Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.936
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dokl Biochem Biophys ; 486(1): 163-167, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31367812

RESUMO

The treatment of Arabidopsis thaliana plants with exogenous cytokinin (CK) followed by heat shock (HS) activated the expression of the genes for the plastid transcription machinery but adversely affected the plant viability. Abscisic acid (ABA), conversely, promoted maintaining the resistance to HS and had differentially affected different components of the plastid transcriptional complex. This hormone suppressed the accumulation of transcripts of PEP genes and the genes encoding PAP proteins, which are involved in DNA-RNA metabolism. However, it had no effect or activated the expression of NEP genes and PAP genes, which are involved in the redox regulation, as well as the genes encoding the stress-inducible trans-factor (SIG5) and the plastid transcription Ser/Thr protein kinase (cpCK2). Thus, for the adaptation of plants to elevated temperatures, both increase and decrease in the expression of the genes for the plastid transcriptional machinery with the involvement of various regulatory systems, including phytohormones, are equally significant.


Assuntos
Ácido Abscísico/farmacologia , Arabidopsis/efeitos dos fármacos , Citocininas/farmacologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Resposta ao Choque Térmico/genética , Plastídeos/genética , Transcrição Genética/efeitos dos fármacos , Arabidopsis/citologia , Arabidopsis/genética , Arabidopsis/fisiologia , Resposta ao Choque Térmico/efeitos dos fármacos , Plastídeos/efeitos dos fármacos
2.
J Agric Food Chem ; 67(32): 8905-8918, 2019 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-31380641

RESUMO

NAC TFs play crucial roles in response to abiotic stresses in plants. Here, ZmNAC071 was identified as a nuclear located transcriptional repressor. Overexpression of ZmNAC071 in Arabidopsis enhanced sensitivity of transgenic plants to ABA and osmotic stress. The expression levels of SODs, PODs, P5CSs, and AtMYB61 were inhibited by ZmNAC071, which results in reduced ROS scavenging and proline content, increased ROS level, and water loss. Besides, the expression levels of some ABA or abiotic stress-related genes, like ABIs, RD29A, DREBs, and LEAs were also significantly inhibited by ZmNAC071. Yeast one-hybrid assay demonstrated that ZmNAC071 specifically bound to the cis-acting elements containing CGT[G/A] core sequences in the promoter of stress-related genes, suggesting that ZmNAC071 may participate in the regulation of transcription of these genes through recognizing the core sequences CGT[G/A]. These results will facilitate further studies concerning the cis-elements and downstream genes targeted by ZmNAC071 in maize.


Assuntos
Arabidopsis/efeitos dos fármacos , Arabidopsis/fisiologia , Ácido Ascórbico/farmacologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Plantas Geneticamente Modificadas/efeitos dos fármacos , Plantas Geneticamente Modificadas/fisiologia , Fatores de Transcrição/genética , Zea mays/genética , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação para Baixo/efeitos dos fármacos , Pressão Osmótica , Plantas Geneticamente Modificadas/genética , Espécies Reativas de Oxigênio/metabolismo , Estresse Fisiológico , Fatores de Transcrição/metabolismo
3.
J Agric Food Chem ; 67(35): 9738-9748, 2019 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-31411877

RESUMO

The presence of chromium (Cr) in cultivated fields affects carbohydrate metabolism of rice (Oryza sativa L.) and weakens its productivity. Little is known about the molecular mechanism of sucrose metabolism underlying Cr stress response in rice plants. In the present study, the transcriptome map of sucrose metabolism in rice seedlings exposed to both trivalent and hexavalent chromium was investigated using Agilent 4 × 44K rice microarray analysis. Results indicated that Cr exposure (3 days) significantly (p < 0.05) improved sucrose accumulation, and altered the activities of sucrose synthetase, sucrose phosphate phosphatase, and amylosynthease in rice tissues. We identified 119 differentially regulated genes involved in 17 sucrose metabolizing enzymes and found that gene responses in roots were significantly (p < 0.05) stronger than in shoots under both Cr(III) and Cr(VI) treatment. The network maps of gene regulation responsible for sucrose metabolism in rice plants provide a theoretical basis for further cultivating Cr-resistant rice cultivars through molecular genetic improvement.


Assuntos
Cromo/farmacologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Oryza/metabolismo , Poluentes do Solo/farmacologia , Sacarose/metabolismo , Glucosiltransferases/genética , Glucosiltransferases/metabolismo , Oryza/efeitos dos fármacos , Oryza/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Raízes de Plantas/metabolismo
4.
J Agric Food Chem ; 67(35): 9958-9966, 2019 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-31419123

RESUMO

Chilling injury (CI) is a physiological disorder induced by cold, which heavily limit crop production and postharvest preservation worldwide. Methyl jasmonate (MeJA) can alleviate CI in various fruit species, including peach; however, the underlying molecular mechanism is poorly understood. Here, changes in contents of phenolics, lipids, and jasmonic acid (JA) and gene expressions are compared between MeJA and control fruit. Exogenous MeJA inhibited expressions of PpPAL1, PpPPO1, and PpPOD1/2 but did not affect the phenolic content. Furthermore, MeJA fruit showed lower relative electrolyte leakage, indicating less membrane damage. Meanwhile, the enrichment of linoleic acid in the potential lipid biomarkers, especially phosphatidylcholine, phosphatidylethanolamine, and phosphatidylglycerol, coincided with lower expressions of PpFAD8.1 but higher PpLOX3.1 and JA content. In the JA signaling pathway, MeJA significantly upregulated expressions of PpMYC2.2 and PpCBF3 but downregulated PpMYC2.1. In conclusion, adjustments of fatty acids in phospholipids contribute to MeJA-induced alleviation of CI in peach fruit via induction of the JA-mediated C-repeat-binding factor pathway.


Assuntos
Acetatos/farmacologia , Ciclopentanos/metabolismo , Ciclopentanos/farmacologia , Frutas/efeitos dos fármacos , Oxilipinas/metabolismo , Oxilipinas/farmacologia , Fosfolipídeos/metabolismo , Reguladores de Crescimento de Planta/farmacologia , Prunus persica/metabolismo , Temperatura Baixa , Frutas/genética , Frutas/crescimento & desenvolvimento , Frutas/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Prunus persica/efeitos dos fármacos , Prunus persica/genética , Prunus persica/crescimento & desenvolvimento
5.
Ecotoxicol Environ Saf ; 182: 109397, 2019 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-31299476

RESUMO

Cadmium (Cd) is a serious threat to plants health. Though some genes have been reported to get involved in the regulation of tolerance to Cd, the mechanisms underlying this process are not fully understood. Na+/H+ antiporter (NHX1) plays an important role in Na+/H+ trafficking. The salt and cadmium stress tolerance were found to be enhanced by NHX1 in duckweed according to our previous study, however, its function in Cd2+ flux under Cd stress has not been studied. Here we explored the Cd2+ flux in wild type (WT) and NHX1 transgenic duckweed (NHX1) under Cd stress. We found that the Cd2+ influx in NHX1 duckweed was significantly declined, followed by an increased Cd2+ efflux after 20 min treatment of Cd, which resulted a less accumulation of Cd in NHX1. Reversely, inhibition of NHX1 by amiloride treatment, enhanced Cd2+ influx in NHX1 duckweed, subsequently delayed Cd2+ efflux in both genotypes of duckweed under Cd2+ shock. H+ efflux in NHX1 duckweed was lower compare with that in WT with 20 min Cd2+ shock. NHX1 also increased the pH value with Cd2+ stress in the transgenic rhizoid. These finding suggested a new function of NHX1 in regulation of Cd2+ and H+ flow during short-term Cd2+ shock.


Assuntos
Araceae/fisiologia , Cádmio/metabolismo , Poluentes Químicos da Água/metabolismo , Araceae/metabolismo , Cádmio/toxicidade , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Plantas Geneticamente Modificadas/metabolismo , Sódio/metabolismo , Trocadores de Sódio-Hidrogênio , Poluentes Químicos da Água/toxicidade
6.
J Agric Food Chem ; 67(29): 8085-8095, 2019 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-31265279

RESUMO

Herbicide resistance identification is essential for effective chemical weed control. In this study, we quantified the differences in growth response between penoxsulam resistant (R) and sensitive (S) Echinochloa crus-galli populations, explored the changes in ALS, and performed genetic analyses to identify metabolic genes that are up-regulated by the application of penoxsulam and other common herbicides. The R population showed a 26.0-fold higher resistance to penoxsulam and varied resistance to most tested herbicides with indices ranging from 4.9 to 145.9. A Trp-574-Arg amino acid mutation in ALS and low penoxsulam ALS sensitivity were the main mechanisms underlying herbicide resistance. The penoxsulam resistance can be significantly reversed by two P450s inhibitors and one GST inhibitor. By RNA-Seq, thirty-six highly expressed contigs were selected, and 30 of them were up-regulated in the R population treated by penoxsulam. Many of these genes were significantly expressed when treated with pyroxsulam, metamifop, and quinclorac. These upregulated genes appear to be complementary for plant resistance to penoxsulam and other common herbicides.


Assuntos
Echinochloa/efeitos dos fármacos , Resistência a Herbicidas , Herbicidas/farmacologia , Sulfonamidas/farmacologia , Uridina/análogos & derivados , Acetolactato Sintase/genética , Acetolactato Sintase/metabolismo , Echinochloa/genética , Echinochloa/crescimento & desenvolvimento , Echinochloa/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Uridina/farmacologia
7.
Food Chem ; 299: 125116, 2019 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-31295637

RESUMO

The effects of exogenous melatonin treatment on the enzymatic browning and nutritional quality of fresh-cut pear fruit were investigated. Fresh-cut fruit soaked with 0, 0.05, 0.1 and 0.5 mM melatonin were stored at 4 °C. Our results showed that 0.1 mM melatonin treatment was optimal for reducing the surface browning and maintaining the titratable acidity of the fresh-cut fruit, which significantly decreased MDA and H2O2 contents and the growth of microorganism, enhanced total phenolic content and antioxidant capacity, and delayed the reduction of ascorbic acid. Furthermore, melatonin treatment at 0.1 mM decreased the expression of genes involving in enzymatic browning pathway including POD, PPO1, PPO5 and LOX1, and reduced PPO activity. Moreover, this treatment increased the expression of PAL and CHS, and enhanced PAL and CHS activities. These results showed that melatonin treatment might be a promising strategy to alleviate browning and improve the nutritional quality of fresh-cut pear fruit.


Assuntos
Frutas/efeitos dos fármacos , Melatonina/farmacologia , Valor Nutritivo , Pyrus/efeitos dos fármacos , Antioxidantes/análise , Antioxidantes/metabolismo , Ácido Ascórbico/análise , Ácido Ascórbico/metabolismo , Armazenamento de Alimentos , Frutas/química , Frutas/metabolismo , Frutas/microbiologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Peróxido de Hidrogênio/análise , Peróxido de Hidrogênio/metabolismo , Malondialdeído/análise , Malondialdeído/metabolismo , Fenóis/análise , Pyrus/química , Pyrus/genética , Pyrus/metabolismo
8.
J Chem Ecol ; 45(7): 598-609, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31218595

RESUMO

Insect herbivory induces plant defense responses that are often modulated by components in insect saliva, oral secretions or regurgitant, frass, or oviposition fluids. These secretions contain proteins and small molecules that act as elicitors or effectors of plant defenses. Several non-protein elicitors have been identified from insect oral secretions, whereas studies of insect saliva have focused mainly on protein identification. Yet, insect saliva may also contain non-protein molecules that could activate defense responses in plants. The goal of this study was to identify non-protein plant defense elicitors present in insect saliva. We used the fall armyworm (FAW), Spodoptera frugiperda and its host plants tomato, maize, and rice as a model system. We tested the effect of protein-digested saliva or non-protein components on herbivore-induced defense responses in maize, rice and tomato. We identified phytohormones in FAW saliva using high performance liquid chromatography coupled with mass spectrometry. The results of this study show that non-protein components in FAW saliva modulated defense responses in different plant species. The saliva of this insect contains benzoic acid, and the phytohormones jasmonic acid, salicylic acid, and abscisic acid at concentrations of <5 ng per µl of saliva. Plant treatment with similar phytohormone quantities detected in FAW saliva upregulated the expression of a maize proteinase inhibitor gene in maize, and down-regulated late herbivore-induced defenses in tomato plants. We conclude that FAW saliva is a complex fluid that, in addition to known enzymatic plant defense elicitors, contains phytohormones and other small molecules.


Assuntos
Reguladores de Crescimento de Planta/análise , Saliva/química , Zea mays/metabolismo , Animais , Cromatografia Líquida de Alta Pressão , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Herbivoria , Larva/metabolismo , Lycopersicon esculentum/metabolismo , Lycopersicon esculentum/parasitologia , Espectrometria de Massas , Reguladores de Crescimento de Planta/farmacologia , Folhas de Planta/metabolismo , Folhas de Planta/parasitologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Saliva/metabolismo , Spodoptera/crescimento & desenvolvimento , Zea mays/parasitologia
9.
J Agric Food Chem ; 67(26): 7390-7398, 2019 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-31244202

RESUMO

Wound-induced suberization is an essentially protective healing process for wounded fruit to reduce water loss and microbial infection. It has been demonstrated that abscisic acid (ABA) could promote wound suberization, but the molecular mechanism of ABA regulation remains little known. In this study, the transcript level of Achn030011 (designated as AchnKCS), coding a ß-ketoacyl-coenzyme A synthase (KCS) involved in suberin biosynthesis, was found to be significantly upregulated by ABA in wounded kiwifruit. A bZIP transcription factor (Achn270881), a possible downstream transcription factor in the ABA signaling pathway, was screened and designated as AchnbZIP12 according to its homology with related Arabidopsis transcription factors. A yeast one-hybrid assay demonstrated that AchnbZIP12 could interact with the AchnKCS promoter. Furthermore, significant trans-activation of AchnbZIP12 on AchnKCS was verified. The transcript level of AchnbZIP12 was also upregulated upon treatment with ABA. These results imply that AchnbZIP12 acts as a positive regulator in ABA-mediated AchnKCS transcription during wound suberization of kiwifruit.


Assuntos
Ácido Abscísico/farmacologia , Actinidia/efeitos dos fármacos , Actinidia/fisiologia , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Reguladores de Crescimento de Planta/farmacologia , Proteínas de Plantas/genética , Actinidia/genética , Fatores de Transcrição de Zíper de Leucina Básica/genética , Frutas/efeitos dos fármacos , Frutas/genética , Frutas/fisiologia , Proteínas de Plantas/metabolismo , Regiões Promotoras Genéticas/efeitos dos fármacos
10.
Plant Mol Biol ; 100(6): 659-674, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31187392

RESUMO

KEY MESSAGE: Oxalotrophic Stenotrophomonas isolated from tomato rhizosphere are able to protect plants against oxalate-producing pathogens by a combination of actions including induction of plant defence signalling callose deposition and the strengthening of plant cell walls and probably the degradation of oxalic acid. Oxalic acid plays a pivotal role in the virulence of the necrotrophic fungi Botrytis cinerea and Sclerotinia sclerotiorum. In this work, we isolated two oxalotrophic strains (OxA and OxB) belonging to the bacterial genus Stenotrophomonas from the rhizosphere of tomato plants. Both strains were capable to colonise endophytically Arabidopsis plants and protect them from the damage caused by high doses of oxalic acid. Furthermore, OxA and OxB protected Arabidopsis from S. sclerotiorum and B. cinerea infections. Bacterial inoculation induced the production of phenolic compounds and the expression of PR-1. Besides, both isolates exerted a protective effect against fungal pathogens in Arabidopsis mutants affected in the synthesis pathway of salicylic acid (sid2-2) and jasmonate perception (coi1). Callose deposition induced by OxA and OxB was required for protection against phytopathogens. Moreover, B. cinerea and S. sclerotiorum mycelial growth was reduced in culture media containing cell wall polysaccharides from leaves inoculated with each bacterial strain. These findings suggest that cell walls from Arabidopsis leaves colonised by these bacteria would be less susceptible to pathogen attack. Our results indicate that these oxalotrophic bacteria can protect plants against oxalate-producing pathogens by a combination of actions and show their potential for use as biological control agents against fungal diseases.


Assuntos
Fungos/patogenicidade , Lycopersicon esculentum/microbiologia , Oxalatos/metabolismo , Stenotrophomonas/fisiologia , Arabidopsis/metabolismo , Botrytis/metabolismo , Botrytis/patogenicidade , Parede Celular/metabolismo , Ciclopentanos/química , Fungos/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Ácido Oxálico/metabolismo , Oxilipinas/química , Filogenia , Doenças das Plantas/microbiologia , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Polissacarídeos/metabolismo , Ácido Salicílico/farmacologia , Transdução de Sinais , Stenotrophomonas/isolamento & purificação
11.
BMC Plant Biol ; 19(1): 283, 2019 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-31248369

RESUMO

BACKGROUND: Metal homeostasis is critical for plant growth, development and adaptation to environmental stresses and largely governed by a variety of metal transporters. The plant ZIP (Zn-regulated transporter, Iron-regulated transporter-like Protein) family proteins belong to the integral membrane transporters responsible for uptake and allocation of essential and non-essential metals. However, whether the ZIP family members mediate metal efflux and its regulatory mechanism remains unknown. RESULTS: In this report, we provided evidence that OsZIP1 is a metal-detoxified transporter through preventing excess Zn, Cu and Cd accumulation in rice. OsZIP1 is abundantly expressed in roots throughout the life span and sufficiently induced by excess Zn, Cu and Cd but not by Mn and Fe at transcriptional and translational levels. Expression of OsZIP-GFP fusion in rice protoplasts and tobacco leaves shows that OsZIP1 resides in the endoplasmic reticulum (ER) and plasma membrane (PM). The yeast (Saccharomyces cerevisiae) complementation test shows that expression of OsZIP1 reduced Zn accumulation. Transgenic rice overexpressing OsZIP1 grew better under excess metal stress but accumulated less of the metals in plants. In contrast, both oszip1 mutant and RNA interference (RNAi) lines accumulated more metal in roots and contributed to metal sensitive phenotypes. These results suggest OsZIP1 is able to function as a metal exporter in rice when Zn, Cu and Cd are excess in environment. We further identified the DNA methylation of histone H3K9me2 of OsZIP1 and found that OsZIP1 locus, whose transcribed regions imbed a 242 bp sequence, is demethylated, suggesting that epigenetic modification is likely associated with OsZIP1 function under Cd stress. CONCLUSION: OsZIP1 is a transporter that is required for detoxification of excess Zn, Cu and Cd in rice.


Assuntos
Cádmio/metabolismo , Proteínas de Transporte de Cátions/genética , Cobre/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Oryza/genética , Proteínas de Plantas/genética , Zinco/metabolismo , Transporte Biológico/efeitos dos fármacos , Proteínas de Transporte de Cátions/química , Proteínas de Transporte de Cátions/metabolismo , Oryza/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Estresse Fisiológico
12.
Plant Physiol Biochem ; 141: 142-153, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31163341

RESUMO

Plant growth promoting bacteria (PGPB) are agriculturally important soil bacteria that increase plant growth. We subjected peppermint to inoculation with three species of PGPB. After inoculation, the plants were sprayed with methyl jasmonate solution (MeJA) or SA (salicylic acid). Then, the plants were harvested and the plant growth parameters, trichome density, EO content and endogenous phytohormones were measured. Shoot fresh weight was reduced in plants inoculated and treated with MeJA whereas EO content varied depending on the MeJA concentration applied. Plants inoculated and treated with MeJA 2 mM showed the maximum increase in EO production, revealing a synergism between PGPB and MeJA. SA treatments also enhanced EO yield. The increased growth and EO production observed upon PGPB application were at least partly due to an increase in the JA and SA concentrations in the plant, as well as to an associated rise in the glandular trichome density.


Assuntos
Acetatos/farmacologia , Ciclopentanos/química , Ciclopentanos/farmacologia , Mentha piperita/química , Óleos Voláteis/química , Oxilipinas/química , Oxilipinas/farmacologia , Ácido Salicílico/química , Tricomas/química , Bacillus subtilis , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Mentha piperita/microbiologia , Óleos Voláteis/isolamento & purificação , Desenvolvimento Vegetal , Reguladores de Crescimento de Planta/química , Folhas de Planta/química , Brotos de Planta/química , Pseudomonas fluorescens , Pseudomonas putida
13.
J Microbiol Biotechnol ; 29(7): 1124-1136, 2019 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-31216607

RESUMO

Salinity is one of the major abiotic stresses that cause reduction of plant growth and crop productivity. It has been reported that plant growth-promoting bacteria (PGPB) could confer abiotic stress tolerance to plants. In a previous study, we screened bacterial strains capable of enhancing plant health under abiotic stresses and identified these strains based on 16s rRNA sequencing analysis. In this study, we investigated the effects of two selected strains, Bacillus aryabhattai H19-1 and B. mesonae H20-5, on responses of tomato plants against salinity stress. As a result, they alleviated decrease in plant growth and chlorophyll content; only strain H19-1 increased carotenoid content compared to that in untreated plants under salinity stress. Strains H19-1 and H20-5 significantly decreased electrolyte leakage, whereas they increased Ca2+ content compared to that in the untreated control. Our results also indicated that H20-5-treated plants accumulated significantly higher levels of proline, abscisic acid (ABA), and antioxidant enzyme activities compared to untreated and H19-1-treated plants during salinity stress. Moreover, strain H20-5 upregulated 9-cisepoxycarotenoid dioxygenase 1 (NCED1) and abscisic acid-response element-binding proteins 1 (AREB1) genes, otherwise strain H19-1 downregulated AREB1 in tomato plants after the salinity challenge. These findings demonstrated that strains H19-1 and H20-5 induced ABA-independent and -dependent salinity tolerance, respectively, in tomato plants, therefore these strains can be used as effective bio-fertilizers for sustainable agriculture.


Assuntos
Bacillus/fisiologia , Lycopersicon esculentum/fisiologia , Reguladores de Crescimento de Planta/farmacologia , Tolerância ao Sal/efeitos dos fármacos , Ácido Abscísico/metabolismo , Antioxidantes/metabolismo , Clorofila/metabolismo , Fertilizantes , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Lycopersicon esculentum/crescimento & desenvolvimento , Lycopersicon esculentum/metabolismo , Folhas de Planta/metabolismo , Folhas de Planta/fisiologia , Proteínas de Plantas/genética , Prolina/metabolismo , Estresse Salino
14.
J Agric Food Chem ; 67(27): 7738-7747, 2019 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-31199650

RESUMO

Cytosinpeptidemycin (CytPM) is a microbial pesticide that displayed broad-spectrum antiviral activity against various plant viruses. However, the molecular mechanism underlying antiviral activity of CytPM is poorly understood. In this study, the results demonstrated that CytPM could effectively delay the systemic infection of tobacco mosaic virus (TMV) in Nicotiana benthamiana and significantly inhibit the viral accumulation in tobacco BY-2 protoplasts. Results of RNA-seq indicated that 210 and 120 differential expressed genes (DEGs) were significantly up- and down-regulated after CytPM treatment in BY-2 protoplasts, respectively. In addition, KEGG analysis indicated that various DEGs were involved in endoplasmic reticulum (ER) protein processing, suggesting a possible correlation between ER homeostasis and virus resistance. RT-qPCR was performed to validate the gene expression of crucial DEGs related with defense, stress responses, signaling transduction, and phytohormone, which were consistent with results of RNA-seq. Our works provided valuable insights into the antiviral mechanism of CytPM that induced host resistance to viral infection.


Assuntos
Antivirais , Citosina/análogos & derivados , Resistência à Doença/genética , Doenças das Plantas/prevenção & controle , Vírus do Mosaico do Tabaco/fisiologia , Tabaco/virologia , Citosina/farmacologia , Resistência à Doença/efeitos dos fármacos , Expressão Gênica , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Interações Hospedeiro-Patógeno/genética , Doenças das Plantas/virologia , Reguladores de Crescimento de Planta/genética , Protoplastos/efeitos dos fármacos , Protoplastos/virologia , Transdução de Sinais/efeitos dos fármacos , Estresse Fisiológico/efeitos dos fármacos , Estresse Fisiológico/genética , Tabaco/genética , Vírus do Mosaico do Tabaco/efeitos dos fármacos , Vírus do Mosaico do Tabaco/patogenicidade
15.
BMC Plant Biol ; 19(1): 258, 2019 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-31208344

RESUMO

BACKGROUND: It has been previously shown that oligo-carrageenan (OC) kappa increases growth, photosynthesis and activities of enzymes involved in basal and secondary metabolisms in Eucalyptus globulus. However, it is not known whether OC kappa may induce the activation of TOR pathway and the increase in expression of genes encoding proteins involved in photosynthesis and enzymes of basal and secondary metabolisms. RESULTS: E. globulus trees were sprayed on leaves with water (control) or with OC kappa 1 mg mL- 1, once a week, four times in total, and cultivated for 17 additional weeks (21 weeks in total). Treated trees showed a higher level of net photosynthesis than controls, beginning at week 3, a higher height, beginning at week 9, and those differences remained until week 21. In addition, treated trees showed an increase in the level of glucose beginning at week 1, trehalose at weeks 1-3, and in TOR-P level at week 1-2. On the other hand, transcripts encoding proteins involved in photosynthesis, and enzymes involved in glucose accumulation, C, N and S assimilation, and synthesis of secondary metabolites began at weeks 3-4 and with additional peaks at weeks 5-6, 8-11,13-14 and 17-19. Thus, OC kappa induced initial increases in glucose, trehalose and TOR-P levels that were followed by oscillatory increases in the level of transcripts coding for proteins involved in photosynthesis, and in basal and secondary metabolisms suggesting that initial increases in glucose, trehalose and TOR-P may trigger activation of gene expression. CONCLUSIONS: The stimulation of growth induced by OC kappa in E. globulus trees is due, at least in part, to activation of TOR pathway and the increase in expression of genes encoding proteins involved in photosynthesis and enzymes of basal metabolism.


Assuntos
Carragenina/farmacologia , Fotossíntese/efeitos dos fármacos , Metabolismo Basal/genética , Eucalyptus/genética , Eucalyptus/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Glucose/metabolismo , Fotossíntese/genética , Proteínas de Plantas/metabolismo , Metabolismo Secundário/efeitos dos fármacos , Metabolismo Secundário/genética , Serina-Treonina Quinases TOR/metabolismo , Trealose/metabolismo
16.
BMC Plant Biol ; 19(1): 193, 2019 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-31072347

RESUMO

BACKGROUND: Wheat production is largely restricted by adverse environmental stresses. Under many undesirable conditions, endoplasmic reticulum (ER) stress can be induced. However, the physiological and molecular responses of wheat to ER stress remain poorly understood. We used dithiothreitol (DTT) and tauroursodeoxycholic acid (TUDCA) to induce or suppress ER stress in wheat cells, respectively, with the aim to reveal the molecular background of ER stress responses using a combined approach of transcriptional profiling and morpho-physiological characterization. METHODS: To understand the mechanism of wheat response to ER stress, three wheat cultivars were used in our pre-experiments. Among them, the cultivar with a moderate stress tolerance, Yunong211 was used in the following experiments. We used DTT (7.5 mM) to induce ER stress and TUDCA (25 µg·mL- 1) to suppress the stress. Under three treatment groups (Control, DTT and DTT + TUDCA), we firstly monitored the morphological, physiological and cytological changes of wheat seedlings. Then we collected leaf samples from each group for RNA extraction, library construction and RNA sequencing on an Illumina Hiseq platform. The sequencing data was then validated by qRT-PCR. RESULTS: Morpho-physiological results showed DTT significantly reduced plant height and biomass, decreased contents of chlorophyll and water, increased electrolyte leakage rate and antioxidant enzymes activity, and accelerated the cell death ratio, whereas these changes were all remarkably alleviated after TUDCA co-treatment. Therefore, RNA sequencing was performed to determine the genes involved in regulating wheat response to stress. Transcriptomic analysis revealed that 8204 genes were differentially expressed in three treatment groups. Among these genes, 158 photosynthesis-related genes, 42 antioxidant enzyme genes, 318 plant hormone-related genes and 457 transcription factors (TFs) may play vital roles in regulating wheat response to ER stress. Based on the comprehensive analysis, we propose a hypothetical model to elucidate possible mechanisms of how plants adapt to environmental stresses. CONCLUSIONS: We identified several important genes that may play vital roles in wheat responding to ER stress. This work should lay the foundations of future studies in plant response to environmental stresses.


Assuntos
Estresse do Retículo Endoplasmático/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Transcriptoma/genética , Triticum/genética , Triticum/fisiologia , Ditiotreitol/farmacologia , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Ontologia Genética , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/genética , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Reprodutibilidade dos Testes , Análise de Sequência de RNA , Ácido Tauroquenodesoxicólico/farmacologia , Fatores de Transcrição/metabolismo , Transcriptoma/efeitos dos fármacos , Triticum/anatomia & histologia
17.
Plant Sci ; 284: 16-24, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31084868

RESUMO

In this paper, we evaluated the genotoxicity of cadmium (Cd) in plants by performing a methylation-sensitive amplification polymorphism (MSAP) on the model plant Nicotiana benthamiana. Among 255 loci examined, 14 genes were found to show altered cytosine methylation patterns in response to Cd stress. Four of those genes (NbMORC3, NbHGSNAT, NbMUT, and NbBG) were selected for further analysis due to their predicted roles in plant development. Cd-induced changes of cytosine methylation status in MSAP fragments of selected genes were confirmed using bisulfite sequencing polymerase chain reaction (BSP). In addition, the expression levels of these genes were found to correlate with cadmium dosage, and a knock-down of these four genes via virus-induced genes silencing (VIGS) led to abnormal development and elevated sensitivity to cadmium stress. Silencing of these four genes resulted in altered cadmium accumulation in different parts of the experimental plants. Our data indicate that cadmium exposure causes dramatic changes in the cytosine methylation status of the plant genome, thus affecting the expression of many genes that are vital for plant growth and are involved in cadmium stress response.


Assuntos
Cádmio/toxicidade , Citosina/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Tabaco/efeitos dos fármacos , DNA de Plantas/efeitos dos fármacos , Genes de Plantas/efeitos dos fármacos , Metilação/efeitos dos fármacos , Reação em Cadeia da Polimerase em Tempo Real , Estresse Fisiológico/efeitos dos fármacos , Tabaco/genética , Tabaco/metabolismo
18.
BMC Plant Biol ; 19(1): 182, 2019 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-31060501

RESUMO

BACKGROUND: Waterhemp (Amaranthus tuberculatus (Moq.) J.D. Sauer) is a problem weed commonly found in the Midwestern United States that can cause crippling yield losses for both maize (Zea mays L.) and soybean (Glycine max L. Merr). In 2011, 4-hydroxyphenylpyruvate-dioxygenase (HPPD, EC 1.13.11.27) inhibitor herbicide resistance was first reported in two waterhemp populations. Since the discovery of HPPD-herbicide resistance, studies have identified the mechanism of resistance and described the inheritance of the herbicide resistance. However, no studies have examined genome-wide gene expression changes in response to herbicide treatment in herbicide resistant and susceptible waterhemp. RESULTS: We conducted RNA-sequencing (RNA-seq) analyses of two waterhemp populations (HPPD-herbicide resistant and susceptible), from herbicide-treated and mock-treated leaf samples at three, six, twelve, and twenty-four hours after treatment (HAT). We performed a de novo transcriptome assembly using all sample sequences. Following assessments of our assembly, individual samples were mapped to the de novo transcriptome allowing us to identify transcripts specific to a genotype, herbicide treatment, or time point. Our results indicate that the response of HPPD-herbicide resistant and susceptible waterhemp genotypes to HPPD-inhibiting herbicide is rapid, established as soon as 3 hours after herbicide treatment. Further, there was little overlap in gene expression between resistant and susceptible genotypes, highlighting dynamic differences in response to herbicide treatment. In addition, we used stringent analytical methods to identify candidate single nucleotide polymorphisms (SNPs) that distinguish the resistant and susceptible genotypes. CONCLUSIONS: The waterhemp transcriptome, herbicide-responsive genes, and SNPs generated in this study provide valuable tools for future studies by numerous plant science communities. This collection of resources is essential to study and understand herbicide effects on gene expression in resistant and susceptible weeds. Understanding how herbicides impact gene expression could allow us to develop novel approaches for future herbicide development. Additionally, an increased understanding of the prolific traits intrinsic in weed success could lead to crop improvement.


Assuntos
4-Hidroxifenilpiruvato Dioxigenase/antagonistas & inibidores , Amaranthus/enzimologia , Amaranthus/genética , Inibidores Enzimáticos/farmacologia , Resistência a Herbicidas , Análise de Sequência de RNA , 4-Hidroxifenilpiruvato Dioxigenase/metabolismo , Amaranthus/efeitos dos fármacos , Cicloexanonas/toxicidade , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Ontologia Genética , Redes Reguladoras de Genes , Genótipo , Resistência a Herbicidas/genética , Anotação de Sequência Molecular , Fenótipo , Polimorfismo de Nucleotídeo Único/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transcriptoma/genética
19.
BMC Plant Biol ; 19(1): 189, 2019 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-31068143

RESUMO

BACKGROUND: Chinese jujube (Ziziphus jujuba Mill.) is a non-climacteric fruit; however, the underlying mechanism of ripening and the role of abscisic acid involved in this process are not yet understood for this species. RESULTS: In the present study, a positive correlation between dynamic changes in endogenous ABA and the onset of jujube ripening was determined. Transcript analyses suggested that the expression balance among genes encoding nine-cis-epoxycarotenoid dioxygenase (ZjNCED3), ABA-8'-hydroxylase (ZjCYP707A2), and beta-glucosidase (ZjBG4, ZjBG5, ZjBG8, and ZjBG9) has an important role in maintaining ABA accumulation, while the expression of a receptor (ZjPYL8), protein phosphatase 2C (ZjPP2C4-8), and sucrose nonfermenting 1-related protein kinase 2 (ZjSnRK2-2 and ZjSnRK2-5) is important in regulating fruit sensitivity to ABA applications. In addition, white mature 'Dongzao' fruit were harvested and treated with 50 mg L- 1 ABA or 50 mg L- 1 nordihydroguaiaretic acid (NDGA) to explore the role of ABA in jujube fruit ripening. By comparative transcriptome analyses, 1103 and 505 genes were differentially expressed in response to ABA and NDGA applications on the 1st day after treatment, respectively. These DEGs were associated with photosynthesis, secondary, lipid, cell wall, and starch and sugar metabolic processes, suggesting the involvement of ABA in modulating jujube fruit ripening. Moreover, ABA also exhibited crosstalk with other phytohormones and transcription factors, indicating a regulatory network for jujube fruit ripening. CONCLUSIONS: Our study further elucidated ABA-associated metabolic and regulatory processes. These findings are helpful for improving strategies for jujube fruit storage and for gaining insights into understand complex non-climacteric fruit ripening processes.


Assuntos
Ácido Abscísico/metabolismo , Frutas/crescimento & desenvolvimento , Frutas/genética , Regulação da Expressão Gênica de Plantas , Ziziphus/crescimento & desenvolvimento , Ziziphus/genética , Biomassa , Vias Biossintéticas/efeitos dos fármacos , Vias Biossintéticas/genética , Etilenos/biossíntese , Frutas/efeitos dos fármacos , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Ontologia Genética , Genes de Plantas , Masoprocol/farmacologia , Reguladores de Crescimento de Planta/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reprodutibilidade dos Testes , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Fatores de Transcrição/metabolismo , Ziziphus/efeitos dos fármacos
20.
BMC Plant Biol ; 19(1): 190, 2019 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-31068146

RESUMO

BACKGROUND: The functional characteristics of SLAC/SLAH family members isolated from Arabidopsis thaliana, poplar, barley and rice have been comprehensively investigated. However, there are no reports regarding SLAC/SLAH family genes from Rosaceae plants. RESULTS: In this study, the function of PbrSLAH3, which is predominately expressed in pear (Pyrus bretschneideri) root, was investigated. PbrSLAH3 can rescue the ammonium toxicity phenomenon of slah3 mutant plants under high-ammonium/low-nitrate conditions. In addition, yeast two-hybrid and bimolecular fluorescence complementation assays confirmed that PbrSLAH3 interacts with PbrCPK32. Moreover, when PbrSLAH3 was co-expressed with either the Arabidopsis calcium-dependent protein kinase (CPK) 21 or PbrCPK32 in Xenopus oocytes, yellow fluorescence was emitted from the oocytes and typical anion currents were recorded in the presence of extracellular NO3-. However, when PbrSLAH3 alone was injected, no yellow fluorescence or anion currents were recorded, suggesting that anion channel PbrSLAH3 activity was controlled through phosphorylation. Finally, electrophysiological and transgene results showed that PbrSLAH3 was more permeable to NO3- than Cl-. CONCLUSION: We suggest that PbrSLAH3 crossing-talk with PbrCPK32 probably participate in transporting of nitrate nutrition in pear root.


Assuntos
Canais Iônicos/metabolismo , Nitratos/metabolismo , Proteínas de Plantas/metabolismo , Proteínas Quinases/metabolismo , Pyrus/enzimologia , Compostos de Amônio/toxicidade , Animais , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Fenômenos Eletrofisiológicos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes de Plantas , Mutação/genética , Oócitos/efeitos dos fármacos , Oócitos/metabolismo , Filogenia , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Pyrus/efeitos dos fármacos , Pyrus/genética , Xenopus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA