Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72.514
Filtrar
1.
Pestic Biochem Physiol ; 159: 107-117, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31400772

RESUMO

Latrophilin (LPH) is an adhesion G protein-coupled receptor (aGPCR) that participates in multiple essential physiological processes. Our previous studies have shown that lph is not only indispensable for the development and reproduction of red flour beetles (Tribolium castaneum), but also for their resistance against dichlorvos or carbofuran insecticides. However, the regulatory mechanism of lph-mediated insecticide susceptibility remains unclear. Here, we revealed that knockdown of lph in beetles resulted in opposing changes in two chemoreception genes, chemosensory protein 10 (CSP10) and odorant-binding protein C01 (OBPC01), in which the expression of TcCSP10 was downregulated, whereas the expression of TcOBPC01 was upregulated. TcCSP10 and TcOBPC01 were expressed at the highest levels in early pupal and late larval stages, respectively. High levels of expression of both these genes were observed in the heads (without antennae) of adults. TcCSP10 and TcOBPC01 were significantly induced by dichlorvos or carbofuran between 12 and 72 h (hrs) after exposure, suggesting that they are likely associated with increasing the binding affinity of insecticides, leading to a decrease in sensitivity to the insecticides. Moreover, once these two genes were knocked down, the susceptibility of the beetles to dichlorvos or carbofuran was enhanced. Additionally, RNA interference (RNAi) targeting of lph followed by exposure to dichlorvos or carbofuran also caused the opposing expression levels of TcCSP10 and TcOBPC01 compared to the expression levels of wild-type larvae treated with insecticides alone. All these results indicate that lph is involved in insecticide susceptibility through positively regulating TcCSP10; and the susceptibility could also further partially compensated for through the negative regulation of TcOBPC01 when lph was knockdown in the red flour beetle. Our studies shed new light on the molecular regulatory mechanisms of lph related to insecticide susceptibility.


Assuntos
Proteínas de Insetos/metabolismo , Inseticidas/farmacologia , Receptores de Peptídeos/metabolismo , Tribolium/efeitos dos fármacos , Tribolium/metabolismo , Animais , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Regulação da Expressão Gênica no Desenvolvimento/genética , Proteínas de Insetos/genética
2.
Anticancer Res ; 39(8): 4495-4502, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31366551

RESUMO

BACKGROUND/AIM: In mice, fetal liver is the first tissue of definitive erythropoiesis for definitive erythroid expansion and maturation. ZFAT, originally identified as a candidate susceptibility gene for autoimmune thyroid disease, has been reported to be involved in primitive hematopoiesis and T cell development. The aim of this study was to examine whether or not Zfat is involved in definitive erythropoiesis in the fetal liver during mammalian development. MATERIALS AND METHODS: The role of Zfat during mouse fetal erythropoiesis in the fetal liver was examined using tamoxifen-inducible CreERT2 Zfat-deficient mice. RESULTS: Zfat-deficient mice exhibit moderate anemia with small and pale fetal liver through a decreased number of erythroblasts by E12.5. Apoptosis sensitivity in fetal liver erythroid progenitors was enhanced by Zfat-deficiency ex vivo. Moreover, Zfat knockdown partially inhibited CD71-/lowTer119- to CD71highTer119- transition of fetal liver erythroid progenitors with impairment in the elevation of CD71 expression. CONCLUSION: Zfat plays a critical role for erythropoiesis in the fetal liver.


Assuntos
Antígenos CD/genética , Eritropoese/genética , Fígado/crescimento & desenvolvimento , Receptores da Transferrina/genética , Fatores de Transcrição/genética , Animais , Apoptose/genética , Diferenciação Celular/genética , Células Eritroides/metabolismo , Células Eritroides/patologia , Desenvolvimento Fetal/genética , Feto , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Silenciamento de Genes , Humanos , Fígado/metabolismo , Camundongos , Linfócitos T/citologia , Linfócitos T/metabolismo , Tireoidite Autoimune/genética , Tireoidite Autoimune/patologia
3.
Dokl Biochem Biophys ; 486(1): 243-246, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31367831

RESUMO

This work represents one part of our research project, in which we attempted to prove that a humoral regulation between noradrenaline-producing organs exist in the perinatal period. In this study, we used a rat model that allowed blocking the synthesis of noradrenalin in the brain and evaluated gene expression and protein levels of noradrenaline key synthesis enzymes such as tyrosine hydroxylase (TH) and dopamine beta-hydroxylase (DBH) in peripheral noradrenaline-producing organs. As a result, we showed an increased gene expression of TH and DBH in adrenal glands. These data indicate that, if neonatal rat brain lacks the ability to produce noradrenaline, then the synthesis of noradrenaline in adrenal glands increased as a compensatory process, so that the concentration levels in blood are maintained at normal levels. This indicates that there is a humoral regulation between brain and adrenal glands, which is not fully understood yet.


Assuntos
Encéfalo/fisiologia , Morfogênese , Norepinefrina/biossíntese , Animais , Encéfalo/crescimento & desenvolvimento , Dopamina beta-Hidroxilase/genética , Regulação da Expressão Gênica no Desenvolvimento , Ratos , Tirosina 3-Mono-Oxigenase/genética
4.
Gene ; 718: 144049, 2019 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-31430520

RESUMO

The role of epigenetics in development has garnered attention in recent years due to their ability to modulate the embryonic developmental gene expression in response to the environmental cues. The epigenetic mechanisms - DNA methylation, histone modification, and non-coding RNAs have a unique impact on vertebrate development. Zebrafish, a model vertebrate organism is being used widely in developmental studies due to their high fecundability and rapid organogenesis. With increased studies on various aspects of epigenetics in development, this review gives a glimpse of the major epigenetic modifications and their role in zebrafish development. In this review, the basic mechanism behind each modification followed by their status in zebrafish has been reviewed. Further, recent advancements in the epigenetic aspect of zebrafish development have been discussed.


Assuntos
Metilação de DNA/fisiologia , Embrião não Mamífero/embriologia , Desenvolvimento Embrionário/fisiologia , Epigênese Genética/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Peixe-Zebra/embriologia , Animais , Histonas/genética , Histonas/metabolismo , Processamento de Proteína Pós-Traducional/fisiologia , Peixe-Zebra/genética
5.
J Agric Food Chem ; 67(32): 8919-8925, 2019 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-31334658

RESUMO

Histone deacetylase (HDAC) performs important functions in plant growth and development, including fruit ripening. As a complex biological process, fruit ripening involves the histone acetylation modification of ripening-associated genes. Histone deacetylase genes (HDACs) have been well studied in Arabidopsis and rice, but the biological functions of HDACs in papaya are poorly understood. In the present work, three CpHDACs, belonging to the RPD3/HDA1 subfamily, were identified from papaya and named as CpHDA1, CpHDA2, and CpHDA3. CpHDA1 and CpHDA2 were induced by propylene, while CpHDA3 was propylene-repressed. Moreover, CpHDA3 protein could physically interact with CpERF9 and enhance the transcriptional repression activities of CpERF9 to downstream genes CpPME1, CpPME2 and CpPG5. Histone acetylation levels of CpPME1 and CpPG5 were increased during fruit ripening. Taken together, these results suggested that CpERF9 recruits CpHDA3 to form a histone deacetylase repressor complex to mediate pectin methylesterase and polygalacturonase genes expression during papaya fruit ripening and softening.


Assuntos
Hidrolases de Éster Carboxílico/genética , Carica/metabolismo , Frutas/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Histona Desacetilases/metabolismo , Proteínas de Plantas/metabolismo , Poligalacturonase/genética , Fatores de Transcrição/metabolismo , Hidrolases de Éster Carboxílico/metabolismo , Carica/genética , Carica/crescimento & desenvolvimento , Frutas/genética , Frutas/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Histona Desacetilases/genética , Proteínas de Plantas/genética , Poligalacturonase/metabolismo , Regiões Promotoras Genéticas , Ligação Proteica , Fatores de Transcrição/genética
6.
Artigo em Inglês | MEDLINE | ID: mdl-31255700

RESUMO

Myogenic regulatory factor 4 (MRF4) is a basic helix-loop-helix (bHLH) transcription factor that plays crucial roles in myoblast differentiation and maturation. Here, we report the isolation of the olive flounder (Paralichthys olivaceus) mrf4 gene and the spatiotemporal analysis of its expression patterns. Sequence analysis indicated that flounder mrf4 shared a similar structure with other vertebrate MRF4, including the conserved bHLH domain. Flounder mrf4 contains 3 exons and 2 introns. Sequence alignment and phylogenetic analysis showed that it was highly homologous with Salmo salar, Danio rerio, Takifugu rubripes, and Tetraodon nigroviridis mrf4. Flounder mrf4 was first expressed in the medial region of somites that give rise to slow muscles, and later spread to the lateral region of somites that give rise to fast muscles. Mrf4 transcript levels decreased significantly in mature somites in the trunk region, and expression could only be detected in the caudal somites, consistent with the timing of somite maturation. Transient expression analysis showed that the 506 bp flounder mrf4 promoter was sufficient to direct muscle-specific GFP expression in zebrafish embryos.


Assuntos
Proteínas de Peixes/genética , Linguado/genética , Músculos/metabolismo , Fatores de Regulação Miogênica/genética , Regiões Promotoras Genéticas/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Desenvolvimento Embrionário , Proteínas de Peixes/química , Linguado/embriologia , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Fatores de Regulação Miogênica/química , Especificidade de Órgãos
7.
Plant Sci ; 286: 78-88, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31300145

RESUMO

Chloroplastic Cpn60 proteins are type I chaperonins comprising of Cpn60α and Cpn60ß subunits. Arabidopsis genome contains six entries in Cpn60 family, out of which two are for Cpn60α subunit and four for Cpn60ß subunit. We noted that the cpn60ß4 knockout mutant plants (T-DNA insertion salk_064887 line) differed from the wild type Col-0 plants in the developmental programming. cpn60ß4 mutant plants showed early seed germination. Radical emergence, hypocotyl emergence and cotyledons opening were faster in cpn60ß4 mutant plants than WT. Importantly, cpn60ß4 mutant plants showed early-flowering phenotype. The number of flowers and siliques as well as weight of the seeds were higher in cpn60ß4 mutant plants as compared to Col-0 plants. These effects were reverted to wild type like growth and developmental patterns when genomic fragment of Arabidopsis encompassing Cpn60ß4 gene was complemented in the mutant background. The overexpression of Cpn60ß4 gene using CaMV35 promoter in wild type background (OE-Cpn60ß4) delayed the floral transition as against wild type plants. The plastid division were affected in cpn60ß4 mutant plants compared to Col-0. The results of this study suggest that Cpn60ß4 plays important role(s) in chloroplast development and is a key factor in plant growth, development and flowering in Arabidopsis.


Assuntos
Arabidopsis/genética , Flores/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Cloroplastos/metabolismo , Flores/genética , Regulação da Expressão Gênica no Desenvolvimento , Reprodução
8.
Hum Genet ; 138(8-9): 937-955, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31359131

RESUMO

Ocular developmental anomalies are among the most common causes of severe visual impairment in newborns (combined incidence 1-2:10,000). They comprise a wide range of inborn errors of eye development with a spectrum of overlapping phenotypes and they are frequently associated with extraocular malformations, neuropsychomotor developmental delay and/or intellectual disabilities. Many studies from model organisms have demonstrated the role of retinoic acid (RA) during organogenesis, including eye development, and have revealed the wide spectrum of malformations that can arise from defective RA signaling. However, genes coding for homeobox proteins and morphogenetic factors were implicated in anomalies of ocular development long before genes coding for RA-signaling proteins. The purpose of this review is to discuss current knowledge about the highly complex genetic architecture of RA-signaling-associated ocular developmental anomalies in humans. Despite less than a dozen genes identified thus far, all steps of RA-signaling, from vitamin A transport to target cells to transcriptional activation of RA targets, have been implicated. Furthermore, the majority of these genetic disorders are associated with both dominant and recessive inheritance patterns and a wide spectrum of ocular malformations, which can dominate the phenotype or represent one of many features. Although some genotype-phenotype correlations are described, in many cases, the variability of clinical expression cannot be accounted for by the genotype alone. This observation and the large number of unsolved cases suggest that the relationship between RA signaling and eye development deserves further investigation.


Assuntos
Olho/metabolismo , Transdução de Sinais/fisiologia , Tretinoína/metabolismo , Animais , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Genótipo , Proteínas de Homeodomínio/metabolismo , Humanos , Fenótipo
9.
Nat Commun ; 10(1): 2939, 2019 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-31270324

RESUMO

E2F transcription factors are central regulators of cell division and cell fate decisions. E2F4 often represents the predominant E2F activity in cells. E2F4 is a transcriptional repressor implicated in cell cycle arrest and whose repressive activity depends on its interaction with members of the RB family. Here we show that E2F4 is important for the proliferation and the survival of mouse embryonic stem cells. In these cells, E2F4 acts in part as a transcriptional activator that promotes the expression of cell cycle genes. This role for E2F4 is independent of the RB family. Furthermore, E2F4 functionally interacts with chromatin regulators associated with gene activation and we observed decreased histone acetylation at the promoters of cell cycle genes and E2F targets upon loss of E2F4 in RB family-mutant cells. Taken together, our findings uncover a non-canonical role for E2F4 that provide insights into the biology of rapidly dividing cells.


Assuntos
Fator de Transcrição E2F4/metabolismo , Células-Tronco Embrionárias Murinas/metabolismo , Proteína do Retinoblastoma/metabolismo , Ativação Transcricional , Animais , Ciclo Celular , Divisão Celular , Fator de Transcrição E2F4/genética , Regulação da Expressão Gênica no Desenvolvimento , Camundongos , Células-Tronco Embrionárias Murinas/citologia , Família Multigênica , Proteína do Retinoblastoma/genética
10.
Nat Commun ; 10(1): 3053, 2019 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-31311924

RESUMO

The germline is the only cellular lineage capable of transferring genetic information from one generation to the next. Intergenerational transmission of epigenetic memory through the germline, in the form of DNA methylation, has been proposed; however, in mammals this is largely prevented by extensive epigenetic erasure during germline definition. Here we report that, unlike mammals, the continuously-defined 'preformed' germline of zebrafish does not undergo genome-wide erasure of DNA methylation during development. Our analysis also uncovers oocyte-specific germline amplification and demethylation of an 11.5-kb repeat region encoding 45S ribosomal RNA (fem-rDNA). The peak of fem-rDNA amplification coincides with the initial expansion of stage IB oocytes, the poly-nucleolar cell type responsible for zebrafish feminisation. Given that fem-rDNA overlaps with the only zebrafish locus identified thus far as sex-linked, we hypothesise fem-rDNA expansion could be intrinsic to sex determination in this species.


Assuntos
Metilação de DNA/fisiologia , DNA Ribossômico/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Oócitos/metabolismo , Peixe-Zebra/fisiologia , Animais , Desmetilação , Epigênese Genética/fisiologia , Feminino , Masculino , RNA Ribossômico/genética , Caracteres Sexuais
11.
Adv Exp Med Biol ; 1166: 1-28, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31301043

RESUMO

Spermatozoa genome has unique features that make it a fascinating field of investigation: first, because, with oocyte genome, it can be transmitted generation after generation; second, because of genetic shuffling during meiosis, each spermatozoon is virtually unique in terms of genetic content, with consequences for species evolution; and finally, because its chromatin organization is very different from that of somatic cells or oocytes, as it is not based on nucleosomes but on nucleoprotamines which confer a higher order of packaging. Histone-to-protamine transition involves many actors, such as regulators of spermatid gene expression, components of the nuclear envelop, histone-modifying enzymes and readers, chaperones, histone variants, transition proteins, protamines, and certainly many more to be discovered.In this book chapter, we will present what is currently known about sperm chromatin structure and how it is established during spermiogenesis, with the aim to list the genetic factors that regulate its organization.


Assuntos
Cromatina/química , Cromatina/genética , Espermatozoides , Regulação da Expressão Gênica no Desenvolvimento , Histonas/metabolismo , Humanos , Masculino , Protaminas/metabolismo , Espermátides , Espermatogênese
12.
Toxicol Lett ; 314: 63-74, 2019 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-31306741

RESUMO

This study aimed to verify the toxic effects of prenatal caffeine exposure (PCE) on the podocyte development in male offspring, and to explore the underlying intrauterine programming mechanisms. The pregnant rats were administered with caffeine (30 to 120 mg/kg⋅d) during gestational day (GD) 9 to 20. The male fetus on GD20 and the offspring at postnatal week (PW) 6 and PW28 were sacrificed. The results indicated that PCE caused ultrastructural abnormalities on podocyte, and inhibited the expression of podocyte marker genes such as Nephrin, Wilms tumor 1 (WT1), the histone 3 lysine 9 acetylation (H3K9ac) level in the Kruppel-like factor 4 (KLF4) promoter and its expression in the male offspring from GD20 to PW28. Meanwhile, the expression of glucocorticoid receptor (GR) and histone deacetylase 7 (HDAC7) in the fetus were increased by PCE. In vitro, corticosterone increased GR and HDAC7 whereas reduced the H3K9ac level of KLF4 and KLF4/Nephrin expression. KLF4 over-expression reversed the reduction of Nephrin expression, knockdown of HDAC7 and GR antagonist RU486 partially reversed the inhibitory effects of corticosterone on H3K9ac level and KLF4 expression. In conclusion, PCE caused podocyte developmental toxicity in male offspring, which was associated with corticosterone-induced low-functional programming of KLF4 through GR/HDAC7/H3K9ac pathway.


Assuntos
Cafeína/toxicidade , Estimulantes do Sistema Nervoso Central/toxicidade , Histonas/metabolismo , Nefropatias/induzido quimicamente , Fatores de Transcrição Kruppel-Like/metabolismo , Podócitos/efeitos dos fármacos , Efeitos Tardios da Exposição Pré-Natal , Acetilação , Animais , Células Cultivadas , Feminino , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Idade Gestacional , Glucocorticoides/metabolismo , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Nefropatias/embriologia , Nefropatias/genética , Nefropatias/metabolismo , Fatores de Transcrição Kruppel-Like/genética , Lisina , Masculino , Exposição Materna , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Fenótipo , Podócitos/metabolismo , Podócitos/ultraestrutura , Gravidez , Regiões Promotoras Genéticas , Ratos Wistar , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo , Transdução de Sinais/efeitos dos fármacos
13.
Toxicol Lett ; 314: 43-52, 2019 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-31310794

RESUMO

Thioredoxin is an evolutionarily conserved antioxidant protein that plays a crucial role for fundamental cellular processes and embryonic development. Growing evidence support that Thioredoxin influences cellular response to chemicals insults, particularly those accompanying oxidative stress. The mechanisms underlying the functions of Thioredoxin1 in the embryonic development under the environmental toxicant exposure remain, however, largely unexplored. We report here that thioredoxin1 becomes differentially expressed in zebrafish embryos after exposure to 9 out of 11 environmental chemicals. In situ gene expression analysis show that thioredoxin1 is expressed in neurons, olfactory epithelia, liver and swim bladder under normal conditions. After MeHg exposure, however, thioredoxin1 is ectopically induced in the hair cells of the lateral line and in epithelia cells of the pharynx. Knockdown of Thioredoxin1 induces hydrocephalus and increases cell apoptosis in the brain ventricular epithelia cells. In comparison with 5% malformation in embryos injected with control morpholino, MeHg induces more than 77% defects in Thioredoxin1 knockdown embryos. Our data suggest that there is an association between hydrocephalus and Thioredoxin1 malfunction in embryonic development, and provide valuable information to elucidate the protective role of Thioredoxin1 against chemicals disruption.


Assuntos
Encéfalo/efeitos dos fármacos , Poluentes Ambientais/toxicidade , Hidrocefalia/induzido quimicamente , Tiorredoxinas/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/metabolismo , Animais , Animais Geneticamente Modificados , Apoptose/efeitos dos fármacos , Encéfalo/embriologia , Encéfalo/metabolismo , Embrião não Mamífero/efeitos dos fármacos , Embrião não Mamífero/metabolismo , Embrião não Mamífero/patologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Regulação da Expressão Gênica no Desenvolvimento , Hidrocefalia/embriologia , Hidrocefalia/genética , Hidrocefalia/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/patologia , Estresse Oxidativo/efeitos dos fármacos , Tiorredoxinas/genética , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética
14.
Toxicol Lett ; 314: 53-62, 2019 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-31319113

RESUMO

Benzyl butyl phthalate (BBP) is a widely used plasticizer and has raised public health concerns. Here, we report the effects of BBP on the testis development during rat puberty. BBP (0, 10, 100 or 1000 mg/kg) was gavaged to 35-day-old male Sprague Dawley rats for 21 days. The serum testosterone levels, Leydig cell number, the expressions of Leydig and Sertoli cell genes and proteins were measured. The in vitro effects on steroidogenesis and gene expression in immature Leydig cells were observed. BBP significantly increased serum testosterone level at 10 mg/kg but lowered its level at 1000 mg/kg without affecting serum luteinizing hormone and follicle-stimulating hormone levels. BBP increased Leydig cell number at all doses but inhibited steroidogenic capacity per Leydig cell at 1000 mg/kg. BBP significantly increased the ratio of phosphos-AKT2 (pAKT2)/AKT2, and phosphos-ERK1/2 (pERK1/2)/ERK1/2 in the testis. Mono-benzyl phthalate (the metabolite of BBP) inhibited steroidogenesis but BBP did not affect androgen production in immature Leydig cells in vitro. In conclusion, BBP non-linearly regulates Leydig cell development by increasing Leydig cell number but inhibiting steroidogenesis.


Assuntos
Proliferação de Células/efeitos dos fármacos , Células Intersticiais do Testículo/efeitos dos fármacos , Ácidos Ftálicos/toxicidade , Plastificantes/toxicidade , Desenvolvimento Sexual/efeitos dos fármacos , Testosterona/biossíntese , Fatores Etários , Animais , Relação Dose-Resposta a Droga , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Células Intersticiais do Testículo/metabolismo , Células Intersticiais do Testículo/patologia , Masculino , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos Sprague-Dawley , Receptores Depuradores Classe B/genética , Receptores Depuradores Classe B/metabolismo , Transdução de Sinais/efeitos dos fármacos , Testosterona/sangue
15.
BMC Evol Biol ; 19(1): 150, 2019 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-31340758

RESUMO

BACKGROUND: Understanding how variation in gene expression contributes to morphological diversity is a major goal in evolutionary biology. Cichlid fishes from the East African Great lakes exhibit striking diversity in trophic adaptations predicated on the functional modularity of their two sets of jaws (oral and pharyngeal). However, the transcriptional basis of this modularity is not so well understood, as no studies thus far have directly compared the expression of genes in the oral and pharyngeal jaws. Nor is it well understood how gene expression may have contributed to the parallel evolution of trophic morphologies across the replicate cichlid adaptive radiations in Lake Tanganyika, Malawi and Victoria. RESULTS: We set out to investigate the role of gene expression divergence in cichlid fishes from these three lakes adapted to herbivorous and carnivorous trophic niches. We focused on the development stage prior to the onset of exogenous feeding that is critical for understanding patterns of gene expression after oral and pharyngeal jaw skeletogenesis, anticipating environmental cues. This framework permitted us for the first time to test for signatures of gene expression underlying jaw modularity in convergent eco-morphologies across three independent adaptive radiations. We validated a set of reference genes, with stable expression between the two jaw types and across species, which can be important for future studies of gene expression in cichlid jaws. Next we found evidence of modular and non-modular gene expression between the two jaws, across different trophic niches and lakes. For instance, prdm1a, a skeletogenic gene with modular anterior-posterior expression, displayed higher pharyngeal jaw expression and modular expression pattern only in carnivorous species. Furthermore, we found the expression of genes in cichlids jaws from the youngest Lake Victoria to exhibit low modularity compared to the older lakes. CONCLUSION: Overall, our results provide cross-species transcriptional comparisons of modularly-regulated skeletogenic genes in the two jaw types, implicating expression differences which might contribute to the formation of divergent trophic morphologies at the stage of larval independence prior to foraging.


Assuntos
Adaptação Fisiológica/genética , Ciclídeos/genética , Comportamento Alimentar , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Variação Genética , Arcada Osseodentária/anatomia & histologia , Animais , Ecossistema , Redes Reguladoras de Genes , Lagos , Larva/genética , Morfogênese/genética , Faringe/metabolismo , Filogenia , Padrões de Referência , Tanzânia
16.
Zhonghua Gan Zang Bing Za Zhi ; 27(6): 450-456, 2019 Jun 20.
Artigo em Chinês | MEDLINE | ID: mdl-31357762

RESUMO

Objective: To observe the effect of differentiated mature adipocytes on hepatic steatosis and aquaporin-9 (AQP9) expressions in HepG2 cells and further explore its possible mechanism of action. Methods: Human preadipocytes were cultured and differentiated to full maturity. HepG2 cells were co-cultured with non-differentiated adipocytes and differentiated mature adipocytes for 48 h, and then labeled as control group and experimental group. Oil red O staining and intracellular triglyceride content were performed on co-cultured HepG2 cells and simultaneous changes in phosphatidylinositol 3-kinase (PI3K) - serine/threonine kinase (Akt) signaling pathway, and AQP9 mRNA and protein levels were detected. The experimental group was co-cultured with recombinant human insulin-like growth factor-I (IGF-I), with the addition of 100ng/ml PI3K-Akt pathway agonist, labeled as experimental group + IGF-I group. The activation of PI3K-Akt pathway was verified by Western blotting (WB). The expression of AQP9 was detected by RT-q PCR and WB. The recombinant lentivirus LV-AQP9 or empty-loaded virus LV-PWPI was transfected with HepG2 cells by recombinant lentiviral transfection tecnique, and labeled as HepG2-AQP9 and HepG2-PWPI. The transfection efficiency was assessed by confocal laser scanning microscopy and RT-qPCR and WB detected the change of AQP9 expression level after virus transfection. Afterwards, the stable over-expressed HepG2-AQP9 cells and the empty-loaded HepG2-PWPI cells were co-cultured with differentiated mature adipocytes for 48h, and labeled as HepG2-AQP9 co-culture group, and then intracellular triglyceride content were detected with Oil red O staining. Finally, IGF-I was added to the HepG2-AQP9 co-culture group, which was recorded as HepG2-AQP9 co-culture + IGF-I group. Intracellular triglyceride content was detected with Oil red O staining, and WB verified PI3K-Akt signaling pathway activation and changes in AQP9 mRNA and protein levels. A t-test was used to compare the two independent samples. Results: The intracellular lipid droplets and triglyceride content (0.052 ± 0.005) in the experimental group was increased significantly than the control group (0.033 ± 0.003) (t= 5.225,P= 0.006), suggesting that adipocyte co-culture had induced steatosis in HepG2 cells. RT-qPCR and WB results indicated that the expression levels of AQP9 mRNA (3.615 ± 0.330) and protein levels (0.072 ± 0.005) in the experimental group were significantly higher than the control group (t= 13.708, 11.225,P= 0.005, < 0.001). WB results showed that the expression level of phosphorylated Akt (p-Akt) protein (0.116±0.003) in the experimental group was significantly lower than the control group (0.202 ± 0.003) (t= 27.136,P< 0.001). The total Akt protein was constant, and the p-Akt/total Akt (0.182 ± 0.017)was significantly lower than the control group (0.327 ± 0.019) (t= 2.431,P= 0.001), suggesting that adipocyte co-culture had inhibited PI3K- Akt signaling pathway in HepG2 cells and up-regulated the expression level of AQP9. WB results indicated that the expression level of p-Akt protein (0.194 ± 0.021) in the experimental group + IGF-I group was significantly higher than the experimental group (0.132 ± 0.003) (t= 5.082,P= 0.007). The total Akt protein was constant, and the p-Akt/total Akt (0.281 ± 0.009) was significantly higher than the control group (0.184 ± 0.132) (t= 10.311,P< 0.001). Simultaneously, RT-qPCR and WB results indicated that the expression levels of AQP9 mRNA (0.327 ± 0.347) and protein levels (0.042 ± 0.004) in the experimental group + IGF-I group were significantly lower than the experimental group (t= 33.573, 5.598,P< 0.001, 0.005), suggesting that adipocyte co-culture had possibility to regulate the expression level of AQP9 through the PI3K-Akt pathway. Confocal laser microscopy analysis showed that the transfection efficiency was more than 90%. RT-q PCR and WB results indicated that the expression levels of AQP9 mRNA and protein levels (0.373 ± 0.221) in HepG2-AQP9 group were significantly higher than HepG2-PWPI group (t=14.953, 28.931,P= 0.002 and 0.000), suggesting that the stable overexpression of AQP9 cell line was successfully constructed. The intracellular lipid droplets and triglyceride content in HepG2-AQP9 co-culture group was significantly increased (t= 5.478, 5.369,P= 0.005) than HepG2-PWPI co-culture group and HepG2-AQP9 co-culture+ IGF-I group, suggesting that the increased expression of AQP9 had promoted HepG2 steatosis in co-cultured adipocytes. WB results showed the expression levels of p-Akt protein (0.168 ± 0.006) and p-Akt/total Akt (0.265±0.009) in HepG2-AQP9 co-culture + IGF-1 group was significantly increased (t= 16.311, 8.769,P< 0.001) than HepG2-AQP9 co-culture group, while the expression levels of AQP9 mRNA (0.327 ± 0.034) and protein (0.375 ± 0.025) was significantly decreased (t= 33.573, 9.146,P< 0.001 and 0.001). Conclusion: Adipocytes co-culture can induce steatosis in HepG2 cells, and may participate in inhibiting PI3K-Akt signaling pathway to upregulate the expression of AQP9 in steatotic HepG2 cells.


Assuntos
Adipócitos , Aquaporinas , Regulação da Expressão Gênica no Desenvolvimento , Adipócitos/citologia , Adipócitos/metabolismo , Aquaporinas/genética , Técnicas de Cocultura , Células Hep G2 , Humanos , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo
17.
Nat Commun ; 10(1): 2487, 2019 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-31171776

RESUMO

Lack or excess expression of the surface ectoderm-expressed transcription factor Grainyhead-like2 (Grhl2), each prevent spinal neural tube closure. Here we investigate the causative mechanisms and find reciprocal dysregulation of epithelial genes, cell junction components and actomyosin properties in Grhl2 null and over-expressing embryos. Grhl2 null surface ectoderm shows a shift from epithelial to neuroepithelial identity (with ectopic expression of N-cadherin and Sox2), actomyosin disorganisation, cell shape changes and diminished resistance to neural fold recoil upon ablation of the closure point. In contrast, excessive abundance of Grhl2 generates a super-epithelial surface ectoderm, in which up-regulation of cell-cell junction proteins is associated with an actomyosin-dependent increase in local mechanical stress. This is compatible with apposition of the neural folds but not with progression of closure, unless myosin activity is inhibited. Overall, our findings suggest that Grhl2 plays a crucial role in regulating biomechanical properties of the surface ectoderm that are essential for spinal neurulation.


Assuntos
Embrião de Mamíferos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Tubo Neural/embriologia , Células Neuroepiteliais/metabolismo , Neurulação/genética , Fatores de Transcrição/genética , Actomiosina/genética , Actomiosina/metabolismo , Animais , Fenômenos Biomecânicos , Caderinas/metabolismo , Ectoderma/citologia , Ectoderma/embriologia , Ectoderma/metabolismo , Células Epiteliais/metabolismo , Junções Intercelulares/genética , Junções Intercelulares/metabolismo , Camundongos , Tubo Neural/metabolismo , Fatores de Transcrição SOXB1/metabolismo , Estresse Mecânico , Fatores de Transcrição/metabolismo
18.
Nat Commun ; 10(1): 2396, 2019 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-31160561

RESUMO

Modern genetic studies indicate that human brain evolution is driven primarily by changes in gene regulation, which requires understanding the biological function of largely non-coding gene regulatory elements, many of which act in tissue specific manner. We leverage chromatin interaction profiles in human fetal and adult cortex to assign three classes of human-evolved elements to putative target genes. We find that human-evolved elements involving DNA sequence changes and those involving epigenetic changes are associated with human-specific gene regulation via effects on different classes of genes representing distinct biological pathways. However, both types of human-evolved elements converge on specific cell types and laminae involved in cerebral cortical expansion. Moreover, human evolved elements interact with neurodevelopmental disease risk genes, and genes with a high level of evolutionary constraint, highlighting a relationship between brain evolution and vulnerability to disorders affecting cognition and behavior. These results provide novel insights into gene regulatory mechanisms driving the evolution of human cognition and mechanisms of vulnerability to neuropsychiatric conditions.


Assuntos
Córtex Cerebral/embriologia , Epigênese Genética/genética , Evolução Molecular , Regulação da Expressão Gênica no Desenvolvimento/genética , Células-Tronco Neurais/metabolismo , Transtornos do Neurodesenvolvimento/genética , Encéfalo/embriologia , Encéfalo/metabolismo , Córtex Cerebral/metabolismo , Predisposição Genética para Doença , Humanos , Elementos Reguladores de Transcrição/genética
19.
Artigo em Inglês | MEDLINE | ID: mdl-31176866

RESUMO

Cysteine oxygenase (CDO) is a mononuclear nonhemoglobin enzyme that catalyzes the production of taurine through the cysteine (Cys) pathway and plays a key role in the biosynthesis of taurine in mammals. However, the function of CDOs in bony fish remains poorly understood. In this study, we cloned CDO genes (CaCDO1 and CaCDO2) from Carassius auratus. The cDNA sequences of both CaCDO1 and CaCDO2 encoded putative proteins with 201 amino acids, which included structural features typical of the CDO protein family. Multiple sequence alignment and phylogenetic analysis showed that CaCDO1 and CaCDO2 shared high sequence identities and similarities with C. carpio homologs. Quantitative real-time polymerase chain reaction (qRT-PCR) results revealed that CaCDO1 and CaCDO2 were both broadly expressed in all selected tissues and developmental stages in C. auratus but had differing mRNA levels. In addition, compared to those of the taurine-free group, the in vivo mRNA expression levels of both CaCDO1 and CaCDO2 significantly decreased with increasing dietary taurine levels from 1.0 to 9.0 g/kg. Furthermore, in vitro taurine treatments showed similar inhibitory effects on the expression of CaCDO1 and CaCDO2 in the intestines of C. auratus. Our results also showed that the mRNA expression of CaCDO2 in the intestines was higher than that of CaCDO1 in response to in vivo and in vitro taurine supplementation. Overall, these data may provide new insights into the regulation of fish CDO expression and provide valuable knowledge for improving dietary formulas in aquaculture.


Assuntos
Cisteína Dioxigenase/genética , Cisteína Dioxigenase/metabolismo , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Carpa Dourada/genética , Carpa Dourada/metabolismo , Taurina/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , DNA Complementar/genética , Regulação da Expressão Gênica no Desenvolvimento , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Carpa Dourada/crescimento & desenvolvimento , Isoenzimas/genética , Isoenzimas/metabolismo , Filogenia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Taurina/farmacologia , Distribuição Tecidual
20.
Gene ; 710: 148-155, 2019 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-31167115

RESUMO

qRT-PCR requires reliable internal control genes stably expressed in different samples and experimental conditions. The stability of reference genes is rarely tested experimentally, especially in developing tissues given the singularity of these samples. Here we evaluated the suitability of a set of reference genes (Actb, Gapdh, Tbp, Pgk1 and Sdha) using samples from early mouse embryo tissues that are widely used in research (somites, prosencephalon and heart) at different developmental stages. The comparative ΔCq method and five software packages (NormFinder, geNorm, BestKeeper, DataAssist and RefFinder) were used to rank the most stable genes while GenEx and GeNorm programs determined the optimal total number of reference genes for a reliable normalization. The ranking of most reliable reference genes was different for each tissue evaluated: (1) in somite from embryos with 16-18 somite pairs stage, the combination of Pgk1 and Actb provided the best normalization and Actb also presented high stability levels at an earlier developmental stage; (2) Gapdh is the most stable gene in prosencephalon in the two developmental stages tested; and (3) in heart samples, Sdha, Gapdh and Actb were the best combination for qPCR normalization. The analysis of these three tissues simultaneously indicated the combination of Gapdh, Actb and Tbp as the most reliable internal control. This study highlights the importance of appropriate reference genes according to the cell type and/or tissue of interest. The data here described can be applied in future research using mouse embryos as a model for mammalian development.


Assuntos
Coração/embriologia , Prosencéfalo/embriologia , Reação em Cadeia da Polimerase em Tempo Real/normas , Somitos/embriologia , Animais , Perfilação da Expressão Gênica/normas , Regulação da Expressão Gênica no Desenvolvimento , Gliceraldeído-3-Fosfato Desidrogenases/genética , Camundongos , Prosencéfalo/química , Padrões de Referência , Software , Somitos/química , Proteína de Ligação a TATA-Box/genética , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA