Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56.276
Filtrar
1.
Gene ; 762: 145104, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-32889060

RESUMO

Chalcone synthase (CHS, EC 2.3.1.74) is one of the key and rate-limiting enzymes of phenylpropanoid pathway which plays superior roles in the production of secondary metabolites. In the present study a full-length cDNA of CHS gene was isolated and characterized from Coelogyne ovalis, an orchid of ornamental and medicinal importance. The CHS gene sequence from C. ovalis (CoCHS) was found to be 1445 bp and comprised an open reading frame of 1182 bp, encoding for 394 amino acid residues. Further, the sequence alignment and phylogenetic analysis revealed that CoCHS protein shared high degree of similarity with CHS protein of other orchid species. It also confirmed that it contained all four motifs (I to IV) and signature sequence for the functionality of this gene. Structural modeling of CoCHS based on the crystallographic structure of Freesia hybrida indicated that CoCHS had a similar structure. Quantitative polymerase chain reaction (qPCR) disclosed that CoCHS was expressed in all tissues examined, with the highest transcript being in leaves, followed by pseudobulbs and roots. CoCHS expression was also evaluated in the in vitro-raised plantlets under the abiotic stress (dark, cold, UV-B, wounding, salinity). mRNA transcript expression of CHS gene was found to be positively enhanced and regulated by the different stress types. A correlation between the CoCHS transcript expression with flavonoid and anthocyanin contents revealed that a positive correlation existed between metabolites' content and CoCHS expression within the in vivo as well as in the in vitro-raised plant parts.


Assuntos
Aciltransferases/genética , Regulação da Expressão Gênica de Plantas , Orchidaceae/genética , Proteínas de Plantas/genética , Aciltransferases/química , Aciltransferases/metabolismo , Clonagem Molecular , Orchidaceae/classificação , Orchidaceae/metabolismo , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Estresse Fisiológico
2.
PLoS Comput Biol ; 16(9): e1007740, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32881861

RESUMO

The circadian clock is a complex system that plays many important roles in most organisms. Previously, many mathematical models have been used to sharpen our understanding of the Arabidopsis clock, which brought to light the roles of each transcriptional and post-translational regulations. However, the presence of both regulations, instead of either transcription or post-translation, raised curiosity of whether the combination of these two regulations is important for the clock's system. In this study, we built a series of simplified oscillators with different regulations to study the importance of post-translational regulation (specifically, 26S proteasome degradation) in the clock system. We found that a simple transcriptional-based oscillator can already generate sustained oscillation, but the oscillation can be easily destroyed in the presence of transcriptional leakage. Coupling post-translational control with transcriptional-based oscillator in a feed-forward loop will greatly improve the robustness of the oscillator in the presence of basal leakage. Using these general models, we were able to replicate the increased variability observed in the E3 ligase mutant for both plant and mammalian clocks. With this insight, we also predict a plausible regulator of several E3 ligase genes in the plant's clock. Thus, our results provide insights into and the plausible importance in coupling transcription and post-translation controls in the clock system.


Assuntos
Relógios Circadianos/genética , Modelos Biológicos , Processamento de Proteína Pós-Traducional/genética , Transcrição Genética/genética , Arabidopsis/genética , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Biologia Computacional , Retroalimentação Fisiológica , Regulação da Expressão Gênica de Plantas/genética , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
3.
PLoS Biol ; 18(9): e3000783, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32925907

RESUMO

Plant nucleotide-binding (NB) leucine-rich repeat (LRR) receptor (NLR) proteins function as intracellular immune receptors that perceive the presence of pathogen-derived virulence proteins (effectors) to induce immune responses. The 2 major types of plant NLRs that "sense" pathogen effectors differ in their N-terminal domains: these are Toll/interleukin-1 receptor resistance (TIR) domain-containing NLRs (TNLs) and coiled-coil (CC) domain-containing NLRs (CNLs). In many angiosperms, the RESISTANCE TO POWDERY MILDEW 8 (RPW8)-CC domain containing NLR (RNL) subclass of CNLs is encoded by 2 gene families, ACTIVATED DISEASE RESISTANCE 1 (ADR1) and N REQUIREMENT GENE 1 (NRG1), that act as "helper" NLRs during multiple sensor NLR-mediated immune responses. Despite their important role in sensor NLR-mediated immunity, knowledge of the specific, redundant, and synergistic functions of helper RNLs is limited. We demonstrate that the ADR1 and NRG1 families act in an unequally redundant manner in basal resistance, effector-triggered immunity (ETI) and regulation of defense gene expression. We define RNL redundancy in ETI conferred by some TNLs and in basal resistance against virulent pathogens. We demonstrate that, in Arabidopsis thaliana, the 2 RNL families contribute specific functions in ETI initiated by specific CNLs and TNLs. Time-resolved whole genome expression profiling revealed that RNLs and "classical" CNLs trigger similar transcriptome changes, suggesting that RNLs act like other CNLs to mediate ETI downstream of sensor NLR activation. Together, our genetic data confirm that RNLs contribute to basal resistance, are fully required for TNL signaling, and can also support defense activation during CNL-mediated ETI.


Assuntos
Arabidopsis/imunologia , Proteínas NLR/fisiologia , Imunidade Vegetal/genética , Receptores Imunológicos/fisiologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/fisiologia , Resistência à Doença/genética , Resistência à Doença/imunologia , Regulação da Expressão Gênica de Plantas , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Família Multigênica/genética , Família Multigênica/fisiologia , Proteínas NLR/genética , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Plantas Geneticamente Modificadas , Receptores Imunológicos/genética , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Transcriptoma
4.
PLoS One ; 15(9): e0238381, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32881942

RESUMO

Small fructans improve plant tolerance for cold stress. However, the underlying molecular mechanisms are poorly understood. Here, we have demonstrated that the small fructan tetrasaccharide nystose improves the cold stress tolerance of primary rice roots. Roots developed from seeds soaked in nystose showed lower browning rate, higher root activity, and faster growth compared to seeds soaked in water under chilling stress. Comparative proteomics analysis of nystose-treated and control roots identified a total of 497 differentially expressed proteins. GO classification and KEGG pathway analysis documented that some of the upregulated differentially expressed proteins were implicated in the regulation of serine/threonine protein phosphatase activity, abscisic acid-activated signaling, removal of superoxide radicals, and the response to oxidative stress and defense responses. Western blot analysis indicated that nystose promotes the growth of primary rice roots by increasing the level of RSOsPR10, and the cold stress-induced change in RSOsPR10levelis regulated by jasmonate, salicylic acid, and abscisic acid signaling pathways in rice roots. Furthermore, OsMKK4-dependentmitogen-activated protein kinase signaling cascades may be involved in the nystose-induced cold tolerance of primary rice roots. Together, these results indicate that nystose acts as an immunostimulator of the response to cold stress by multiple signaling pathways.


Assuntos
Resposta ao Choque Frio/efeitos dos fármacos , Oligossacarídeos/farmacologia , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Proteômica/métodos , Transdução de Sinais/efeitos dos fármacos , Ácido Abscísico/metabolismo , Cromatografia Líquida de Alta Pressão , Resposta ao Choque Frio/genética , Ciclopentanos/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Oryza/efeitos dos fármacos , Oryza/crescimento & desenvolvimento , Oxilipinas/metabolismo , Fenótipo , Proteínas de Plantas/genética , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Ácido Salicílico/metabolismo , Transdução de Sinais/genética , Espectrometria de Massas em Tandem
5.
Sheng Wu Gong Cheng Xue Bao ; 36(8): 1610-1619, 2020 Aug 25.
Artigo em Chinês | MEDLINE | ID: mdl-32924359

RESUMO

Autophagy is one of the most common protective mechanisms during plant stress response. We studied the effect of exogenous Cd on autophagy in celery, by using transcriptome sequencing technique to analyze the differentially expressed genes under different Cd concentrations (0, 2, 4 and 8 mg/L). Eight differentially expressed autophagy-related genes were screened and identified by qRT-PCR. Cd had obvious toxic effect on celery, in a dose-dependent manner. Eight differentially expressed autophagy-related genes were screened, among which ATG8a, ATG8f, ATG13, AMPK-1 and AMPK-2 were up-regulated, whereas ATG12, VPS30 and VPS34 were first up-regulated and then decreased. The up-regulated expression of differential genes may resist Cd toxicity by increasing autophagosome structures; however, 8 mg/L Cd exceeded the autophagosome tolerance limit of celery, resulting in decreased expression of multiple autophagy-related genes. The above results can provide help for subsequent functional study of autophagy-related genes, and provide a reference for further exploring the tolerance mechanism of celery to Cd toxicity.


Assuntos
Apium , Autofagia , Cádmio , Regulação da Expressão Gênica de Plantas , Apium/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Autofagia/genética , Cádmio/toxicidade , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes Reguladores/genética , Poluentes do Solo/toxicidade
6.
Sheng Wu Gong Cheng Xue Bao ; 36(8): 1620-1628, 2020 Aug 25.
Artigo em Chinês | MEDLINE | ID: mdl-32924360

RESUMO

Little is known about the molecular mechanism of currant anthocyanin synthesis. We investigated the effect of dfr, a key gene for anthocyanin synthesis in currant, on anthocyanins of different color currant. Black currant (Ribes nigrum L.), red currant (Ribes rubrum L.) and white currant (Ribes albrum L.) were used as test materials to determine the anthocyanin content at different stages of fruit development. Three full-length cDNA sequences of dfr gene were cloned by RACE (Rapid amplification of cDNA ends), and named as Rndfr, Rrdfr and Radfr. Phylogenetic analysis shows that Rndfr, Rrdfr and Radfr had high homology in evolution. The determination of anthocyanin content in different stages of fruit development shows that the content of anthocyanin in black currant and red currant was higher and gradually increased with the ripening of the fruit. While the content of anthocyanin in white currant was extremely low, and almost no anthocyanin was detected. Quantitative RT-PCR analysis shows that the expression level of dfr in black currant was higher than red currant and white currant in each period of fruit development. As the diameter of the fruit increased and the color of the peel deepened, the expression level of dfr in the black currant showed an increasing trend. In the red currant, the expression level gradually increased until the period of 75% fruit color, then the Rrdfr decreased rapidly. In white currant, the overall trend showed a downward trend, and its expression level was the lowest. All the results suggest that dfr gene plays a role in the process of fruit color.


Assuntos
Antocianinas , Frutas , Regulação da Expressão Gênica de Plantas , Ribes , Antocianinas/genética , Clonagem Molecular , Frutas/genética , Filogenia , Ribes/genética , Ribes/metabolismo
7.
PLoS One ; 15(9): e0236577, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32941459

RESUMO

Winter rapeseed (Brassica rapa L.) is the main oilseed crop in northern China and can safely overwinter at 35 (i.e., Tianshui, China) to 48 degrees north latitude (i.e., Altai, Heilongjiang, Raohe, and Xinjiang, China). In order to identify stable reference genes to understand the molecular mechanisms of stress tolerance in winter rapeseed, internal reference genes of winter rapeseed under four abiotic stresses were analyzed using GeNorm, NormFinder, BestKeeper, and RefFinder software. The most stable combinations of internal reference genes were ß-actin and SAND in cold-stressed leaves, ß-actin and EF1a in cold-stressed roots, F-box and SAND in high temperature-stressed leaves, and PP2A and RPL in high temperature-stressed roots, SAND and PP2A in NaCl-stressed leaves, RPL and UBC in NaCl-stressed roots, RPL and PP2A in PEG-stressed leaves, and PP2A and RPL in PEG-stressed roots. Expression profiles of PXG3 were used to verify these results. The stable reference genes identified in this study are useful tools for identifying stress-responsive genes to understand the molecular mechanisms of stress tolerance in winter rapeseed.


Assuntos
Brassica rapa/genética , Resposta ao Choque Frio , Perfilação da Expressão Gênica/normas , Pressão Osmótica , Proteínas de Plantas/genética , Brassica rapa/metabolismo , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica de Plantas , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Raízes de Plantas/metabolismo , Padrões de Referência , Estações do Ano
8.
PLoS One ; 15(9): e0235763, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32956359

RESUMO

Jujube (Ziziphus jujuba Mill.) is an economically and agriculturally significant fruit crop and is widely cultivated throughout the world. Heat stress has recently become a primary abiotic stressor limiting the productivity and growth of jujube, as well as other crops. There are few studies, however, that have performed transcriptome profiling of jujube when it is exposed to heat stress. In this study, we observed the physiochemical changes and analyzed gene expression profiles in resistant jujube cultivar 'HR' and sensitive cultivar 'HS' subjected to heat stress for 0, 1, 3, and 5d. Twenty-four cDNA libraries from 'HR' and 'HS' leaves were built with a transcriptome assay. A total of 6887 and 5077 differentially expressed genes were identified in 'HR' and 'HS' after 1d, 3d, and 5d of heat stress compared with the control treatment, GO and KEGG enrichment analysis revealed that some of the genes were highly enriched in oxidation-reduction process, response to stress, response to water deprivation, response to heat, carbon metabolism, protein processing in endoplasmic reticulum, and plant hormone signal transduction and may play vital roles in the heat stress response in jujube plants. Differentially expressed genes were identified in the two cultivars, including heat shock proteins, transcriptional factors, and ubiquitin-protein ligase genes. And the expression pattern of nine genes was also validated by qRT-PCR. These results will provide useful information for elucidating the molecular mechanism underlying heat stress in different jujube cultivars.


Assuntos
Regulação da Expressão Gênica de Plantas , Resposta ao Choque Térmico , Transcriptoma , Ziziphus/genética , Perfilação da Expressão Gênica , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ziziphus/crescimento & desenvolvimento , Ziziphus/fisiologia
9.
PLoS One ; 15(9): e0236535, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32976483

RESUMO

Passion fruit (Passiflora edulia Sims), an important tropical and subtropical species, is classified as a respiration climacteric fruit, and its quality deteriorates rapidly after harvest. To elucidate the mechanisms involved in ripening and rapid fruit senescence, phytochemical characteristic analysis and RNA sequencing were performed in purple passion fruit with different treatments, that is, 1-methylcyclopropene (1-MCP) and preservative film (PF). Comprehensive functional annotation and KEGG enrichment analysis showed that starch and sucrose metabolism, plant hormone signal transduction, phenylpropanoid biosynthesis, flavonoid biosynthesis, and carotenoid biosynthesis were involved in fruit ripening. Treatment with PF and 1-MCP significantly affected the transcription levels of passion fruit during postharvest storage. A large number of differentially expressed unigenes (DEGs) were identified as significantly enriched in starch and sucrose metabolism, plant hormone signal transduction and phenylpropanoid biosynthesis at the postharvest stage. The PF and 1-MCP treatments increased superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD) gene expression levels and enzyme activities, accelerated lignin accumulation, and decreased ß-galactosidase (ß-Gal), polygalacturonase (PG) and cellulose activities and gene expression levels to delay cell wall degradation during fruit senescence. The RNA sequencing data for cell wall metabolism and hormone signal transduction pathway-related unigenes were verified by RT-qPCR. The results of this study indicate that the cell wall metabolism and hormone signaling pathways are closely related to passion fruit ripening. PF and 1-MCP treatment might inhibit ethylene signaling and regulate cell wall metabolism pathways to inhibit cell wall degradation. Our results demonstrate the involvement of ripening- and senescence-related networks in passion fruit ripening and may establish a foundation for future research investigating the effects of PF and 1-MCP treatment on fruit ripening.


Assuntos
Regulação da Expressão Gênica de Plantas , Passiflora/crescimento & desenvolvimento , Passiflora/genética , Transcriptoma , Ciclopropanos/metabolismo , Frutas/genética , Frutas/crescimento & desenvolvimento , Perfilação da Expressão Gênica , Passiflora/metabolismo , Reguladores de Crescimento de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
10.
Yi Chuan ; 42(9): 858-869, 2020 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-32952120

RESUMO

The phenolic phytohormone salicylic acid (SA) is widely produced in plants, and is a key player in many processes of plant physiology, especially in plant immunity. During pathogen infection, SA is accumulated and the SA signaling pathway is activated to induce the expression of defense-related genes. Recently, a series of SA-related studies have been published. These researches filled gaps in the two SA biosynthesis pathways: the isochorismate synthase (ICS) pathway and the phenylalanine ammonia-lyase (PAL) pathway. The NPR1 (nonexpresser of PR genes 1) and its paralogs, NPR3 and NPR4, were identified as SA receptors. The effect of type II TGAs (TGACG-binding factor) on SA downstream genes was shown to depend on the SA receptor they interacted with. This review will systematically introduce the progress on SA biosynthesis and signal transduction, aiming to provide a theoretical reference for in-depth study of SA regulation on plant development and defense responses.


Assuntos
Transdução de Sinais , Arabidopsis , Proteínas de Arabidopsis , Regulação da Expressão Gênica de Plantas , Doenças das Plantas , Reguladores de Crescimento de Planta , Ácido Salicílico
11.
Nat Commun ; 11(1): 4859, 2020 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-32978401

RESUMO

Cell death is intrinsically linked with immunity. Disruption of an immune-activated MAPK cascade, consisting of MEKK1, MKK1/2, and MPK4, triggers cell death and autoimmunity through the nucleotide-binding leucine-rich repeat (NLR) protein SUMM2 and the MAPK kinase kinase MEKK2. In this study, we identify a Catharanthus roseus receptor-like kinase 1-like (CrRLK1L), named LETUM2/MEDOS1 (LET2/MDS1), and the glycosylphosphatidylinositol (GPI)-anchored protein LLG1 as regulators of mekk1-mkk1/2-mpk4 cell death. LET2/MDS1 functions additively with LET1, another CrRLK1L, and acts genetically downstream of MEKK2 in regulating SUMM2 activation. LET2/MDS1 complexes with LET1 and promotes LET1 phosphorylation, revealing an intertwined regulation between different CrRLK1Ls. LLG1 interacts with the ectodomain of LET1/2 and mediates LET1/2 transport to the plasma membrane, corroborating its function as a co-receptor of LET1/2 in the mekk1-mkk1/2-mpk4 cell death pathway. Thus, our data suggest that a trimeric complex consisting of two CrRLK1Ls LET1, LET2/MDS1, and a GPI-anchored protein LLG1 that regulates the activation of NLR SUMM2 for initiating cell death and autoimmunity.


Assuntos
Autoimunidade/genética , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Proteínas Ligadas por GPI/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Autoimunidade/fisiologia , Proteínas de Transporte/imunologia , Catharanthus/genética , Catharanthus/metabolismo , Morte Celular/genética , Proteínas Ligadas por GPI/genética , Regulação da Expressão Gênica de Plantas , Glicosilfosfatidilinositóis , MAP Quinase Quinase Quinases/genética , Sistema de Sinalização das MAP Quinases , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Fosforilação , Proteínas de Plantas/imunologia , Plantas Geneticamente Modificadas , Interferência de RNA , Transcriptoma
12.
Ecotoxicol Environ Saf ; 203: 111007, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32888586

RESUMO

Soil acidification is one of the crucial global environmental problems, affecting sustainable land use, crop yield, and ecosystem stability. Previous research reported the tolerance of crops to acid soil stress. However, the molecular response of woody plant to acid conditions remains largely unclear. Rhododendron L. is a widely distributed woody plant genus and prefers to grow in acidic soils. Herein, weighted gene coexpression network analysis was performed on R. protistum var. giganteum seedlings subjected to five pH treatments (3.5, 4.5, 5.5, 6.0, 7.0), and their ecophysiological characteristics were determined for the identification of their molecular responses to acidic environments. Through pairwise comparison, 855 differentially expressed genes (DEGs) associated with photosynthesis, cell wall, and phenylpropanoid metabolism were identified. Most of the DEGs related to photosynthesis and cell wall were up-regulated after pH 4.5 treatment. Results implied that the species improves its photosynthetic abilities and changes its cell wall characteristics to adapt to acidic conditions. Weighted gene co-expression network analyses showed that most of the hub genes were annotated to the biosynthetic pathways of ribosomal proteins and photosynthesis. Expression pattern analysis showed that genes encoding subunit ribosomal proteins decreased at pH 7.0 treatment, suggesting that pH 7.0 treatment led to cell injury in the seedlings. The species regulates protein synthesis in response to high pH stress (pH 7.0). The present study revealed the molecular response mechanism of woody plant R. protistum var. giganteum to acid environments. These findings can be useful in enriching current knowledge of how woody species adapt to soil acidification under global environmental changes.


Assuntos
Ácidos/farmacologia , Parede Celular/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Fotossíntese/efeitos dos fármacos , Madeira/efeitos dos fármacos , Parede Celular/genética , Parede Celular/metabolismo , Perfilação da Expressão Gênica , Redes Reguladoras de Genes/efeitos dos fármacos , Concentração de Íons de Hidrogênio , Fotossíntese/genética , Plântula/efeitos dos fármacos , Plântula/metabolismo , Solo/química , Estresse Fisiológico/efeitos dos fármacos , Estresse Fisiológico/genética , Madeira/genética , Madeira/metabolismo
13.
PLoS One ; 15(8): e0236226, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32866160

RESUMO

Amine oxidases (AOs) including copper containing amine oxidases (CuAOs) and FAD-dependent polyamine oxidases (PAOs) are associated with polyamine catabolism in the peroxisome, apoplast and cytoplasm and play an essential role in growth and developmental processes and response to biotic and abiotic stresses. Here, we identified PAO genes in common wheat (Triticum aestivum), T. urartu and Aegilops tauschii and reported the genome organization, evolutionary features and expression profiles of the wheat PAO genes (TaPAO). Expression analysis using publicly available RNASeq data showed that TaPAO genes are expressed redundantly in various tissues and developmental stages. A large percentage of TaPAOs respond significantly to abiotic stresses, especially temperature (i.e. heat and cold stress). Some TaPAOs were also involved in response to other stresses such as powdery mildew, stripe rust and Fusarium infection. Overall, TaPAOs may have various functions in stress tolerances responses, and play vital roles in different tissues and developmental stages. Our results provided a reference for further functional investigation of TaPAO proteins.


Assuntos
Resposta ao Choque Frio/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/genética , Proteínas de Plantas/genética , Termotolerância/genética , Triticum/genética , Aegilops/enzimologia , Aegilops/genética , Processamento Alternativo , Sequência de Aminoácidos , Conjuntos de Dados como Assunto , Evolução Molecular , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Genoma de Planta , Estudo de Associação Genômica Ampla , Cadeias de Markov , Modelos Genéticos , Peso Molecular , Família Multigênica , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/química , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/metabolismo , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Domínios Proteicos/genética , RNA-Seq , Alinhamento de Sequência , Triticum/enzimologia
14.
PLoS One ; 15(8): e0236186, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32866164

RESUMO

AIM: To establish a gene co-expression network for identifying principal modules and hub genes that are associated with drought resistance mechanisms, analyzing their mechanisms, and exploring candidate genes. METHODS AND FINDINGS: 42 data sets including PRJNA380841 and PRJNA369686 were used to construct the co-expression network through weighted gene co-expression network analysis (WGCNA). A total of 1,896,897,901 (284.30 Gb) clean reads and 35,021 differentially expressed genes (DEGs) were obtained from 42 samples. Functional enrichment analysis indicated that photosynthesis, DNA replication, glycolysis/gluconeogenesis, starch and sucrose metabolism, arginine and proline metabolism, and cell cycle were significantly influenced by drought stress. Furthermore, the DEGs with similar expression patterns, detected by K-means clustering, were grouped into 29 clusters. Genes involved in the modules, such as dark turquoise, yellow, and brown, were found to be appreciably linked with drought resistance. Twelve central, greatly correlated genes in stage-specific modules were subsequently confirmed and validated at the transcription levels, including TraesCS7D01G417600.1 (PP2C), TraesCS5B01G565300.1 (ERF), TraesCS4A01G068200.1 (HSP), TraesCS2D01G033200.1 (HSP90), TraesCS6B01G425300.1 (RBD), TraesCS7A01G499200.1 (P450), TraesCS4A01G118400.1 (MYB), TraesCS2B01G415500.1 (STK), TraesCS1A01G129300.1 (MYB), TraesCS2D01G326900.1 (ALDH), TraesCS3D01G227400.1 (WRKY), and TraesCS3B01G144800.1 (GT). CONCLUSIONS: Analyzing the response of wheat to drought stress during different growth stages, we have detected three modules and 12 hub genes that are associated with drought resistance mechanisms, and five of those genes are newly identified for drought resistance. The references provided by these modules will promote the understanding of the drought-resistance mechanism. In addition, the candidate genes can be used as a basis of transgenic or molecular marker-assisted selection for improving the drought resistance and increasing the yields of wheat.


Assuntos
Aclimatação/genética , Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes , Estresse Fisiológico/genética , Triticum/genética , China , Análise por Conglomerados , Conjuntos de Dados como Assunto , Secas , Perfilação da Expressão Gênica , Genes de Plantas , Melhoramento Vegetal/métodos , RNA-Seq , Seleção Genética
15.
Zhongguo Zhong Yao Za Zhi ; 45(16): 3837-3843, 2020 Aug.
Artigo em Chinês | MEDLINE | ID: mdl-32893578

RESUMO

We used exogenous GA_3 to break the seed dormancy of Thesium chinense. We used high-throughput sequencing technology was used to sequence the transcriptome of dormant seed embryos and dormancy breaking seed embryos of Th. chinense, and the data was analyzed bioinformatically and systematically. The results showed that exogenous GA_3 could effectively break the seed dormancy of Th. chinense; 73 794 up-regulated genes and 42 776 down regulated genes were obtained by transcriptome sequencing; 116 570 diffe-rential genes were annotated by GO function to GO items such as metabolism process, cell process, cell, cell component, binding and catalytic activity. A total of 133 metabolic pathways were found by Pathway analysis of 26 508 differentially expressed genes. In the process of dormancy release, DEGs were mainly enriched in translation, carbohydrate metabolism, folding, classification, degradation and amino acid metabolism. Based on the annotation results in KEGG database, 20 metabolic pathways related to dormancy release were found. Dormancy release of Th. chinense seeds is a complex biological process, including cell morphology construction, secondary metabolite synthesis, sugar metabolism and plant signal transduction, among which plant hormone signal transduction is one of the key factors to regulate dormancy release. The results of qRT-PCR showed that the sequencing results were consistent with the actual results.


Assuntos
Dormência de Plantas , Santalaceae , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Reguladores de Crescimento de Planta , Sementes , Transcriptoma
17.
Pestic Biochem Physiol ; 170: 104681, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32980063

RESUMO

Chitosan oligosaccharides (COS) can elicit plant immunity and defence responses in rice plants, but exactly how this promotes plant growth remains largely unknown. Herein, we explored the effects of 0.5 mg/L COS on plant growth promotion in rice seedlings by measuring root and stem length, investigating biochemical factors in whole plants via proteomic analysis, and confirming upregulated and downregulated genes by real-time quantitative PCR. Pathway enrichment results showed that COS promoted root and stem growth, and stimulated metabolic (biosynthetic and catabolic processes) and photosynthesis in rice plants during the seedling stage. Expression levels of genes related to chlorophyll a-b binding, RNA binding, catabolic processes and calcium ion binding were upregulated following COS treatment. Furthermore, comparative analysis indicated that numerous proteins involved in the biosynthesis, metabolic (catabolic) processes and photosynthesis pathways were upregulated. The findings indicate that COS may upregulate calcium ion binding, photosynthesis, RNA binding, and catabolism proteins associated with plant growth during the rice seedling stage.


Assuntos
Quitosana , Oryza/genética , Clorofila A , Regulação da Expressão Gênica de Plantas , Oligossacarídeos , Proteínas de Plantas/genética , Proteômica , Plântula/genética
18.
Proc Natl Acad Sci U S A ; 117(37): 23125-23130, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32868415

RESUMO

Many plants use environmental cues, including seasonal changes of day length (photoperiod), to control their flowering time. Under inductive conditions, FLOWERING LOCUS T (FT) protein is synthesized in leaves, and FT protein is a mobile signal, which is able to travel to the shoot apex to induce flowering. Dodders (Cuscuta, Convolvulaceae) are root- and leafless plants that parasitize a large number of autotrophic plant species with varying flowering time. Remarkably, some dodder species, e.g., Cuscuta australis, are able to synchronize their flowering with the flowering of their hosts. Detailed sequence inspection and expression analysis indicated that the FT gene in dodder C. australis very likely does not function in activating flowering. Using soybean host plants cultivated under inductive and noninductive photoperiod conditions and soybean and tobacco host plants, in which FT was overexpressed and knocked out, respectively, we show that FT-induced flowering of the host is likely required for both host and parasite flowering. Biochemical analysis revealed that host-synthesized FT signals are able to move into dodder stems, where they physically interact with a dodder FD transcription factor to activate dodder flowering. This study demonstrates that FTs can function as an important interplant flowering signal in host-dodder interactions. The unique means of flowering regulation of dodder illustrates how regressive evolution, commonly found in parasites, may facilitate the physiological synchronization of parasite and host, here allowing the C. australis parasite to time reproduction exactly with that of their hosts, likely optimizing parasite fitness.


Assuntos
Cuscuta/fisiologia , Cuscuta/parasitologia , Flores/fisiologia , Flores/parasitologia , Interações Hospedeiro-Parasita/fisiologia , Parasitos/fisiologia , Animais , Regulação da Expressão Gênica de Plantas/fisiologia , Folhas de Planta/parasitologia , Folhas de Planta/fisiologia , Soja/parasitologia , Soja/fisiologia , Tabaco/parasitologia , Tabaco/fisiologia , Fatores de Transcrição/metabolismo
19.
Proc Natl Acad Sci U S A ; 117(37): 23140-23147, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32868422

RESUMO

In higher plants, molecular responses to exogenous hypoxia are driven by group VII ethylene response factors (ERF-VIIs). These transcriptional regulators accumulate in the nucleus under hypoxia to activate anaerobic genes but are destabilized in normoxic conditions through the action of oxygen-sensing plant cysteine oxidases (PCOs). The PCOs catalyze the reaction of oxygen with the conserved N-terminal cysteine of ERF-VIIs to form cysteine sulfinic acid, triggering degradation via the Cys/Arg branch of the N-degron pathway. The PCOs are therefore a vital component of the plant oxygen signaling system, connecting environmental stimulus with cellular and physiological response. Rational manipulation of PCO activity could regulate ERF-VII levels and improve flood tolerance, but requires detailed structural information. We report crystal structures of the constitutively expressed PCO4 and PCO5 from Arabidopsis thaliana to 1.24 and 1.91 Å resolution, respectively. The structures reveal that the PCOs comprise a cupin-like scaffold, which supports a central metal cofactor coordinated by three histidines. While this overall structure is consistent with other thiol dioxygenases, closer inspection of the active site indicates that other catalytic features are not conserved, suggesting that the PCOs may use divergent mechanisms to oxidize their substrates. Conservative substitution of two active site residues had dramatic effects on PCO4 function both in vitro and in vivo, through yeast and plant complementation assays. Collectively, our data identify key structural elements that are required for PCO activity and provide a platform for engineering crops with improved hypoxia tolerance.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Oxigênio/metabolismo , Cisteína Dioxigenase/metabolismo , Regulação da Expressão Gênica de Plantas/fisiologia , Oxirredução , Transdução de Sinais/fisiologia , Fatores de Transcrição
20.
Sheng Wu Gong Cheng Xue Bao ; 36(7): 1365-1377, 2020 Jul 25.
Artigo em Chinês | MEDLINE | ID: mdl-32748594

RESUMO

With the expanded application of heavy metal cadmium, soil cadmium pollution is more and more serious. In this study, using Salix matsudana as a phytoremediation candidate, we observed changes of gene expression and metabolic pathway after 1, 7 and 30 days under 2.5 mg/L and 50 mg/L cadmium stress. The result of transcriptome sequencing showed that we obtained 102 595 Unigenes; 26 623 and 32 154 differentially expressed genes (DEG) in the same concentration and different stress time; 8 550, 3 444 and 11 428 DEG with different concentrations at the same time; 25 genes closely related to cadmium stress response were screened. The changes of genes expression (such as metallothionein, ABC transporter, zinc and manganese transporter) depended on both concentration of cadmium and exposure time. The expression of several genes was obviously up-regulated after cadmium stress, for example 3,6-deoxyinosinone ketolase (ROT3) in brassinolide synthesis pathway and flavonoid synthase (FLS), flavanone-3-hydroxylase (F3H) in the synthesis pathway of brassinolide. In addition, GO analysis shows that GO entries were mainly enriched in metabolic processes including cellular processes, membranes, membrane fractions, cells, cellular fractions, catalytic activation and binding proteins in response to cadmium stress, whose number would increase along with cadmium concentration and exposure time. The reliability of transcriptome information was verified by qPCR and physiological experimental data. Response mechanisms of S. matsudana after cadmium stress were analyzed by transcriptome sequencing, which provided theoretical guidance for remediation of cadmium pollution in soil by S. matsudana.


Assuntos
Cádmio , Salix , Estresse Fisiológico , Transcriptoma , Biodegradação Ambiental , Cádmio/toxicidade , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Proteínas de Plantas/genética , Reprodutibilidade dos Testes , Salix/efeitos dos fármacos , Salix/genética , Estresse Fisiológico/genética , Transcriptoma/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA