , MicroRNAs/metabolismo , RNA Longo não Codificante/genética , Transdução de Sinais/fisiologia , Regulação para Cima , Neoplasias do Colo do Útero/genética
15.
Medicine (Baltimore) ; 99(2): e18676, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31914060

RESUMO

Adenoid cystic carcinoma (ACC) is one of the most frequent malignancies of salivary glands. The objective of this study was to identify key genes and potential mechanisms during ACC samples.The gene expression profiles of GSE88804 data set were downloaded from Gene Expression Omnibus. The GSE88804 data set contained 22 samples, including 15 ACC samples and 7 normal salivary gland tissues. The gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were constructed, and protein-protein interaction network of differentially expressed genes (DEGs) was performed by Cytoscape. The top 10 hub genes were analyzed based on Gene Expression Profiling Interactive Analysis. Then, DEGs between ACC samples and normal salivary gland samples were analyzed by gene set enrichment analysis. Furthermore, miRTarBase and Cytoscape were used for visualization of miRNA-mRNA regulatory network. KEGG pathway analysis was undertaken using DIANA-miRPath v3.0.In total, 382 DEGs were identified, including 119 upregulated genes and 263 downregulated genes. GO analysis showed that DEGs were mainly enriched in extracellular matrix organization, extracellular matrix, and calcium ion binding. KEGG pathway analysis showed that DEGs were mainly enriched in p53 signaling pathway and salivary secretion. Expression analysis and survival analysis showed that ANLN, CCNB2, CDK1, CENPF, DTL, KIF11, and TOP2A are all highly expressed, which all may be related to poor overall survival. Predicted miRNAs of 7 hub DEGs mainly enriched in proteoglycans in cancer and pathways in cancer.This study indicated that identified DEGs and hub genes might promote our understanding of molecular mechanisms, which might be used as molecular targets or diagnostic biomarkers for ACC.


Assuntos
Carcinoma Adenoide Cístico/genética , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica/fisiologia , Neoplasias das Glândulas Salivares/genética , Matriz Extracelular/metabolismo , Ontologia Genética , Redes Reguladoras de Genes , Humanos , MicroRNAs/genética , Transcriptoma
16.
Bull Cancer ; 107(1): 41-47, 2020 Jan.
Artigo em Francês | MEDLINE | ID: mdl-31916995

RESUMO

A growing number of studies suggest a tumor suppressor role for the SWI/SNF complex involved in the remodeling of chromatin. Alterations of this complex have been found in many tumors of different origins, with topographic, morphologic and phenotypic diversity. Notably, they define 2 types of thoracic tumors: SMARCA4-deficient non-small cell lung carcinoma and SMARCA4-deficient sarcoma. Some clinical features appear to be common to both, such as intrathoracic localization, smoking exposure, male predominance and poor prognosis. However, the histological distinction between these two entities is sometimes difficult and it is not excluded that these entities belong to the same tumor spectrum with different degrees of differentiation. The therapy of these tumors is not yet codified. These tumors do not seem associated with oncogenic driver mutations allowing the prescription of targeted therapy, but immunotherapy has been shown to be effective in rare reported cases. More specific treatments using EZH2 inhibitors also seem promising in SMARCA4 deficient sarcomas.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/genética , Montagem e Desmontagem da Cromatina , DNA Helicases/deficiência , Proteínas de Neoplasias/deficiência , Proteínas Nucleares/deficiência , Sarcoma/genética , Neoplasias Torácicas/genética , Fatores de Transcrição/deficiência , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/terapia , Quimiorradioterapia , Montagem e Desmontagem da Cromatina/genética , Montagem e Desmontagem da Cromatina/fisiologia , Terapia Combinada , Procedimentos Cirúrgicos de Citorredução , DNA Helicases/fisiologia , Proteína Potenciadora do Homólogo 2 de Zeste/antagonistas & inibidores , Regulação Neoplásica da Expressão Gênica/fisiologia , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/terapia , Neoplasias do Mediastino/genética , Neoplasias do Mediastino/patologia , Neoplasias do Mediastino/terapia , Terapia de Alvo Molecular , Complexos Multiproteicos/efeitos dos fármacos , Complexos Multiproteicos/fisiologia , Invasividade Neoplásica , Proteínas de Neoplasias/fisiologia , Proteínas Nucleares/fisiologia , Proteína SMARCB1/fisiologia , Sarcoma/patologia , Sarcoma/terapia , Neoplasias Torácicas/patologia , Neoplasias Torácicas/terapia , Fatores de Transcrição/fisiologia
17.
Cancer Sci ; 111(3): 857-868, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31930596

RESUMO

Increasing evidence indicates that extracellular vesicles (EVs) play an important role in cancer cell-to-cell communication. The Epstein-Barr virus (EBV)-encoded latent membrane protein 1 (LMP1), which is closely associated with nasopharyngeal carcinoma (NPC) pathogenesis, can trigger multiple cell signaling pathways that affect cell progression. Several reports have shown that LMP1 promotes EV secretion, and LMP1 trafficking by EVs can enhances cancer progression and metastasis. However, the molecular mechanism by which LMP1 promotes EV secretion is not well understood. In the present study, we found that LMP1 promotes EV secretion by upregulated syndecan-2 (SDC2) and synaptotagmin-like-4 (SYTL4) through nuclear factor (NF)-κB signaling in NPC cells. Further study indicated that SDC2 interacted with syntenin, which promoted the formation of the EVs, and SYTL4 is associated with the release of EVs. Moreover, we found that stimulation of EV secretion by LMP1 can enhance the proliferation and invasion ability of recipient NPC cells and tumor growth in vivo. In summary, we found a new mechanism by which LMP1 upregulates SDC2 and SYTL4 through NF-κB signaling to promote EV secretion, and further enhance cancer progression of NPC.


Assuntos
Vesículas Extracelulares/metabolismo , Herpesvirus Humano 4/metabolismo , Carcinoma Nasofaríngeo/metabolismo , Neoplasias Nasofaríngeas/metabolismo , Sindecana-2/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Proteínas da Matriz Viral/metabolismo , Animais , Linhagem Celular Tumoral , Movimento Celular/fisiologia , Proliferação de Células/fisiologia , Feminino , Regulação Neoplásica da Expressão Gênica/fisiologia , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , NF-kappa B/metabolismo , Transdução de Sinais/fisiologia , Regulação para Cima/fisiologia
18.
Gut ; 69(2): 329-342, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31439637

RESUMO

OBJECTIVE: Facilitates Chromatin Transcription (FACT) complex is a histone chaperone participating in DNA repair-related and transcription-related chromatin dynamics. In this study, we investigated its oncogenic functions, underlying mechanisms and therapeutic implications in human hepatocellular carcinoma (HCC). DESIGN: We obtained HCC and its corresponding non-tumorous liver samples from 16 patients and identified FACT complex as the most upregulated histone chaperone by RNA-Seq. We further used CRISPR-based gene activation and knockout systems to demonstrate the functions of FACT complex in HCC growth and metastasis. Functional roles and mechanistic insights of FACT complex in oxidative stress response were investigated by ChIP assay, flow cytometry, gene expression assays and 4sU-DRB transcription elongation assay. Therapeutic effect of FACT complex inhibitor, Curaxin, was tested in both in vitro and in vivo models. RESULTS: We showed that FACT complex was remarkably upregulated in HCC and contributed to HCC progression. Importantly, we unprecedentedly revealed an indispensable role of FACT complex in NRF2-driven oxidative stress response. Oxidative stress prevented NRF2 and FACT complex from KEAP1-mediated protein ubiquitination and degradation. Stabilised NRF2 and FACT complex form a positive feedback loop; NRF2 transcriptionally activates the FACT complex, while FACT complex promotes the transcription elongation of NRF2 and its downstream antioxidant genes through facilitating rapid nucleosome disassembly for the passage of RNA polymerase. Therapeutically, Curaxin effectively suppressed HCC growth and sensitised HCC cell to sorafenib. CONCLUSION: In conclusion, our findings demonstrated that FACT complex is essential for the expeditious HCC oxidative stress response and is a potential therapeutic target for HCC treatment.


Assuntos
Carcinoma Hepatocelular/fisiopatologia , Proteínas de Ligação a DNA/fisiologia , Proteínas de Grupo de Alta Mobilidade/fisiologia , Chaperonas de Histonas/fisiologia , Neoplasias Hepáticas/fisiopatologia , Estresse Oxidativo/fisiologia , Fatores de Elongação da Transcrição/fisiologia , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Carbazóis/farmacologia , Carbazóis/uso terapêutico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/prevenção & controle , Proteínas de Ciclo Celular/deficiência , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/fisiologia , Linhagem Celular Tumoral , Movimento Celular/genética , Movimento Celular/fisiologia , Proliferação de Células/genética , Proliferação de Células/fisiologia , Proteínas de Ligação a DNA/antagonistas & inibidores , Proteínas de Ligação a DNA/biossíntese , Proteínas de Ligação a DNA/genética , Progressão da Doença , Regulação Neoplásica da Expressão Gênica/fisiologia , Técnicas de Inativação de Genes/métodos , Proteínas de Grupo de Alta Mobilidade/antagonistas & inibidores , Proteínas de Grupo de Alta Mobilidade/biossíntese , Proteínas de Grupo de Alta Mobilidade/genética , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas Experimentais/genética , Neoplasias Hepáticas Experimentais/patologia , Neoplasias Hepáticas Experimentais/fisiopatologia , Neoplasias Hepáticas Experimentais/prevenção & controle , Camundongos Endogâmicos BALB C , Camundongos Nus , Estresse Oxidativo/genética , Sorafenibe/farmacologia , Sorafenibe/uso terapêutico , Fatores de Transcrição/deficiência , Fatores de Transcrição/genética , Fatores de Transcrição/fisiologia , Fatores de Elongação da Transcrição/antagonistas & inibidores , Fatores de Elongação da Transcrição/biossíntese , Fatores de Elongação da Transcrição/genética , Regulação para Cima/fisiologia , Ensaios Antitumorais Modelo de Xenoenxerto
19.
Otol Neurotol ; 41(1): e94-e102, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31789805

RESUMO

HYPOTHESIS: We hypothesized that CPI-17 expression and NF2 mutations are correlated with merlin phosphorylation in the etiology of sporadic vestibular schwannoma (VS). BACKGROUND: NF2 gene mutations have been identified in the majority of sporadic and NF2-associated schwannomas and NF2 gene mutations have been shown to result in merlin protein phosphorylation. CPI-17 can drive Ras activity and promote tumorigenic transformation by inhibiting the tumor suppressor merlin. The aim of this study was to determine the correlation between CPI-17 overexpression and the NF2 mutation spectrum in sporadic VS. METHODS: In this study, we measured CPI-17 expression and identified NF2 gene alterations in a series of sporadic VS samples. Freshly frozen tumor and matched peripheral blood leukocytes from 44 individuals with sporadic VS were analyzed using next-generation sequencing and Sanger sequencing. Western blotting was used to determine the level of merlin phosphorylation, and immunohistochemistry and Western blotting were used to measure CPI-17 expression in the sporadic VS samples. CCK-8 and wound-healing assays were used to determine the influence of CPI-17 overexpression on cell proliferation. RESULTS: NF2 mutations were identified in 79.5% of sporadic vestibular schwannomas, with all mutations being exclusively somatic. IHC and WB showed the expression of CPI-17 is upregulated in the sporadic VS. NF2 mutation and CPI-17 are positively correlated with merlin phosphorylation. CPI-17 overexpression induces the proliferation of HEI193 cells. CONCLUSION: NF2 mutations and CPI-17 expression together induce merlin phosphorylation, which is correlated with the tumorigenesis of sporadic VSs.


Assuntos
Carcinogênese , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Musculares/metabolismo , Neurofibromina 2/genética , Neuroma Acústico , Carcinogênese/genética , Carcinogênese/metabolismo , Carcinogênese/patologia , Regulação Neoplásica da Expressão Gênica/fisiologia , Genes da Neurofibromatose 2 , Humanos , Masculino , Mutação , Neuroma Acústico/genética , Neuroma Acústico/metabolismo , Neuroma Acústico/patologia , Fosforilação
20.
J Cell Physiol ; 235(1): 17-25, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31206681

RESUMO

SPTBN1 is a dynamic intracellular nonpleckstrin homology-domain protein, functioning as a transforming growth factor-ß signal transducing adapter protein which is necessary to form Smad3/Smad4 complex. Recently SPTBN1 is considered to be associated with many kinds of cancers. SPTBN1 expression and function differ between different tumor states or types. This review summarizes the recent advances in the expression patterns of SPTBN1 in cancers, and in understanding the mechanisms by which SPTBN1 affects the occurrence, progression, and metastasis of cancer. Identifying SPTBN1 expression and function in cancers will contribute to the clinical diagnosis and treatment of cancer and the investigation of anticancer drugs.


Assuntos
Regulação Neoplásica da Expressão Gênica/fisiologia , Neoplasias/metabolismo , Espectrina/metabolismo , Antineoplásicos , Humanos , Neoplasias/classificação , Espectrina/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA