Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 12.469
Filtrar
1.
Tumour Biol ; 43(1): 209-223, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34486997

RESUMO

OBJECTIVE: The microenvironment of colon cancer (CC) is heterogeneous including cells of myeloid lineage affecting tumor growth and metastasis. Two functional subtypes of myeloid cells have been identified; one (M1) is tumor-inhibitory and the other one (M2) is tumor-promoting. Whether the three myeloid markers EMR1, CD206 and CD86 are expressed only in the infiltrating myeloid cells or also in the tumor cells was investigated. METHODS: Expression of the myeloid markers was investigated in CC at the mRNA and protein levels in primary tumors and lymph nodes. mRNA expression was also determined in 5 CC cell lines. Protein expression was investigated by two-color immunofluorescence and consecutive-sections-immune-staining combined with morphometry using specific antibodies for the myeloid cell markers and the epithelial cell markers CEACAM5 and EpCAM. RESULTS: EMR1 and CD86, but not CD206, mRNA levels were significantly higher in CC primary tumors compared to apparently normal colon tissue (P <  0.0001). EMR1 mRNA levels were significantly higher in both hematoxylin-eosin positive (H&E(+)) and H&E(-) lymph nodes of CC patients compared to control nodes (P = 0.03 and P = 0.01, respectively). EMR1 and CD206 mRNAs were expressed in 4/5 and 5/5 CC cell lines, respectively, while CD86 mRNA was not expressed. Immuno-morphometry revealed that about 20% of the tumor cells expressed EMR1 and CD206. Positive cells were tumor cells as revealed by anti-CEACAM5 and anti-EpCAM staining. The number of EMR1, CD206 and CD86 positive cells were significantly increased in CC primary tumors compared to normal colon tissue (P <  0.0001). However, CD206 was also expressed in normal colonocytes. Only EMR1 showed significantly increased numbers of positive tumor cells in H&E(+) nodes compared to H&E(-) nodes (P = 0.001). EMR1 expression in CC tumor cells correlated with CXCL17 expressing tumor cells. CONCLUSION: EMR1, like the chemokine CXCL17, is ectopically expressed in colon cancer possibly in the same cancer cells.


Assuntos
Antígeno B7-2/genética , Proteínas de Ligação ao Cálcio/genética , Quimiocinas CXC/genética , Neoplasias do Colo/genética , Glicoproteínas de Membrana/genética , Receptores Acoplados a Proteínas G/genética , Receptores Imunológicos/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores Tumorais/genética , Antígeno Carcinoembrionário/genética , Linhagem Celular Tumoral , Neoplasias do Colo/diagnóstico , Neoplasias do Colo/patologia , Molécula de Adesão da Célula Epitelial/genética , Feminino , Proteínas Ligadas por GPI/genética , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Masculino , Pessoa de Meia-Idade , Células Mieloides/patologia , Microambiente Tumoral/genética
2.
Biomolecules ; 11(7)2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34356594

RESUMO

(1) Background: The interaction of the programmed death receptor (PD-1) with its ligand 1 (PD-L1) allows cancer cells to escape from the control of the immune system. Research evaluating the expression of immune checkpoint genes in the tissues of laryngeal tumors may contribute to the introduction of new effective immunotherapeutic methods in this group of neoplasms. The aim of this study was to evaluate the expression of the gene for the programmed death receptor (PD-1) and its ligand (PD-L1) in laryngeal tumors (T1, T2, T3) in patients without lymph node involvement and distant metastases. (2) Methods: The study included 73 patients: 39 of them were diagnosed with carcinoma planoepiteliale keratodes (study group) and 34 with nasal septal deviation undergoing septoplasty (control group). Biological material for molecular tests (Real time PCR) was collected during surgical procedures. Furthermore, all study participants completed a questionnaire regarding, among others, smoking and body weight. (3) Results: Gene expression for programmed death receptor 1 (PD-1) and its ligand 1 (PD-L1) was, statistically, significantly higher (p < 0.0001) in tumor tissue than in unchanged mucosa. Moreover, it was found that the greater the tumor size, the higher the expression level of the tested molecules. (4) Conclusions: Although further research on the role of the PD-1/PD-L1 pathway in laryngeal tumors is necessary, the presented reports are promising and may constitute a contribution to considerations on the introduction of targeted immunotherapy with anti-PD1 and anti-PD-L1 monoclonal antibodies in the treatment of these tumors.


Assuntos
Antígeno B7-H1/genética , Neoplasias Laríngeas/genética , Receptor de Morte Celular Programada 1/genética , Idoso , Anticorpos Monoclonais/genética , Antígeno B7-H1/metabolismo , Estudos de Coortes , Feminino , Expressão Gênica/genética , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Imunoterapia/métodos , Neoplasias Laríngeas/metabolismo , Neoplasias Laríngeas/fisiopatologia , Ligantes , Masculino , Pessoa de Meia-Idade , Receptor de Morte Celular Programada 1/metabolismo , Receptores de Morte Celular/genética , Receptores de Morte Celular/metabolismo , Transcriptoma/genética
3.
Gene ; 805: 145904, 2021 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-34418470

RESUMO

Breast cancer is the second most common cause of cancer-related mortality in women. Breast cancer metastasis which usually is observed at the last stage is the major cause of breast cancer-related death. Long non-coding RNAs (lncRNAs) are member of the non-coding RNA family. It is known that lncRNAs have important functions in the genes regulation of different processes and pathways such as EMT (Epithelial mesenchymal transition), metastasis and apoptosis. Therefore, it is inevitable that lncRNAs have potential contribution for the understanding of cancer pathogenesis. lncRNA-ZEB2NAT is the natural antisense transcript of ZEB2. Herein, we investigated the effects of lncRNA-ZEB2NAT on process of EMT, metastasis and apoptosis in MCF7 and MDA-MB-231 breast cancer cells. The effect of ZEB2NAT on the expression of important genes in EMT, metastasis and apoptosis, and some protein levels was determined by qRT-PCR and western blot analysis, respectively. The effects of ZEB2NAT on cell proliferation, apoptosis, invasion and colony formation were evaluated using XTT, annexin V, invasion and colony assays, respectively. The ZEB2NAT knockdown caused anti-metastatic and apoptotic effects. The ZEB2NAT knockdown resulted in a decrease in ZEB2 and N-cadherin but an increase in E-cadherin protein levels. In addition, it was determined that ZEB2NAT knockdown significantly decreased cell proliferation and stimulated apoptosis in both cells. It was found that ZEB2NAT knockdown significantly decreased invasion and colony formation in both cells. ZEB2NAT knockdown showed anti-metastatic and apoptotic effect by affecting the important genes in both cells. These results have suggested that ZEB2NAT has an important role in EMT, metastasis and apoptosis in breast cancer and ZEB2NAT knockdown caused significant anti-cancer activities.


Assuntos
Neoplasias da Mama/genética , Homeobox 2 de Ligação a E-box com Dedos de Zinco/genética , Apoptose/genética , Neoplasias da Mama/metabolismo , Caderinas/genética , Caderinas/metabolismo , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Transição Epitelial-Mesenquimal/genética , Feminino , Expressão Gênica/genética , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Invasividade Neoplásica/genética , Metástase Neoplásica/genética , RNA Longo não Codificante/genética , Homeobox 2 de Ligação a E-box com Dedos de Zinco/metabolismo
4.
Int J Mol Sci ; 22(16)2021 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-34445129

RESUMO

Long noncoding RNAs (lncRNAs) are the largest groups of ribonucleic acids, but, despite the increasing amount of literature data, the least understood. Given the involvement of lncRNA in basic cellular processes, especially in the regulation of transcription, the role of these noncoding molecules seems to be of great importance for the proper functioning of the organism. Studies have shown a relationship between disturbed lncRNA expression and the pathogenesis of many diseases, including cancer. The present article presents a detailed review of the latest reports and data regarding the importance of lncRNA in the development of cancers, including breast carcinoma.


Assuntos
Carcinogênese/genética , Neoplasias/genética , RNA Longo não Codificante/genética , Animais , Regulação Neoplásica da Expressão Gênica/genética , Humanos
5.
Viruses ; 13(7)2021 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-34372567

RESUMO

Glioblastoma is the most malignant and most common form of brain tumor, still today associated with a poor 14-months median survival from diagnosis. Protein kinase A, particularly its regulatory subunit R2Alpha, presents a typical intracellular distribution in glioblastoma cells compared to the healthy brain parenchyma and this peculiarity might be exploited in a therapeutic setting. In the present study, a third-generation lentiviral system for delivery of shRNA targeting the regulatory subunit R2Alpha of protein kinase A was developed. Generated lentiviral vectors are able to induce an efficient and stable downregulation of R2Alpha in different cellular models, including non-stem and stem-like glioblastoma cells. In addition, our data suggest a potential correlation between silencing of the regulatory subunit of protein kinase A and reduced viability of tumor cells, apparently due to a reduction in replication rate. Thus, our findings support the role of protein kinase A as a promising target for novel anti-glioma therapies.


Assuntos
Subunidade RIIalfa da Proteína Quinase Dependente de AMP Cíclico/genética , Subunidade RIIalfa da Proteína Quinase Dependente de AMP Cíclico/metabolismo , Glioblastoma/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Subunidade RIIalfa da Proteína Quinase Dependente de AMP Cíclico/fisiologia , Proteínas Quinases Dependentes de AMP Cíclico/genética , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Expressão Gênica/genética , Regulação Neoplásica da Expressão Gênica/genética , Técnicas de Transferência de Genes , Vetores Genéticos/genética , Glioblastoma/genética , Glioblastoma/fisiopatologia , Glioma/genética , Glioma/metabolismo , Células HEK293 , Humanos , Lentivirus/genética , Interferência de RNA , RNA Mensageiro/genética , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/farmacologia , Transdução Genética/métodos
6.
Theranostics ; 11(16): 7658-7670, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34335956

RESUMO

SNAI1 is widely regarded as a master driver of epithelial-mesenchymal transition (EMT) and associated with breast cancer progression and metastasis. This pro-malignant role is strongly linked to posttranslational modification, especially phosphorylation, which controls its protein levels and subcellular localization. While multiple kinases are implicated in regulation of SNAI1 stability, the precise mechanism by which SNAI1 is stabilized in tumors remains to be fully elucidated. Methods: A series of in vitro and in vivo experiments were conducted to reveal the regulation of SNAI1 by Serine/Threonine Kinase 39 (STK39) and the role of STK39 in breast cancer metastasis. Results: We identified STK39, a member of Stem 20-like serine/threonine kinase family, as a novel posttranslational regulator that enhances the stability of SNAI1. Inhibition of STK39 via knockdown or use of a specific inhibitor resulted in SNAI1 destabilization. Mechanistically, STK39 interacted with and phosphorylated SNAI1 at T203, which is critical for its nuclear retention. Functionally, STK39 inhibition markedly impaired the EMT phenotype and decreased tumor cell migration, invasion, and metastasis both in vitro and in vivo. These effects were rescued by ectopic SNAI1 expression. In addition, depletion of STK39 dramatically enhanced sensitivity to chemotherapeutic agents. Conclusions: Our study demonstrated that STK39 is a key mediator of SNAI1 stability and is associated with the pro-metastatic cellular process, highlighting the STK39-SNAI1 signaling axis as promising therapeutic targets for treatments of metastatic breast cancer.


Assuntos
Neoplasias da Mama/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Fatores de Transcrição da Família Snail/metabolismo , Animais , Neoplasias da Mama/fisiopatologia , Linhagem Celular Tumoral , Movimento Celular/genética , Transição Epitelial-Mesenquimal/genética , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Camundongos , Camundongos SCID , Invasividade Neoplásica/genética , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Fatores de Transcrição da Família Snail/genética , Fatores de Transcrição/metabolismo
7.
Theranostics ; 11(16): 7640-7657, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34335955

RESUMO

Background: Since primary prostate cancer (PCa) can advance to the life-threatening metastatic PCa, exploring the molecular mechanisms underlying PCa metastasis is crucial for developing the novel targeted preventive strategies for decreasing the mortality of PCa. RNA N6-methyladenosine (m6A) is an emerging regulatory mechanism for gene expression and its specific roles in PCa progression remains elusive. Methods: Western blotting, quantitative real-time PCR and immunohistochemical analyses were used to detect target gene expression in PCa cells in vitro and prostate tissues from patients. RNA immunoprecipitation was conducted to analyze the specific binding of mRNA to the target protein. Migration and invasion assays were used to assess the migratory capacities of cancer cells. The correlation between target gene expression and survival rate of PCa patients was analyzed based the TCGA database. Results: We found that total RNA N6-methyladenosine (m6A) modification levels were markedly upregulated in human PCa tissues due to increased expression of methyltransferase like 3 (METTL3). Further studies revealed that the migratory and invasive capacities of PCa cells were markedly suppressed upon METTL3 knockdown. Mechanistically, METTL3 mediates m6A modification of USP4 mRNA at A2696, and m6A reader protein YTHDF2 binds to and induces degradation of USP4 mRNA by recruiting RNA-binding protein HNRNPD to the mRNA. Decrease of USP4 fails to remove the ubiquitin group from ELAVL1 protein, resulting in a reduction of ELAVL1 protein. Lastly, downregulation of ELAVL1 in turn increases ARHGDIA expression, promoting migration and invasion of PCa cells. Conclusions: Our findings highlight the role of METTL3 in modulating invasion and metastasis of PCa cells, providing insight into promising therapeutic strategies for hindering PCa progressing to deadly metastases.


Assuntos
Metiltransferases/genética , Neoplasias da Próstata/metabolismo , Adenosina/análogos & derivados , Adenosina/genética , Adenosina/metabolismo , Movimento Celular/genética , Proliferação de Células/genética , Expressão Gênica/genética , Regulação Neoplásica da Expressão Gênica/genética , Inativação Gênica/fisiologia , Humanos , Masculino , Metiltransferases/metabolismo , Invasividade Neoplásica/genética , Metástase Neoplásica/genética , Próstata/metabolismo , Próstata/patologia , Neoplasias da Próstata/genética , RNA Mensageiro/genética , Proteínas de Ligação a RNA/metabolismo , Proteases Específicas de Ubiquitina/genética
8.
Theranostics ; 11(16): 7779-7796, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34335964

RESUMO

Rationale: The progression of prostate cancer (PCa) to castration-resistant PCa (CRPC) despite continuous androgen deprivation therapy is a major clinical challenge. Over 90% of patients with CRPC exhibit sustained androgen receptor (AR) signaling. KDM4B that removes the repressive mark H3K9me3/2 is a transcriptional activator of AR and has been implicated in the development of CRPC. However, the mechanisms of KDM4B involvement in CRPC remain largely unknown. Here, we sought to demonstrate the molecular pathway mediated by KDM4B in CRPC and to provide proof-of-concept evidence that KDM4B is a potential CRPC target. Methods: CRPC cells (C4-2B or CWR22Rv1) depleted with KDM4B followed by cell proliferation (in vitro and xenograft), microarray, qRT-PCR, Seahorse Flux, and metabolomic analyses were employed to identify the expression and metabolic profiles mediated by KDM4B. Immunoprecipitation was used to determine the KDM4B-c-Myc interaction region. Reporter activity assay and ChIP analysis were used to characterize the KDM4B-c-Myc complex-mediated mechanistic actions. The clinical relevance between KDM4B and c-Myc was determined using UCSC Xena analysis and immunohistochemistry. Results: We showed that KDM4B knockdown impaired CRPC proliferation, switched Warburg to OXPHOS metabolism, and suppressed gene expressions including those targeted by c-Myc. We further demonstrated that KDM4B physically interacted with c-Myc and they were co-recruited to the c-Myc-binding sequence on the promoters of metabolic genes (LDHA, ENO1, and PFK). Importantly, KDM4B and c-Myc synergistically promoted the transactivation of the LDHA promoter in a demethylase-dependent manner. We also provided evidence that KDM4B and c-Myc are co-expressed in PCa tissue and that high expression of both is associated with worse clinical outcome. Conclusions: KDM4B partners with c-Myc and serves as a coactivator of c-Myc to directly enhance c-Myc-mediated metabolism, hence promoting CRPC progression. Targeting KDM4B is thus an alternative therapeutic strategy for advanced prostate cancers driven by c-Myc and AR.


Assuntos
Histona Desmetilases com o Domínio Jumonji/metabolismo , Neoplasias de Próstata Resistentes à Castração/metabolismo , Antagonistas de Androgênios , Animais , Linhagem Celular Tumoral , Proliferação de Células/genética , Expressão Gênica/genética , Regulação Neoplásica da Expressão Gênica/genética , Xenoenxertos , Humanos , Histona Desmetilases com o Domínio Jumonji/fisiologia , Masculino , Camundongos Endogâmicos BALB C , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/patologia , Receptores Androgênicos/metabolismo , Transdução de Sinais/genética , Fatores de Transcrição/metabolismo
9.
Theranostics ; 11(16): 8112-8128, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34335983

RESUMO

The coiled-coil domain containing protein members have been well documented for their roles in many diseases including cancers. However, the function of the coiled-coil domain containing 65 (CCDC65) remains unknown in tumorigenesis including gastric cancer. Methods: CCDC65 expression and its correlation with clinical features and prognosis of gastric cancer were analyzed in tissue. The biological role and molecular basis of CCDC65 were performed via in vitro and in vivo assays and a various of experimental methods including co-immunoprecipitation (Co-IP), GST-pull down and ubiquitination analysis et al. Finally, whether metformin affects the pathogenesis of gastric cancer by regulating CCDC65 and its-mediated signaling was investigated. Results: Here, we found that downregulated CCDC65 level was showed as an unfavourable factor in gastric cancer patients. Subsequently, CCDC65 or its domain (a.a. 130-484) was identified as a significant suppressor in GC growth and metastasis in vitro and in vivo. Molecular basis showed that CCDC65 bound to ENO1, an oncogenic factor has been widely reported to promote the tumor pathogenesis, by its domain (a.a. 130-484) and further promoted ubiquitylation and degradation of ENO1 by recruiting E3 ubiquitin ligase FBXW7. The downregulated ENO1 decreased the binding with AKT1 and further inactivated AKT1, which led to the loss of cell proliferation and EMT signal. Finally, we observed that metformin, a new anti-cancer drug, can significantly induce CCDC65 to suppress ENO1-AKT1 complex-mediated cell proliferation and EMT signals and finally suppresses the malignant phenotypes of gastric cancer cells. Conclusion: These results firstly highlight a critical role of CCDC65 in suppressing ENO1-AKT1 pathway to reduce the progression of gastric cancer and reveals a new molecular mechanism for metformin in suppressing gastric cancer. Our present study provides a new insight into the mechanism and therapy for gastric cancer.


Assuntos
Biomarcadores Tumorais/metabolismo , Proteínas de Ligação a DNA/metabolismo , Glicoproteínas/metabolismo , Fosfopiruvato Hidratase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Neoplasias Gástricas/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Animais , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , China , Feminino , Expressão Gênica/genética , Regulação Neoplásica da Expressão Gênica/genética , Genes Supressores de Tumor/fisiologia , Glicoproteínas/genética , Humanos , Masculino , Metformina/metabolismo , Metformina/farmacologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Oncogenes , Prognóstico , Proteínas Proto-Oncogênicas c-akt/fisiologia , Transdução de Sinais/genética , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
10.
Int J Mol Sci ; 22(14)2021 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-34298996

RESUMO

Regulator of Chromatin Condensation 1 (RCC1) is the only known guanine nucleotide exchange factor that acts on the Ras-like G protein Ran and plays a key role in cell cycle regulation. Although there is growing evidence to support the relationship between RCC1 and cancer, detailed pancancer analyses have not yet been performed. In this genome database study, based on The Cancer Genome Atlas, Genotype-Tissue Expression and Gene Expression Omnibus databases, the potential role of RCC1 in 33 tumors' entities was explored. The results show that RCC1 is highly expressed in most human malignant neoplasms in contrast to healthy tissues. RCC1 expression is closely related to the prognosis of a broad variety of tumor patients. Enrichment analysis showed that some tumor-related pathways such as "cell cycle" and "RNA transport" were involved in the functional mechanism of RCC1. In particular, the conducted analysis reveals the relation of RCC1 to multiple immune checkpoint genes and suggests that the regulation of RCC1 is closely related to tumor infiltration of cancer-associated fibroblasts and CD8+ T cells. Coherent data demonstrate the association of RCC1 with the tumor mutation burden and microsatellite instability in various tumors. These findings provide new insights into the role of RCC1 in oncogenesis and tumor immunology in various tumors and indicate its potential as marker for therapy prognosis and targeted treatment strategies.


Assuntos
Proteínas de Ciclo Celular/genética , Cromatina/metabolismo , Regulação Neoplásica da Expressão Gênica/genética , Fatores de Troca do Nucleotídeo Guanina/genética , Neoplasias/metabolismo , Proteínas Nucleares/genética , Big Data , Linfócitos T CD8-Positivos/metabolismo , Fibroblastos Associados a Câncer/metabolismo , Carcinogênese/genética , Carcinogênese/imunologia , Ciclo Celular/genética , Ciclo Celular/imunologia , Proteínas de Ciclo Celular/metabolismo , Cromatina/genética , Metilação de DNA , Bases de Dados Genéticas , Regulação Neoplásica da Expressão Gênica/imunologia , Ontologia Genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Humanos , Proteínas de Checkpoint Imunológico/genética , Estimativa de Kaplan-Meier , Instabilidade de Microssatélites , Neoplasias/genética , Neoplasias/mortalidade , Neoplasias/patologia , Proteínas Nucleares/metabolismo , Fosforilação , Prognóstico , Mapas de Interação de Proteínas , Transcriptoma
11.
Int J Mol Sci ; 22(14)2021 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-34299002

RESUMO

Culinary sage (Salvia officinalis L.) is a common spice plant in the mint family (Lamiaceae) well known for its distinctive culinary and traditional medicinal uses. Sage tea has been used traditionally as a brain-enhancing tonic and extracts from sage have been reported to have both cognitive and memory enhancing effects. Brain-derived neurotrophic factor (BDNF) is an endogenous signaling molecule involved in cognition and memory function. In this study, activity-guided fractionation employing preparative reverse-phase high performance liquid chromatography (RP-HPLC) of culinary sage extracts led to the discovery of benzyl 6-O-ß-D-apiofuranosyl-ß-D-glucoside (B6AG) as a natural product that upregulates transcription of neurotrophic factors in C6 glioma cells. Purified B6AG showed a moderate dose response, with upregulation of BDNF and with EC50 at 6.46 µM. To better understand the natural variation in culinary sage, B6AG was quantitated in the leaves of several commercial varieties by liquid chromatography-mass spectrometry (LC-MS). The level of B6AG in dried culinary sage was found to range from 334 ± 14 to 698 ± 65 µg/g. This study provided a foundation for future investigations, including quantitative inquiries on the distribution of B6AG within the different plant organs, explorations in optimizing post-harvest practices, and aid in the development of sage varieties with elevated levels of B6AG.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Glioma/metabolismo , Folhas de Planta/química , Salvia officinalis/química , Transdução de Sinais/efeitos dos fármacos , Animais , Fator Neurotrófico Derivado do Encéfalo/genética , Linhagem Celular Tumoral , Cromatografia Líquida de Alta Pressão , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/genética , Glioma/genética , Espectrometria de Massas , Ratos , Transdução de Sinais/genética
12.
Biomolecules ; 11(6)2021 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-34207099

RESUMO

RNA methylation at the nitrogen sixth of adenosine (m6A, N6-methyladenosine) is the most abundant RNA modification which plays a crucial role in all RNA metabolic aspects. Recently, m6A modification has been assigned to mediate the biological processes of cancer cells, but their significance in HNSCC development is still poorly described. Thus, the main aim of this study was to globally quantify m6A modification by the mass spectrometry approach and determine the mRNA expression level of selected m6A RNA methyltransferase (METTL3), demethylase (FTO), and m6A readers (YTHDF2, YTHDC2) in 45 HNSCC patients and 4 cell lines (FaDu, Detroit 562, A-253 and SCC-15) using qPCR. In the results, we have not observed differences in the global amount of m6A modification and the mRNA level of the selected genes between the cancerous and paired-matched histopathologically unchanged tissues from 45 HNSCC patients. However, we have found a positive correlation between selected RNA methylation machinery genes expression and m6A abundance on total RNA and characterized the transcript level of those genes in the HNSCC cell lines. Moreover, the lack of global m6A differences between cancerous and histopathologically unchanged tissues suggests that m6A alterations in specific RNA sites may specifically influence HNSCC tumorigenesis.


Assuntos
RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Adenosina/análogos & derivados , Adenosina/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética , Carcinogênese/genética , Feminino , Expressão Gênica/genética , Regulação Neoplásica da Expressão Gênica/genética , Neoplasias de Cabeça e Pescoço/genética , Humanos , Masculino , Espectrometria de Massas/métodos , Metilação , Metiltransferases/genética , Metiltransferases/metabolismo , Pessoa de Meia-Idade , Polônia , RNA/genética , RNA Helicases/genética , Processamento Pós-Transcricional do RNA/genética , Processamento Pós-Transcricional do RNA/fisiologia , RNA Mensageiro/análise , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo , tRNA Metiltransferases/metabolismo
13.
Comput Biol Chem ; 93: 107531, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34217008

RESUMO

Despite the tremendous progress in molecular analysis of pan-cancer, little is known regarding molecular classification of cervical squamous cell carcinoma. In this study, we adopted a multi-omics approach to identify potential key classification features of cervical squamous cell carcinoma. Specifically, we analyzed mRNA, and microRNA (miRNA) expression data, as well as DNA methylation and copy number variation in cervical squamous cell carcinoma cases, using datasets obtained from The Cancer Genome Atlas (TCGA). Moreover, we identified molecules in each dimension, as well as integrated and clustered filtered classification features, and used them to distinguish different subtypes. The resulting key classification features were used to establish a classification model for cervical squamous cell carcinoma. Our results revealed two cervical squamous cell carcinoma subtypes, with significant differences across clinical survival levels, as well as 8 key classification features of cervical squamous cell carcinomas. These findings are expected to provide important references for early classification of cervical squamous cell carcinoma and identification of classification markers.


Assuntos
Carcinoma de Células Escamosas/genética , Regulação Neoplásica da Expressão Gênica/genética , Neoplasias do Colo do Útero/genética , Carcinoma de Células Escamosas/diagnóstico , Variações do Número de Cópias de DNA/genética , Metilação de DNA/genética , Feminino , Humanos , RNA Mensageiro/genética , Neoplasias do Colo do Útero/diagnóstico
14.
Anticancer Res ; 41(7): 3349-3361, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34230131

RESUMO

BACKGROUND/AIM: The present study investigated the oncogenic functions of TACC3 in the progression of gastric cancer (GC). MATERIALS AND METHODS: We analysed TACC3 in relation to cell growth, invasion capability, expression of epithelial-mesenchymal transition (EMT)-related markers, and ERK/Akt/cyclin D1 signaling factors. The correlation between the immunohistochemically confirmed expression of TACC3 and clinical factors was also analyzed. RESULTS: The increased proliferation and invasion of TACC3-over-expressing GC cells was accompanied by altered regulation of EMT-associated markers and activation of ERK/Akt/cyclin D1 signaling. Immunohistochemical analysis of TACC3 in human GC tissues revealed that its expression is correlated with aggressive characteristics and poor prognosis of intestinal-type GC. CONCLUSION: TACC3 contributes to gastric tumorigenesis by promoting EMT via the ERK/Akt/cyclin D1 signaling pathway. The correlation between TACC3 expression and multiple clinicopathological variables implies that its effective therapeutic targeting in GC will depend on the tumor subtype.


Assuntos
Carcinogênese/genética , Ciclina D1/genética , Transição Epitelial-Mesenquimal/genética , Sistema de Sinalização das MAP Quinases/genética , Proteínas Associadas aos Microtúbulos/genética , Proteínas Proto-Oncogênicas c-akt/genética , Neoplasias Gástricas/genética , Carcinogênese/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Invasividade Neoplásica/genética , Invasividade Neoplásica/patologia , Transdução de Sinais/genética , Estômago/patologia , Neoplasias Gástricas/patologia
15.
Anticancer Res ; 41(7): 3363-3370, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34230132

RESUMO

BACKGROUND/AIM: The mechanisms through which cetuximab (cMab) coadministration with paclitaxel (PTX) enhances antitumor efficacy remain unclear. We examined the mechanism of the antitumor enhancing effect of cMab by determining changes in gene expression in the PI3K-AKT pathway. MATERIALS AND METHODS: Eight human oral squamous cell carcinoma (OSCC) cell lines were cultured three-dimensionally and exposed to PTX + cMab. The expression levels of PTEN mRNA in OSCC cell lines after anticancer drug treatment were assessed using real-time PCR. PTEN mRNA expression levels were also confirmed after administration of PTX + cMab in vivo. Western blot analysis was used to confirm the results at the protein level. RESULTS: PTEN mRNA and protein expression were significantly increased only in the cell lines with high sensitivity to PTX + cMab, and similar results were observed in vivo. CONCLUSION: PTEN activation may enhance the antitumor effect of PTX + cMab.


Assuntos
Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Neoplasias de Cabeça e Pescoço/genética , Neoplasias Bucais/tratamento farmacológico , Neoplasias Bucais/genética , PTEN Fosfo-Hidrolase/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Apoptose/efeitos dos fármacos , Apoptose/genética , Linhagem Celular Tumoral , Cetuximab/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Paclitaxel/farmacologia , Fosfatidilinositol 3-Quinases/genética
16.
Anticancer Res ; 41(7): 3409-3417, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34230136

RESUMO

BACKGROUND/AIM: ER-positive breast cancer patients commonly undergo endocrine therapy with drugs such as tamoxifen. Despite tamoxifen being a highly effective drug, long-term treatment results in resistance in one-third of the patients. Although many explanations for the development of tamoxifen resistance have been put forward, a clearly defined underlying mechanism is still lacking. MATERIALS AND METHODS: The expression level of HOXB5 was evaluated between MCF7 breast cancer cells and tamoxifen-resistant MCF7 (TAMR) cells by RT-PCR. Then, the effect of HOXB5 on invasion and migration abilities as well as on cancer stemness were investigated through 3D culture and spheroid formation assay. RESULTS: In this study, we provide evidence that HOXB5 is up-regulated in TAMR cells. EGFR is concurrently overexpressed, and the EGFR signaling cascade is activated, resulting in migratory and invasive phenotypes in TAMR cells compared to MCF7 cells. However, HOXB5 knockdown in TAMR cells resulted in the de-activation of the EGFR signaling pathway, less aggressive phenotypes and restoration of sensitivity to tamoxifen treatment. More interestingly, TAMR cells expressed higher levels of stem cell markers, and as a result, their enhanced stemness allowed for a better formation of spheroids than MCF7 cells. When HOXB5 was overexpressed in MCF7 cells, they were able to form a larger number of spheroids as in TAMR cells. CONCLUSION: HOXB5 is one of the key factors involved in tumor aggression and progression in tamoxifen-resistant breast cancer cells.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Movimento Celular/genética , Resistencia a Medicamentos Antineoplásicos/genética , Proteínas de Homeodomínio/genética , Biomarcadores Tumorais/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Progressão da Doença , Receptores ErbB/genética , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Células MCF-7 , Transdução de Sinais/genética , Células-Tronco/patologia , Tamoxifeno/farmacologia
17.
Int J Mol Sci ; 22(14)2021 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-34299245

RESUMO

Hepatocellular carcinoma (HCC) records the second-lowest 5-year survival rate despite the avalanche of research into diagnosis and therapy. One of the major obstacles in treatment is chemoresistance to drugs such as 5-fluorouracil (5-FU), making identification and elucidation of chemoresistance regulators highly valuable. As the regulatory landscape grows to encompass non-coding genes such as long non-coding RNAs (lncRNAs), a relatively new class of lncRNA has emerged in the form of pseudogene-derived lncRNAs. Through bioinformatics analyses of the TCGA LIHC dataset, we have systematically identified pseudogenes of prognostic value. Initial experimental validation of selected pseudogene-derived lncRNA (PLEKHA8P1) and its parental gene (PLEKHA8), a well-studied transport protein in Golgi complex recently implicated as an oncogene in both colorectal and liver cancer, indicates that the pseudogene/parental gene pair promotes tumor progression and that their dysregulated expression levels affect 5-FU-induced chemoresistance in human HCC cell line FT3-7. Our study has thus confirmed cancer-related functions of PLEKHA8, and laid the groundwork for identification and validation of oncogenic pseudogene-derived lncRNA that shows potential as a novel therapeutic target in circumventing chemoresistance induced by 5-FU.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Carcinoma Hepatocelular/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Biomarcadores Tumorais/metabolismo , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Biologia Computacional/métodos , Bases de Dados Genéticas , Progressão da Doença , Resistencia a Medicamentos Antineoplásicos/genética , Fluoruracila/farmacologia , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Estimativa de Kaplan-Meier , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , MicroRNAs/genética , Prognóstico , Pseudogenes , RNA Longo não Codificante/genética
18.
Nat Commun ; 12(1): 4360, 2021 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-34272384

RESUMO

The glucocorticoid receptor (GR) regulates gene expression, governing aspects of homeostasis, but is also involved in cancer. Pharmacological GR activation is frequently used to alleviate therapy-related side-effects. While prior studies have shown GR activation might also have anti-proliferative action on tumours, the underpinnings of glucocorticoid action and its direct effectors in non-lymphoid solid cancers remain elusive. Here, we study the mechanisms of glucocorticoid response, focusing on lung cancer. We show that GR activation induces reversible cancer cell dormancy characterised by anticancer drug tolerance, and activation of growth factor survival signalling accompanied by vulnerability to inhibitors. GR-induced dormancy is dependent on a single GR-target gene, CDKN1C, regulated through chromatin looping of a GR-occupied upstream distal enhancer in a SWI/SNF-dependent fashion. These insights illustrate the importance of GR signalling in non-lymphoid solid cancer biology, particularly in lung cancer, and warrant caution for use of glucocorticoids in treatment of anticancer therapy related side-effects.


Assuntos
Antineoplásicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Cromatina/metabolismo , Inibidor de Quinase Dependente de Ciclina p57/metabolismo , Glucocorticoides/farmacologia , Neoplasias Pulmonares/metabolismo , Receptores de Glucocorticoides/metabolismo , Animais , Ciclo Celular/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Sobrevivência Celular/efeitos dos fármacos , Cromatina/genética , Sequenciamento de Cromatina por Imunoprecipitação , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Inibidor de Quinase Dependente de Ciclina p57/genética , Elementos Facilitadores Genéticos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Imidazóis/farmacologia , Imuno-Histoquímica , Neoplasias Pulmonares/genética , Camundongos , Proteômica , Pirazinas/farmacologia , RNA Interferente Pequeno , RNA-Seq , Receptor IGF Tipo 1/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
19.
Int J Mol Sci ; 22(14)2021 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-34298873

RESUMO

Solid tumors are complex systems characterized by dynamic interactions between neoplastic cells, non-tumoral cells, and extracellular components. Among all the stromal cells that populate tumor microenvironment, fibroblasts are the most abundant elements and are critically involved in disease progression. Cancer-associated fibroblasts (CAFs) have pleiotropic functions in tumor growth and extracellular matrix remodeling implicated in local invasion and distant metastasis. CAFs additionally participate in the inflammatory response of the tumor site by releasing a variety of chemokines and cytokines. It is becoming clear that understanding the dynamic, mutual melanoma-fibroblast relationship would enable treatment options to be amplified. To better characterize melanoma-associated fibroblasts, here we analyzed low-passage primary CAFs derived from advanced-stage primary skin melanomas, focusing on the immuno-phenotype. Furthermore, we assessed the expression of several CAF markers and the production of growth factors. To deepen the study of CAF-melanoma cell crosstalk, we employed CAF-derived supernatants and trans-well co-culture systems to evaluate the influences of CAFs on (i) the motogenic ability of melanoma cells, (ii) the chemotherapy-induced cytotoxicity, and (iii) the release of mediators active in modulating tumor growth and spread.


Assuntos
Fibroblastos Associados a Câncer/metabolismo , Regulação Neoplásica da Expressão Gênica/genética , Melanoma/genética , Neoplasias Cutâneas/genética , Biomarcadores Tumorais/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Técnicas de Cocultura , Citocinas/genética , Matriz Extracelular/genética , Perfilação da Expressão Gênica/métodos , Humanos , Inflamação/genética , Células Estromais/metabolismo
20.
Int J Mol Sci ; 22(11)2021 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-34205118

RESUMO

During metastasis, cancer cells that originate from the primary tumor circulate in the bloodstream, extravasate, and form micrometastases at distant locations. Several lines of evidence suggest that specific interactions between cancer cells and endothelial cells, in particular tumor cell adhesion to the endothelium and transendothelial migration, play a crucial role in extravasation. Here we have studied the role of vascular endothelial (VE)-cadherin which is expressed aberrantly by breast cancer cells and might promote such interactions. By comparing different human breast cancer cell lines, we observed that the number of cancer cells that adhered to endothelium correlated with VE-cadherin expression levels. VE-cadherin silencing experiments confirmed that VE-cadherin enhances cancer cell adhesion to endothelial cells. However, in contrast, the number of cancer cells that incorporated into the endothelium was not dependent on VE-cadherin. Thus, it appears that cancer cell adhesion and incorporation are distinct processes that are governed by different molecular mechanisms. When cancer cells incorporated into the endothelial monolayer, they formed VE-cadherin positive contacts with endothelial cells. On the other hand, we also observed tumor cells that had displaced endothelial cells, reflecting either different modes of incorporation, or a temporal sequence where cancer cells first form contact with endothelial cells and then displace them to facilitate transmigration. Taken together, these results show that VE-cadherin promotes the adhesion of breast cancer cells to the endothelium and is involved in the initial phase of incorporation, but not their transmigration. Thus, VE-cadherin might be of relevance for therapeutic strategies aiming at preventing the metastatic spread of breast cancer cells.


Assuntos
Antígenos CD/genética , Neoplasias da Mama/genética , Caderinas/genética , Adesão Celular/genética , Endotélio Vascular/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Técnicas de Cocultura , Endotélio Vascular/patologia , Endotélio Vascular/ultraestrutura , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Células Endoteliais da Veia Umbilical Humana/citologia , Humanos , Imagem Molecular/métodos , Metástase Neoplásica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...