Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53.298
Filtrar
1.
Food Chem ; 308: 125707, 2020 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-31669943

RESUMO

The ripening of the apple (Malus × domestica Borkh.) fruit is regulated by the phytohormone ethylene, where degreening is an important physiological metabolism caused by chlorophyll (Chl) degradation. However, to date, research on how ethylene affects the Chl degradation pathway of apple peel during ripening remains scarce. In this study, the effects of ethylene on the expression of Chl catabolic genes (CCGs) of apple peel during ripening were studied by treating harvested commercial mature apples with 0.5 µL L-1 1-methylcyclopropene (1-MCP). The results showed that 1-MCP treatment led to a delayed climacteric peak of respiration and ethylene production, exhibiting higher Chl content and hue angle (H˚) compared to untreated fruit during ripening. Lower quantities of pheophorbide a oxygenase (PAO), pheophytinase (PPH) and red Chl catabolite reductase (RCCR) were also observed in peel tissues under 1-MCP treatment during ripening. Further study with quantitative real-time polymerase chain reaction (qPCR) revealed that the expression of CCGs, except for MdNYE1a, increased atdifferentdegrees upon ripening. Meanwhile, the apples treated with 1-MCP presented a downregulated expression of MdRCCR2, MdNYC1, MdNYC3 and MdNOL2 and a fluctuating expression of MdNYE1a, MdPPH1, MdPAO6, MdPAO8 and MdHCAR compared with the controls during ripening. Our results indicated the regulatory role of ethylene in the Chl degradation pathway of apple peel during ripening.


Assuntos
Clorofila/metabolismo , Ciclopropanos/farmacologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Malus/metabolismo , Reguladores de Crescimento de Planta/farmacologia , Etilenos/metabolismo , Armazenamento de Alimentos , Frutas/efeitos dos fármacos , Frutas/metabolismo , Malus/efeitos dos fármacos , Proteínas de Plantas/metabolismo
2.
Food Chem ; 307: 125525, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-31639577

RESUMO

This study investigated effects of different concentrations of methyl jasmonate (MeJA) on carotenoids accumulation, radical scavenging activity and proline content in germinated maize kernels. MeJA treatment promoted carotenoids accumulation, radical scavenging activity and proline accumulation, while salicyl hydroxamic acid (SHAM) reduced carotenoids accumulation. There was a significant increase of 42.5% in lutein content when treated with 0.5 µM MeJA. Furthermore, the transcriptional expression of seven carotenogenic genes were explored by MeJA and SHAM. The results showed that 0.5 µM MeJA significantly increased the gene expression levels of PSY, PDS, ZDS, LCYB, LCYE, BCH1, CYP97C, and their transcript levels, which were strongly associated with carotenoids content. Treatment of MeJA affected the carotenoids biosynthesis gene and led to the accumulation of carotenoids. These new findings would help to develop innovative approach for enrichment of lutein in germinated maize kernels for further development of functional food materials.


Assuntos
Acetatos/farmacologia , Carotenoides/metabolismo , Ciclopentanos/farmacologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Oxilipinas/farmacologia , Zea mays/crescimento & desenvolvimento , Carotenoides/análise , Cromatografia Líquida de Alta Pressão , Depuradores de Radicais Livres/química , Germinação , Luteína/análise , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Prolina/análise , Zea mays/metabolismo
3.
Gene ; 725: 144160, 2020 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-31639431

RESUMO

Bambusapervariabilis × Dendrocalamopsisgrandis, a fast-growing and easily propagated bamboo species, has been extensively planted in the southern China, resulting in huge ecological benefits. In recent years, it was found that the pathogenic fungus Arthrinium phaeospermum caused the death of a large amount of bamboo. In this study, the transcriptome of B. pervariabilis × D. grandis, induced by inactivated protein AP-toxin from A. phaeospermum was sequenced and analyzed, to reveal the resistance mechanism induced by biotic agents of B. pervariabilis × D. grandis against A. phaeospermum at the gene level. Transcriptome sequencing was performed by Illumina HiSeq 2000 in order to analyze the differentially expressed genes (DEGs) of B. pervariabilis × D. grandis in response to different treatment conditions. In total, 201,875,606 clean reads were obtained, and the percentage of Q30 bases in each sample was more than 94.21%. There were 6398 DEGs in the D-J group (inoculation with a pathogenic spore suspension after three days of AP-toxin induction) compared to the S-J group (inoculation with a pathogenic spore suspension after inoculation of sterile water for three days) with 3297 up-regulated and 3101 down-regulated genes. For the D-S group (inoculation with sterile water after inoculation of AP-toxin for three days), there were 2032 DEGs in comparison to the S-S group (inoculation with sterile water only), with 1035 up-regulated genes and 997 down-regulated genes. These identified genes were mainly involved in lignin and phytoprotein synthesis, tetrapyrrole synthesis, redox reactions, photosynthesis, and other processes. The fluorescence quantitative results showed that 22 pairs of primer amplification products were up-regulated and 7 were down-regulated. The rate of similarity between these results and the sequencing results of the transcription group was 100%, which confirmed the authenticity of the transcriptome sequencing results. Redox proteins, phenylalanine ammonia lyase, and S-adenosine-L-methionine synthetase, among others, were highly expressed; these results may indicate the level of disease resistance of the bamboo. These results provide a foundation for the further exploration of resistance genes and their functions.


Assuntos
Bambusa/genética , Sasa/genética , Xylariales/genética , China , Resistência à Doença , Fungos/patogenicidade , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica de Plantas/genética , Micoses/genética , Proteínas de Plantas/genética , Toxinas Biológicas , Transcriptoma , Xylariales/metabolismo
4.
Gene ; 725: 144170, 2020 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-31647996

RESUMO

Caragana korshinskii Kom. is a legume shrub that is widely distributed across desert habitats with gravely, sandy, and saline soils in Asia and Africa. C. korshinskii has highly developed roots and a strong tolerance to abiotic stress. At present, there are few genetic studies of C. korshinskii because of the limited availability of genomic resources. To understand the comprehensive mechanisms that are associated with drought tolerance, we used RNA-seq to survey the differentially expressed genes (DEGs) in comparisons of drought-treated and control plants. After analysing the sequencing results, we found 440 differentially expressed genes existing in drought-treated and control plants. Among the DEGs, 39 unigenes showed up-regulated expression after drought treatment, while 401 unigenes were down-regulated. We used the KEGG database to annotate these drought-induced genes; 126 unigenes were identified by KEGG pathway annotation, and approximately 28% of the unigenes with known function fell into categories related to fatty acid metabolism, starch, sucrose metabolism, and nitrogen metabolism, suggesting that these pathways or processes may be involved in the drought response. Finally, we confirmed that one gene has a potential function in drought tolerance. Our study is the first to provide transcriptomic resources for Caragana korshinskii and to determine its digital gene expression profile under conditions of drought stress using the assembled transcriptomic data for reference. These data provide a valuable resource for genetic and genomic studies of desert plants under abiotic stress conditions.


Assuntos
Caragana/genética , Perfilação da Expressão Gênica/métodos , Estresse Fisiológico/genética , Secas , Fabaceae/genética , Regulação da Expressão Gênica de Plantas/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Anotação de Sequência Molecular , RNA/genética , Transcriptoma/genética
5.
Gene ; 728: 144288, 2020 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-31846710

RESUMO

Phytophthora root rot, caused by the soilborne oomycete pathogen Phytophthora capsici (Leon.), is a devastating disease causing significant losses in pepper production worldwide. To uncover the mechanism of root-mediated resistance to P. capsici we elucidated the dynamic transcriptome of whole pepper roots of the resistant accession CM334 and the susceptible accession NMCA10399 after P. capsici infection at 0, 12 and 36 hpi using RNA-Seq method. We detected that the roots of the resistant CM334 and the susceptible NMCA10399 had different transcriptional responses to P. capsici, suggesting the former activated a response to P. capsici earlier than the latter. KEGG enrichment analysis showed the pathways involved in the synthesis of secondary metabolites were those in which the most DEGs were enriched. Focusing on the gene regulation of phenylpropanoid biosynthesis-related genes, we found genes related to the key enzyme phenylalanine ammonia-lyase (PAL) were activated earlier with greater changes in the resistant accession than in the susceptible one. Moreover, genes related to cinnamoyl-CoA reductase (CCR1) were also upregulated in resistant roots but downregulated with great folder changes in susceptible roots. Briefly, we inferred that the phenylpropanoid biosynthesis pathway, especially cinnamaldehyde and lignin derived from its branches, played significant roles in pepper root resistance to P. capsici. These results provide new insight into root-mediated resistance to P. capsici in pepper.


Assuntos
Capsicum/genética , Resistência à Doença , Fenilpropionatos/metabolismo , Phytophthora/fisiologia , Doenças das Plantas/genética , Proteínas de Plantas/genética , Raízes de Plantas/genética , Transcriptoma , Capsicum/crescimento & desenvolvimento , Capsicum/microbiologia , Regulação da Expressão Gênica de Plantas , Fenilalanina Amônia-Liase/genética , Doenças das Plantas/microbiologia , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/microbiologia
6.
Zhongguo Zhong Yao Za Zhi ; 44(22): 4830-4836, 2019 Nov.
Artigo em Chinês | MEDLINE | ID: mdl-31872589

RESUMO

GRAS transcription factors play important roles in the regulation of plant root growth and GA signaling. In this study,SmGRAS3 gene was cloned,which open reading frame was 2 247 bp,and encoding 748 amino acids. The physicochemical properties and structure of SmGRAS3 and its encoded protein were analyzed by bioinformatics software. This gene belongs to the SCL9 subfamily of the GRAS family,and its promoter sequence mainly contains the light response,stress response,and hormone response elements. It may interact with the GA signal pathway and anti-stress related proteins. The subcellular localization showed that SmGRAS3 protein was mainly located in the nucleus. The expression pattern analysis showed that the expression of Sm GRAS3 was the highest in the root and the lowest in the stem,and both light and low temperature could induce the high expression level of SmGRAS3. This study provides a foundation for further study on the roles of SmGRAS3 gene in the root growth and stress tolerance of Salvia miltiorrhiza.


Assuntos
Salvia miltiorrhiza/genética , Clonagem Molecular , Regulação da Expressão Gênica de Plantas , Filogenia , Proteínas de Plantas , Fatores de Transcrição
7.
Biol Res ; 52(1): 56, 2019 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-31699158

RESUMO

BACKGROUND: ADP-glucose pyrophosphorylase (AGPase), the key enzyme in plant starch biosynthesis, is a heterotetramer composed of two identical large subunits and two identical small subunits. AGPase has plastidial and cytosolic isoforms in higher plants, whereas it is mainly detected in the cytosol of grain endosperms in cereal crops. Our previous results have shown that the expression of the TaAGPL1 gene, encoding the cytosolic large subunit of wheat AGPase, temporally coincides with the rate of starch accumulation and that its overexpression dramatically increases wheat AGPase activity and the rate of starch accumulation, suggesting an important role. METHODS: In this study, we performed yeast one-hybrid screening using the promoter of the TaAGPL1 gene as bait and a wheat grain cDNA library as prey to screen out the upstream regulators of TaAGPL1 gene. And the barley stripe mosaic virus-induced gene-silencing (BSMV-VIGS) method was used to verify the functional characterization of the identified regulators in starch biosynthesis. RESULTS: Disulfide isomerase 1-2 protein (TaPDIL1-2) was screened out, and its binding to the TaAGPL1-1D promoter was further verified using another yeast one-hybrid screen. Transiently silenced wheat plants of the TaPDIL1-2 gene were obtained by using BSMV-VIGS method under field conditions. In grains of BSMV-VIGS-TaPDIL1-2-silenced wheat plants, the TaAGPL1 gene transcription levels, grain starch contents, and 1000-kernel weight also significantly increased. CONCLUSIONS: As important chaperones involved in oxidative protein folding, PDIL proteins have been reported to form hetero-dimers with some transcription factors, and thus, our results suggested that TaPDIL1-2 protein could indirectly and negatively regulate the expression of the TaAGPL1 gene and function in starch biosynthesis.


Assuntos
Pão , Regulação da Expressão Gênica de Plantas/genética , Genes de Plantas/genética , Glucose-1-Fosfato Adenililtransferase/metabolismo , Proteínas de Plantas/metabolismo , Triticum/metabolismo , Glucose-1-Fosfato Adenililtransferase/genética , Proteínas de Plantas/genética , Fatores de Transcrição , Triticum/genética
8.
Yi Chuan ; 41(11): 1050-1059, 2019 Nov 20.
Artigo em Chinês | MEDLINE | ID: mdl-31735707

RESUMO

High oleic (HO) peanut (Arachishypogaea L.) oils benefit human health and industrial production due to its superior nutritional composition and thermo-oxidative stability. However, HO peanut is sensitive to cold stress especially during germination, which limits its distribution in low temperature areas. To understand the molecular mechanism of cold responses in HO peanuts at germination stage, four HO peanut varieties with different cold tolerance were selected in field experiments to analyze their genome-wide gene regulation under low temperatures. High-throughput sequencing and transcriptome analysis revealed a total of 139 429 unigenes. Among these, 3520 common differentially expressed genes (DEG) were detected between two groups of cold-tolerant and cold-sensitive peanuts, and the number of up-regulated genes was greater than that of down-regulated genes in the cold-tolerant peanuts. Gene ontology analysis indicates that the number of DEGs involved in cell membrane metabolism and integrity as well as proteins located in the cell periphery were significantly higher in the cold-tolerant peanuts. KEGG pathway analysis suggests that plant-pathogen interaction and plant hormone signal transduction pathway play important roles in cold tolerance. Four cold-induced genes, TIC(TIME FOR COFFEE), ATX3(histone-lysine N-methyltransferase ATX3-like), AGO4(argonaute 4-like), FER(FERONIA-like receptor protein kinase), and three transcription factor genes, bHLH(bHLH49-like transcription factor), MYB(MYB-related protein 3R-1-like)and EREB(Ethylene-responsive element binding factor 6)were selected to verify the expression profile via real-time quantitative PCR detection. The expression of TIC, ATX3, AGO4, bHLH, MYB and EREB significantly increased within 3 hours after low temperature stress, while the expression of FER significantlyincreased after 12 hours, suggesting that these genes responded to low temperature stress during peanut germination. This work not only sheds light on the transcriptional regulation of HO peanut under low-temperature stress during germination but also provides data resources for screening candidate genes in improving peanuts stress resistance.


Assuntos
Arachis/genética , Temperatura Baixa , Germinação , Transcriptoma , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Estresse Fisiológico
9.
J Agric Food Chem ; 67(44): 12219-12227, 2019 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-31613626

RESUMO

Quantification, using an accurate analytical approach, of capsinoids and capsaicinoids was performed on three chili pepper (Capsicum spp.) genotypes: "Chiltepín", "Tampiqueño 74", and "Bhut Jolokia" at various stages of fruit development. The accumulation of capsinoids, in all these peppers started between 10 to 20 days post-anthesis (dpa), increased and reached the highest capsinoid amount at 40 dpa, and then decreased until 60 dpa. Conversely, capsaicinoids could already be determined at 10 dpa in "Bhut Jolokia" and their accumulation pattern was different from that of the capsinoids in this genotype. The capsiate/dihydrocapsiate ratio presented a higher variation between genotypes and developmental stages than the capsaicin/dihydrocapsaicin ratio. Capsinoid ratios (4-24%) and Pun1/pAMT genotyping were determined. These results provide information on the progress of the accumulation of capsinoids in the aforementioned pungent and superhot cultivars and could support future breeding studies toward the understanding of the factors affecting their accumulation.


Assuntos
Capsaicina/análogos & derivados , Capsaicina/metabolismo , Capsicum/genética , Capsicum/metabolismo , Aromatizantes/metabolismo , Frutas/crescimento & desenvolvimento , Proteínas de Plantas/genética , Alelos , Sequência de Aminoácidos , Capsaicina/análise , Capsicum/química , Capsicum/crescimento & desenvolvimento , Aromatizantes/análise , Frutas/química , Frutas/genética , Frutas/metabolismo , Regulação da Expressão Gênica de Plantas , Genótipo , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Alinhamento de Sequência
10.
Plant Mol Biol ; 101(4-5): 507-516, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31617145

RESUMO

KEY MESSAGE: MMDH2 gene negatively regulates Cd tolerance by modulating reactive oxygen species (ROS) levels and the ROS-mediated signaling, thus, affecting the expression of PDR8. The molecular mechanism by which plants respond to stress caused by cadmium (Cd), one of the most toxic heavy metals to plants, is not well understood. Here, we show that MMDH2, a gene encoding mitochondrial malate dehydrogenase, is involved in Cd stress tolerance in Arabidopsis. The expression of MMDH2 was repressed by Cd stress. The mmdh2 knockdown mutants showed enhanced Cd tolerance, while the MMDH2-overexpressing lines were sensitive to Cd. Under normal and Cd stress conditions, lower H2O2 levels were detected in mmdh2 mutant plants than in wild-type plants. In contrast, higher H2O2 levels were found in MMDH2-overexpressing lines, and they were negatively correlated with malondialdehyde levels. In addition, the expression of the PDR8, a gene encoding a Cd efflux pump, increased and decreased in the mmdh2 mutant and MMDH2-overexpressing lines, in association with lower and higher Cd concentrations, respectively. These results suggest that the MMDH2 gene negatively regulates Cd tolerance by modulating reactive oxygen species (ROS) levels and the ROS-mediated signaling, thus, affecting the expression of PDR8.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Cádmio/toxicidade , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Transportadores de Cassetes de Ligação de ATP/genética , Sequência de Aminoácidos , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Cádmio/metabolismo , Técnicas de Silenciamento de Genes , Peróxido de Hidrogênio/metabolismo , Modelos Biológicos , Espécies Reativas de Oxigênio/metabolismo , Alinhamento de Sequência , Estresse Fisiológico
11.
J Agric Food Chem ; 67(45): 12590-12598, 2019 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-31639305

RESUMO

Carotenoids play key roles in photosynthesis and photoprotection. Few multicellular plants produce the ketocarotenoid astaxanthin, a strong antioxidant; however, Arabidopsis thaliana lines overexpressing the Chlamydomonas reinhardtii ß-carotene ketolase (CrBKT) accumulated high amounts of astaxanthin in the leaves. In this study, we investigated the changed regulation of key metabolic pathways and the tolerance of the engineered plants to biotic and abiotic stresses resulting from the heterologous expression of CrBKT. Transcriptome analysis identified 1633 and 1722 genes that were differentially expressed in the leaves and siliques, respectively, of CrBKT-overexpressing plants (line CR5) as compared to wild-type Arabidopsis. These genes were enriched in the carotenoid biosynthetic pathways, and plant hormone biosynthesis and signaling pathways. In particular, metabolic profiling showed that, as compared to the wild-type leaves and siliques, overexpression of CrBKT increased the levels of most amino acids, but decreased the contents of sugars and carbohydrates. Furthermore, CR5 plants had lower sensitivity to abscisic acid (ABA) and increased tolerance to oxidative stress. CR5 plants also exhibited enhanced resistance to the bacterial pathogen Pseudomonas syringae pv. tomato DC3000. Our study provides insight into the regulation of carotenoids and the related pathways, which may be involved in plant response to oxidative stress and pathogen infection.


Assuntos
Arabidopsis/genética , Arabidopsis/metabolismo , Doenças das Plantas/microbiologia , Plantas Geneticamente Modificadas/metabolismo , Ácido Abscísico/metabolismo , Arabidopsis/química , Arabidopsis/microbiologia , Regulação da Expressão Gênica de Plantas , Estresse Oxidativo , Doenças das Plantas/genética , Reguladores de Crescimento de Planta/metabolismo , Plantas Geneticamente Modificadas/química , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/microbiologia , Pseudomonas syringae/fisiologia , Xantofilas/biossíntese
12.
DNA Cell Biol ; 38(11): 1278-1291, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31584843

RESUMO

The plants being sessile cannot escape from the adverse environmental stresses, hence get negatively affected in terms of their growth and yield. Transcriptional control simultaneously regulate different cellular processes, minimizing the deleterious effects of these stresses. The salicylic acid (SA)-inducible WRKY family of transcription factors auto or crossregulate the stress signaling in response to abiotic and biotic stresses, facilitating enhanced stress tolerance. In this study, we characterized the group III WRKY gene, JcWRKY2 from ecological and economical valued shrub Jatropha curcas. The JcWRKY2 tobacco transgenics showed improved physiological growth parameters, elevated chlorophyll content, improved antioxidative activities, and increased endogenous SA with both salt and SA stress. Interestingly, the pretreatment with SA and hydrogen peroxide facilitated improved germination of transgenic seeds with salinity stress. The transgenics showed differential regulation of antioxidative enzymes, calcium/calmodulin, dehydrins, and phospholipase genes with salt and SA stress. The increased SA content in transgenics on stress treatments, enhanced the antioxidant capacity leading to reduced susceptibility to stresses. Thus, JcWRKY2 transgenics participate in SA-mediated, improved antioxidative status during salinity stress with reduced reactive oxygen species damage.


Assuntos
Jatropha/genética , Estresse Salino/genética , Tolerância ao Sal/genética , Tabaco/genética , Fatores de Transcrição/fisiologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Germinação/efeitos dos fármacos , Germinação/genética , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/genética , Plantas Geneticamente Modificadas , Salinidade , Cloreto de Sódio/farmacologia , Estresse Fisiológico/genética , Tabaco/efeitos dos fármacos , Tabaco/crescimento & desenvolvimento , Fatores de Transcrição/genética
14.
Phytopathology ; 109(10): 1732-1740, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31479403

RESUMO

Plant polygalacturonase-inhibiting protein (PGIP) is a structural protein that can specifically recognize and bind to fungal polygalacturonase (PG). PGIP plays an important role in plant antifungal activity. In this study, a maize PGIP gene, namely ZmPGIP3, was cloned and characterized. Agarose diffusion assay suggested that ZmPGIP3 could inhibit the activity of PG. ZmPGIP3 expression was significantly induced by wounding, Rhizoctonia solani infection, jasmonate, and salicylic acid. ZmPGIP3 might be related to disease resistance. The gene encoding ZmPGIP3 was posed under the control of the ubiquitin promoter and constitutively expressed in transgenic rice. In an R. solani infection assay, ZmPGIP3 transgenic rice was more resistant to sheath blight than the wild-type rice regardless of the inoculated plant part (leaves or sheaths). Digital gene expression analysis indicated that the expression of some rice PGIP genes significantly increased in ZmPGIP3 transgenic rice, suggesting that ZmPGIP3 might activate the expression of some rice PGIP genes to resist sheath blight. Our investigation of the agronomic traits of ZmPGIP3 transgenic rice showed that ZmPGIP3 overexpression in rice did not show any detrimental phenotypic or agronomic effect. ZmPGIP3 is a promising candidate gene in the transgenic breeding for sheath blight resistance and crop improvement.


Assuntos
Resistência à Doença/genética , Oryza , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Rhizoctonia , Regulação da Expressão Gênica de Plantas , Oryza/microbiologia , Plantas Geneticamente Modificadas/microbiologia , Rhizoctonia/fisiologia
15.
J Agric Food Chem ; 67(38): 10624-10636, 2019 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-31483633

RESUMO

The freshness and color quality of postharvest tea leaves can be markedly prolonged and retained by proper preservation measures. Here, we investigated the dynamic changes of chlorophyll and its derivatives in postharvest tea leaves under different low-temperature treatments using natural withering as a control. Chlorophyll decomposition was found closely related with chlorophyllide, pheophorbide, and pheophytin. Low-temperature withering could slow chlorophyll degradation in postharvest tea leaves via significant inhibition on the enzyme activity and gene expression of Mg-dechelatase, chlorophyllase, and pheophorbide a oxygenase. At the initial stage of withering, a significant increase was observed in the chlorophyll content, expression of chlorophyll-synthesis-related enzymes (such as glutamyl-tRNA synthetase, etc.), and chlorophyll synthase activity in newly picked tea leaves. Moreover, an obvious decrease was found in the content of l-glutamate as the foremost precursor substance of chlorophyll synthesis. Hence, our findings revealed that the chlorophyll synthesis reaction was induced by the light-dehydration-stress in the initial withering of tea leaves. This study provides a theoretical basis for exploring preservation technology in actual green tea production.


Assuntos
Camellia sinensis/genética , Camellia sinensis/metabolismo , Clorofila/metabolismo , Manipulação de Alimentos/métodos , Regulação da Expressão Gênica de Plantas , Camellia sinensis/química , Camellia sinensis/crescimento & desenvolvimento , Hidrolases de Éster Carboxílico/genética , Hidrolases de Éster Carboxílico/metabolismo , Clorofila/química , Cor , Enzimas/genética , Enzimas/metabolismo , Oxigenases/genética , Oxigenases/metabolismo , Folhas de Planta/química , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Temperatura Ambiente
16.
J Agric Food Chem ; 67(38): 10563-10576, 2019 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-31487171

RESUMO

Sulfur (S) metabolism plays a vital role in Cd detoxification, but the collaboration between melatonin biosynthesis and S metabolism under Cd stress remains unaddressed. Using exogenous melatonin, melatonin-deficient tomato plants with a silenced caffeic acid O-methyltransferase (COMT) gene, and COMT-overexpressing plants with cosuppression of sulfate transporter (SUT)1 and SUT2 genes, we found that melatonin deficiency decreased S accumulation and aggravated Cd phytotoxicity, whereas exogenous melatonin or overexpression of COMT increased S uptake and assimilation, resulting in an improved plant growth and Cd tolerance. Melatonin deficiency promoted Cd translocation from root to shoot, but COMT overexpression caused the opposite effect. COMT overexpression failed to compensate the functional hierarchy of S when its uptake was inhibited by cosilencing of transporter SUT1 and SUT2. Our study provides genetic evidence that melatonin-mediated tolerance to Cd is closely associated with the efficient regulation of S metabolism, redox homeostasis, and Cd translocation in tomato plants.


Assuntos
Cádmio/metabolismo , Lycopersicon esculentum/metabolismo , Melatonina/metabolismo , Enxofre/metabolismo , Transporte Biológico , Regulação da Expressão Gênica de Plantas , Lycopersicon esculentum/genética , Lycopersicon esculentum/crescimento & desenvolvimento , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Oxirredução , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteína O-Metiltransferase/genética , Proteína O-Metiltransferase/metabolismo
17.
J Agric Food Chem ; 67(40): 11262-11276, 2019 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-31509416

RESUMO

Tartary buckwheat (Fagopyrum tataricum) seeds are rich in flavonoids. However, the detailed flavonoid compositions and the molecular basis of flavonoid biosynthesis in tartary buckwheat seeds remain largely unclear. Here, we performed a combined metabolite profiling and transcriptome analysis to identify flavonoid compositions and characterize genes involved in flavonoid biosynthesis in the developing tartary buckwheat seeds. In total, 234 flavonoids, including 10 isoflavones, were identified. Of these, 80 flavonoids were significantly differential accumulation during seed development. Transcriptome analysis indicated that most structural genes and some potential regulatory genes of flavonoid biosynthesis were significantly differentially expressed in the course of seed development. Correlation analysis between transcriptome and metabolite profiling shown that the expression patterns of some differentially expressed structural genes and regulatory genes were more consistent with the changes in flavonoids profiles during seed development and promoted one SG7 subgroup R2R3-MYB transcription factors (FtPinG0009153900.01) was identified as the key regulatory gene of flavonoid biosynthesis. These findings provide valuable information for understanding the mechanism of flavonoid biosynthesis in tartary buckwheat seeds and the further development of tartary buckwheat health products.


Assuntos
Fagopyrum/metabolismo , Flavonoides/biossíntese , Proteínas de Plantas/genética , Sementes/crescimento & desenvolvimento , Fagopyrum/química , Fagopyrum/genética , Fagopyrum/crescimento & desenvolvimento , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Filogenia , Proteínas de Plantas/metabolismo , Plantas/classificação , Plantas/genética , Plantas/metabolismo , Sementes/química , Sementes/genética , Sementes/metabolismo
18.
Dokl Biochem Biophys ; 487(1): 264-268, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31559594

RESUMO

We studied the effect of zinc excess (1000 µM) and low positive temperature (4°C) on the IRT1 gene expression in barley roots and leaves. Exposure at each of the stress factors separately induced an increase in the content of the HvIRT1 gene transcripts, which was more pronounced in leaves. At the same time, the growth of seedlings continued. Under the combined action of the stress factors in the first 3 days, the amount of mRNA also increased, but after 7 days of exposure it significantly declined, which correlated with the complete inhibition of seedling growth. It is assumed that the seedling growth inhibition under the combined effect of zinc excess and low temperature is associated with a decrease in the transcriptional activity of the HvIRT1 gene, due to the deficiency in a number of trace elements under these conditions.


Assuntos
Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Hordeum/genética , Folhas de Planta/efeitos dos fármacos , Proteínas de Plantas/genética , Raízes de Plantas/efeitos dos fármacos , Temperatura Ambiente , Zinco/farmacologia , Relação Dose-Resposta a Droga , Hordeum/efeitos dos fármacos , Folhas de Planta/metabolismo , Raízes de Plantas/metabolismo
19.
Sheng Wu Gong Cheng Xue Bao ; 35(9): 1676-1685, 2019 Sep 25.
Artigo em Chinês | MEDLINE | ID: mdl-31559749

RESUMO

Drought stress affects the growth and development of rice, resulting in severe loss in yield and quality. Ectopic expression of the bacterial RNA chaperone, cold shock protein (Csp), can improve rice drought tolerance. Archaeal TRAM (TRM2 and MiaB) proteins have similar structure and biochemical functions as bacterial Csp. Moreover, DNA replication, transcription and translation of archaea are more similar to those in eukaryotes. To test if archaeal RNA chaperones could confer plant drought tolerance, we selected two TRAM proteins, Mpsy_3066 and Mpsy_0643, from a cold-adaptive methanogenic archaea Methanolobus psychrophilus R15 to study. We overexpressed the TRAM proteins in rice and performed drought treatment at seedling and adult stage. The results showed that overexpression both TRAM proteins could significantly improve the tolerance of rice to drought stress. We further demonstrated in rice protoplasts that the TRAMs could abolish misfolded RNA secondary structure and improve translation efficiency, which might explain how TRAMs improve drought tolerance transgenic rice. Our work supports that ectopic expression of archaeal TRAMs effectively improve drought tolerance in rice.


Assuntos
Oryza , Secas , Expressão Ectópica do Gene , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas , Plantas Geneticamente Modificadas , Estresse Fisiológico
20.
Plant Mol Biol ; 101(4-5): 487-498, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31560104

RESUMO

KEY MESSAGE: The transcriptional profile of roots is highly affected by shoot illumination. Transcriptogram analysis allows the identification of cellular processes that are not detected by DESeq. Light is a key environmental factor regulating plant growth and development. Arabidopsis thaliana seedlings grown under light display a photomorphogenic development pattern, showing short hypocotyl and long roots. On the other hand, when grown in darkness, they display skotomorphogenic development, with long hypocotyls and short roots. Although many signals from shoots might be important for triggering root growth, the early transcriptional responses that stimulate primary root elongation are still unknown. Here, we aimed to investigate which genes are involved in the early photomorphogenic root development of dark grown roots. We found that 1616 genes 4 days after germination (days-old), and 3920 genes 7 days-old were differently expressed in roots when the shoot was exposed to light. Of these genes, 979 were up regulated in 4 days and 2784 at 7 days-old. We compared the functional categorization of differentially regulated processes by two methods: GO term enrichment and transcriptogram analysis. Expression analysis of nine selected candidate genes in roots confirmed the data observed in the RNA-seq analysis. Loss-of-function mutants of these selected differentially expressed genes suggest the involvement of these genes in root development in response to shoot illumination. Our findings are consistent with the observation that dark grown roots respond to the shoot-perceived aboveground light environment.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Transcriptoma , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/efeitos da radiação , Escuridão , Iluminação , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/efeitos da radiação , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/efeitos da radiação , Plântula/genética , Plântula/crescimento & desenvolvimento , Plântula/efeitos da radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA