Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 244.866
Filtrar
1.
Adv Exp Med Biol ; 1287: 9-30, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33034023

RESUMO

The Notch signal transduction cascade requires cell-to-cell contact and results in the proteolytic processing of the Notch receptor and subsequent assembly of a transcriptional coactivator complex containing the Notch intracellular domain (NICD) and transcription factor RBPJ. In the absence of a Notch signal, RBPJ remains at Notch target genes and dampens transcriptional output. Like in other signaling pathways, RBPJ is able to switch from activation to repression by associating with corepressor complexes containing several chromatin-modifying enzymes. Here, we focus on the recent advances concerning RBPJ-corepressor functions, especially in regard to chromatin regulation. We put this into the context of one of the best-studied model systems for Notch, blood cell development. Alterations in the RBPJ-corepressor functions can contribute to the development of leukemia, especially in the case of acute myeloid leukemia (AML). The versatile role of transcription factor RBPJ in regulating pivotal target genes like c-MYC and HES1 may contribute to the better understanding of the development of leukemia.


Assuntos
Regulação da Expressão Gênica , Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina/metabolismo , Receptores Notch/metabolismo , Cromatina/genética , Cromatina/metabolismo , Humanos , Transdução de Sinais
2.
Plant Genome ; 13(1): e20003, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-33016634

RESUMO

Root anatomical phenes have important roles in soil resource capture and plant performance; however, their phenotypic plasticity and genetic architecture is poorly understood. We hypothesized that (a) the responses of root anatomical phenes to water deficit (stress plasticity) and different environmental conditions (environmental plasticity) are genetically controlled and (b) stress and environmental plasticity are associated with different genetic loci than those controlling the expression of phenes under water-stress and well-watered conditions. Root anatomy was phenotyped in a large maize (Zea mays L.) association panel in the field with and without water deficit stress in Arizona and without water deficit stress in South Africa. Anatomical phenes displayed stress and environmental plasticity; many phenotypic responses to water deficit were adaptive, and the magnitude of response varied by genotype. We identified 57 candidate genes associated with stress and environmental plasticity and 64 candidate genes associated with phenes under well-watered and water-stress conditions in Arizona and under well-watered conditions in South Africa. Four candidate genes co-localized between plasticity groups or for phenes expressed under each condition. The genetic architecture of phenotypic plasticity is highly quantitative, and many distinct genes control plasticity in response to water deficit and different environments, which poses a challenge for breeding programs.


Assuntos
Raízes de Plantas , Zea mays , Regulação da Expressão Gênica , Raízes de Plantas/genética , Solo , Água , Zea mays/genética
4.
Signal Transduct Target Ther ; 5(1): 218, 2020 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-33011739

Assuntos
Antivirais/farmacologia , Betacoronavirus/efeitos dos fármacos , Glicosídeos Cardíacos/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Animais , Antivirais/química , Betacoronavirus/patogenicidade , Produtos Biológicos/química , Produtos Biológicos/farmacologia , Bufanolídeos/química , Bufanolídeos/farmacologia , Glicosídeos Cardíacos/química , Sobrevivência Celular/efeitos dos fármacos , Chlorocebus aethiops , Cloroquina/química , Cloroquina/farmacologia , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/virologia , Digoxina/química , Digoxina/farmacologia , Ensaios de Triagem em Larga Escala , Interações Hospedeiro-Patógeno/genética , Humanos , Janus Quinases/antagonistas & inibidores , Janus Quinases/genética , Janus Quinases/metabolismo , Proteínas Quinases Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fator 2 Relacionado a NF-E2/antagonistas & inibidores , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/antagonistas & inibidores , NF-kappa B/genética , NF-kappa B/metabolismo , Pandemias , Fenantrenos/química , Fenantrenos/farmacologia , Pneumonia Viral/tratamento farmacológico , Pneumonia Viral/virologia , Transdução de Sinais , ATPase Trocadora de Sódio-Potássio/antagonistas & inibidores , ATPase Trocadora de Sódio-Potássio/genética , ATPase Trocadora de Sódio-Potássio/metabolismo , Células Vero , Replicação Viral/efeitos dos fármacos
5.
Signal Transduct Target Ther ; 5(1): 221, 2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-33024073
6.
Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi ; 34(10): 1313-1321, 2020 Oct 15.
Artigo em Chinês | MEDLINE | ID: mdl-33063499

RESUMO

Objective: To explore the role of joint regulation of Wnt and bone morphogenetic protein (BMP) signaling pathways in the differentiation of human induced pluripotent stem cells (hiPSCs) into cardiomyocytes. Methods: HiPSCs were cultured and observed under inverted phase contrast microscope. Immunofluorescence staining was used to observe the expressions of hiPSCs pluripotent markers (OCT3/4, NANOG, and TRA-1-60). HiPSCs were passaged which were taken for subsequent experiments within the 35th passage. When the fusion degree of hiPSCs was close to 100%, the CHIR99021 (Wnt pathway activator) was added on the 0th day of differentiation. Different concentrations of IWP4 (inhibitor of Wnt production) were added on the 3rd day of differentiation, and the best concentration of IWP4 was added at different time points. The optimal concentration and the best effective period of IWP4 were obtained by detecting the expression of troponin T (TNNT2) mRNA by real-time fluorescence quantitative PCR. Then, on the basis of adding CHIR99021 and IWP4, different concentrations of BMP-4 were added on the 5th day of differentiation, and the best concentration of BMP-4 was added at different time points. The optimal concentration and best effective period of BMP-4 were obtained by detecting the expression of TNNT2 mRNA. Finally, hiPSCs were divided into three groups: Wnt group, BMP group, and Wnt+BMP group. On the basis of adding CHIR99021 on the 0th day of differentiation, IWP4, BMP-4, and IWP4+BMP-4 were added into Wnt group, BMP group, and Wnt+BMP group respectively according to the screening results. Cells were collected on the 7th and the 15th days of differentiation. The expressions of myocardial precursor cell markers [ISL LIM homeobox 1 (ISL1), NK2 homeobox 5 (NKX2-5)] and cardiomyocyte specific markers [myocyte enhancer factor 2C (MEF2C), myosin light chain 2 (MYL2), MYL7, and TNNT2] were detected by real-time fluorescent quantitative PCR. Cells were collected on the 28th day of differentiation, and the expression of cardiac troponin T (cTnT) was detected by flow cytometry and immunofluorescence staining. Results: The results of cell mophology and immunoflurescence staining showed that the OCT3/4, NANOG, and TRA-1-60 were highly expressed in hiPSCs, which suggested that hiPSCs had characteristics of pluripotency. The optimal concentration of IWP4 was 10.0 µmol/L ( P<0.05) and the best effective period was the 3rd day ( P<0.05) in inducing hiPSCs to differentiate into cardiomyocytes. The optimal concentration of BMP-4 was 20.0 ng/mL ( P<0.05) and the best effective period was the 3rd day ( P<0.05). The relative expressions of ISL1, NKX2-5, MEF2C, MYL2, MYL7, and TNNT2 mRNAs, the positive expression ratio of cTnT detected by flow cytometry, and sarcomere structure detected by immunofluorescence staining of Wnt+BMP group were superior to those of Wnt group ( P<0.05). Conclusion: Joint regulation of Wnt and BMP signaling pathways can improve the differentiation efficiency of hiPSCs into cardiomyocytes.


Assuntos
Células-Tronco Pluripotentes Induzidas , Miócitos Cardíacos , Diferenciação Celular , Regulação da Expressão Gênica , Humanos , Transdução de Sinais
7.
Nat Commun ; 11(1): 4912, 2020 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-32999275

RESUMO

Most signals detected by genome-wide association studies map to non-coding sequence and their tissue-specific effects influence transcriptional regulation. However, key tissues and cell-types required for functional inference are absent from large-scale resources. Here we explore the relationship between genetic variants influencing predisposition to type 2 diabetes (T2D) and related glycemic traits, and human pancreatic islet transcription using data from 420 donors. We find: (a) 7741 cis-eQTLs in islets with a replication rate across 44 GTEx tissues between 40% and 73%; (b) marked overlap between islet cis-eQTL signals and active regulatory sequences in islets, with reduced eQTL effect size observed in the stretch enhancers most strongly implicated in GWAS signal location; (c) enrichment of islet cis-eQTL signals with T2D risk variants identified in genome-wide association studies; and (d) colocalization between 47 islet cis-eQTLs and variants influencing T2D or glycemic traits, including DGKB and TCF7L2. Our findings illustrate the advantages of performing functional and regulatory studies in disease relevant tissues.


Assuntos
Glicemia/genética , Diabetes Mellitus Tipo 2/genética , Predisposição Genética para Doença , Ilhotas Pancreáticas/metabolismo , Locos de Características Quantitativas , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Glicemia/metabolismo , Linhagem Celular Tumoral , Estudos de Coortes , Diabetes Mellitus Tipo 2/sangue , Diacilglicerol Quinase/genética , Diacilglicerol Quinase/metabolismo , Elementos Facilitadores Genéticos , Feminino , Regulação da Expressão Gênica , Estudo de Associação Genômica Ampla , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , RNA-Seq , Análise de Sequência de DNA , Proteína 2 Semelhante ao Fator 7 de Transcrição/genética , Proteína 2 Semelhante ao Fator 7 de Transcrição/metabolismo , Adulto Jovem
8.
Nat Commun ; 11(1): 4627, 2020 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-33009389

RESUMO

Animals have evolved responses to low oxygen conditions to ensure their survival. Here, we have identified the C. elegans zinc finger transcription factor PQM-1 as a regulator of the hypoxic stress response. PQM-1 is required for the longevity of insulin signaling mutants, but surprisingly, loss of PQM-1 increases survival under hypoxic conditions. PQM-1 functions as a metabolic regulator by controlling oxygen consumption rates, suppressing hypoxic glycogen levels, and inhibiting the expression of the sorbitol dehydrogenase-1 SODH-1, a crucial sugar metabolism enzyme. PQM-1 promotes hypoxic fat metabolism by maintaining the expression of the stearoyl-CoA desaturase FAT-7, an oxygen consuming, rate-limiting enzyme in fatty acid biosynthesis. PQM-1 activity positively regulates fat transport to developing oocytes through vitellogenins under hypoxic conditions, thereby increasing survival rates of arrested progeny during hypoxia. Thus, while pqm-1 mutants increase survival of mothers, ultimately this loss is detrimental to progeny survival. Our data support a model in which PQM-1 controls a trade-off between lipid metabolic activity in the mother and her progeny to promote the survival of the species under hypoxic conditions.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Hipóxia/metabolismo , Metabolismo dos Lipídeos , Transativadores/metabolismo , Animais , Caenorhabditis elegans/embriologia , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Embrião de Mamíferos/metabolismo , Regulação da Expressão Gênica , Glicogênio/metabolismo , Insulina/metabolismo , Larva/metabolismo , Mutação/genética , Consumo de Oxigênio , Transdução de Sinais , Estresse Fisiológico , Análise de Sobrevida , Transativadores/genética , Transcrição Genética , Vitelogeninas/metabolismo
9.
Med Hypotheses ; 143: 110203, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33017912

RESUMO

MicroRNAs (miRNAs) naturally occur in plants and all living organisms. They play an important role in gene regulation through binding toa specific region in open reading frames (ORFs) and/or untranslated regions (UTRs) to block the translation processes through either degrading or blocking mRNA resulting in knocking down or suppression of targeted genes. Plants and many organisms protect themselves from viruses through the production of miRNAs, which are complementary to 3UTR of viruses resulting in degrading the viral mRNA or block the translation on ribosomes. As pandemic, COVID-19, and its consequences on the global economy, we hypothesized a new approach for the treatment of COVID-19 paints. This approach includes designing a mix of miRNAs targeting several regions on COVID-19 open reading frame (ORF) and 3 UTR and suitable delivery system targeting respiratory system tissues. These synthesized miRNAs may be delivered to humansinnon-viral delivery systems such as liposomes like exosome (extracellular vesicle), polymer-based carriers, or inorganic nanoparticles, which are considered to be more suitable for human use.


Assuntos
Betacoronavirus/genética , Infecções por Coronavirus/terapia , MicroRNAs/uso terapêutico , Pneumonia Viral/terapia , Regiões 3' não Traduzidas , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/virologia , Sistemas de Liberação de Medicamentos , Exossomos , Regulação da Expressão Gênica , Técnicas de Transferência de Genes , Genoma Viral , Humanos , Lipossomos/química , Nanopartículas/química , Fases de Leitura Aberta , Pandemias , Pneumonia Viral/virologia , Polímeros/química
10.
Medicine (Baltimore) ; 99(40): e22444, 2020 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-33019429

RESUMO

BACKGROUND AND OBJECTIVE: miRNA-146a is a microRNA that plays an important role in systemic lupus erythematosus (SLE). Several studies have examined the role of miRNA-146a in SLE, but have demonstrated equivocal or even contradictory conclusions. Therefore, this meta-analysis aimed to assess the role of miRNA-146a in SLE by examining data from previous studies. METHODS: A meta-analysis of relevant papers published before August 31, 2019, in the WanFang, Chinese Biomedical Literature Database (CBM), Chinese National Knowledge Infrastructure (CNKI), PubMed, EMBASE, and Web of Science databases was performed to verify the relationship of miRNA-146a expression level to SLE. Two investigators independently extracted the data and conducted a quality assessment of the studies. All statistical analyses were performed using Stata 14.0. Trial sequence analysis (TSA) was conducted to assess the quality and strength of the studies using the TSA software. RESULTS: Six publications, involving 151 SEL patients and 132 healthy individuals as controls were included in this meta-analysis. The results showed that the expression of miRNA-146a was associated with SLE risk [standard mean difference (SMD) = -1.21, 95% confidence interval (95% CI) (-2.18, -0.23), P = .015]. The stratified analysis revealed that the expression of miRNA-146a was highly related to higher SLE risk among Asian (SMD = -1.30, 95% CI (-2.52, -0.07), P = .038) and Caucasian (SMD = -0.72, 95% CI (-1.20, -0.24), P = .003) populations. Besides, the serum levels of miRNA146a were significantly different (SMD = -1.73, 95% CI (-3.11, -0.36), P = .014). The TSA revealed that the cumulative Z-curve crossed the typical boundary value, and reached the TSA monitoring boundary, but did not reach the required information size. This indicates that even if the cumulative sample size did not meet required information size, no more trials were needed and a reliable conclusion was reached in advance. Sensitivity analyses indicated the instability of the meta-analysis. CONCLUSIONS: Overall, the expression of miRNA-146a is associated with SLE risk. Therefore, miRNA-146a is a promising candidate for the effective diagnosis of SLE. But, due to the limitations of this study, it is necessary to cautiously explain the results of this study. SYSTEMATIC REVIEW REGISTRATION: PROSPERO CRD42019151381.


Assuntos
Lúpus Eritematoso Sistêmico/genética , MicroRNAs/sangue , Estudos de Casos e Controles , Regulação da Expressão Gênica , Predisposição Genética para Doença , Humanos
11.
Yonsei Med J ; 61(9): 780-788, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32882762

RESUMO

PURPOSE: This research was designed to investigate how miR-542-5p regulates the progression of hyperglycemia and hyperlipoidemia. MATERIALS AND METHODS: An in vivo model with diabetic db/db mice and an in vitro model with forskolin/dexamethasone (FSK/DEX)-induced primary hepatocytes and HepG2 cells were employed in the study. Bioinformatics analysis was conducted to identify the expression of candidate miRNAs in the liver tissues of diabetic and control mice. H&E staining revealed liver morphology in diabetic and control mice. Pyruvate tolerance tests, insulin tolerance tests, and intraperitoneal glucose tolerance test were utilized to assess insulin resistance. ELISA was conducted to evaluate blood glucose and insulin levels. Red oil O staining showed lipid deposition in liver tissues. Luciferase reporter assay was used to depict binding between miR-542-5p and forkhead box O1 (FOXO1). RESULTS: MiR-542-5p expression was under-expressed in the livers of db/db mice. Further in vitro experiments revealed that FSK/DEX, which mimics the effects of glucagon and glucocorticoids, induced cellular glucose production in HepG2 cells and in primary hepatocytes cells. Notably, these changes were reversed by miR-542-5p. We found that transcription factor FOXO1 is a target of miR-542-5p. Further in vivo study indicated that miR-542-5p overexpression decreases FOXO1 expression, thereby reversing increases in blood glucose, blood lipids, and glucose-related enzymes in diabetic db/db mice. In contrast, anti-miR-542-5p exerted an adverse influence on blood glucose and blood lipid metabolism, and its stimulatory effects were significantly inhibited by sh-FOXO1 in normal control mice. CONCLUSION: Collectively, our results indicated that miR-542-5p inhibits hyperglycemia and hyperlipoidemia by targeting FOXO1.


Assuntos
Diabetes Mellitus Tipo 2/genética , Proteína Forkhead Box O1/genética , Proteína Forkhead Box O1/metabolismo , Hiperglicemia/tratamento farmacológico , Hiperlipidemias/tratamento farmacológico , MicroRNAs/genética , Animais , Glicemia/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Regulação da Expressão Gênica , Glucose/metabolismo , Teste de Tolerância a Glucose , Células Hep G2 , Hepatócitos/metabolismo , Humanos , Hiperglicemia/metabolismo , Hiperlipidemias/metabolismo , Resistência à Insulina , Metabolismo dos Lipídeos , Fígado/metabolismo , Camundongos , MicroRNAs/metabolismo , MicroRNAs/farmacologia
12.
PLoS Genet ; 16(8): e1009003, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32866139

RESUMO

Sensory systems rely on neuromodulators, such as serotonin, to provide flexibility for information processing as stimuli vary, such as light intensity throughout the day. Serotonergic neurons broadly innervate the optic ganglia of Drosophila melanogaster, a widely used model for studying vision. It remains unclear whether serotonin modulates the physiology of interneurons in the optic ganglia. To address this question, we first mapped the expression patterns of serotonin receptors in the visual system, focusing on a subset of cells with processes in the first optic ganglion, the lamina. Serotonin receptor expression was found in several types of columnar cells in the lamina including 5-HT2B in lamina monopolar cell L2, required for spatiotemporal luminance contrast, and both 5-HT1A and 5-HT1B in T1 cells, whose function is unknown. Subcellular mapping with GFP-tagged 5-HT2B and 5-HT1A constructs indicated that these receptors localize to layer M2 of the medulla, proximal to serotonergic boutons, suggesting that the medulla neuropil is the primary site of serotonergic regulation for these neurons. Exogenous serotonin increased basal intracellular calcium in L2 terminals in layer M2 and modestly decreased the duration of visually induced calcium transients in L2 neurons following repeated dark flashes, but otherwise did not alter the calcium transients. Flies without functional 5-HT2B failed to show an increase in basal calcium in response to serotonin. 5-HT2B mutants also failed to show a change in amplitude in their response to repeated light flashes but other calcium transient parameters were relatively unaffected. While we did not detect serotonin receptor expression in L1 neurons, they, like L2, underwent serotonin-induced changes in basal calcium, presumably via interactions with other cells. These data demonstrate that serotonin modulates the physiology of interneurons involved in early visual processing in Drosophila.


Assuntos
Receptor 5-HT1B de Serotonina/genética , Receptores 5-HT1 de Serotonina/genética , Receptores 5-HT2 de Serotonina/genética , Neurônios Serotoninérgicos/metabolismo , Serotonina/metabolismo , Animais , Ritmo Circadiano/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Regulação da Expressão Gênica/genética , Interneurônios/metabolismo , Proteínas de Membrana/genética , Proteínas do Tecido Nervoso/genética , Neurotransmissores/genética , Receptores de Serotonina/genética , Serotonina/genética , Percepção Visual/genética
13.
Nat Commun ; 11(1): 4676, 2020 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-32938922

RESUMO

Translation efficiency varies considerably between different mRNAs, thereby impacting protein expression. Translation of the stress response master-regulator ATF4 increases upon stress, but the molecular mechanisms are not well understood. We discover here that translation factors DENR, MCTS1 and eIF2D are required to induce ATF4 translation upon stress by promoting translation reinitiation in the ATF4 5'UTR. We find DENR and MCTS1 are only needed for reinitiation after upstream Open Reading Frames (uORFs) containing certain penultimate codons, perhaps because DENR•MCTS1 are needed to evict only certain tRNAs from post-termination 40S ribosomes. This provides a model for how DENR and MCTS1 promote translation reinitiation. Cancer cells, which are exposed to many stresses, require ATF4 for survival and proliferation. We find a strong correlation between DENR•MCTS1 expression and ATF4 activity across cancers. Furthermore, additional oncogenes including a-Raf, c-Raf and Cdk4 have long uORFs and are translated in a DENR•MCTS1 dependent manner.


Assuntos
Fator 4 Ativador da Transcrição/genética , Fatores de Iniciação em Eucariotos/metabolismo , Biossíntese de Proteínas , Ribossomos/metabolismo , Regiões 5' não Traduzidas , Fator 4 Ativador da Transcrição/metabolismo , Proteínas de Ciclo Celular/genética , Códon , Fator de Iniciação 2 em Eucariotos/genética , Fator de Iniciação 2 em Eucariotos/metabolismo , Fatores de Iniciação em Eucariotos/genética , Regulação da Expressão Gênica , Células HeLa , Humanos , Neoplasias/genética , Proteínas Oncogênicas/genética , Oncogenes , Fases de Leitura Aberta , RNA Mensageiro , RNA de Transferência/genética , RNA de Transferência/metabolismo , Subunidades Ribossômicas Menores de Eucariotos/genética , Subunidades Ribossômicas Menores de Eucariotos/metabolismo , Ribossomos/genética
14.
Nat Commun ; 11(1): 4596, 2020 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-32929083

RESUMO

Earlier studies indicate that either the canonical or non-canonical pathways of inflammasome activation have a limited role on malaria pathogenesis. Here, we report that caspase-8 is a central mediator of systemic inflammation, septic shock in the Plasmodium chabaudi-infected mice and the P. berghei-induced experimental cerebral malaria (ECM). Importantly, our results indicate that the combined deficiencies of caspases-8/1/11 or caspase-8/gasdermin-D (GSDM-D) renders mice impaired to produce both TNFα and IL-1ß and highly resistant to lethality in these models, disclosing a complementary, but independent role of caspase-8 and caspases-1/11/GSDM-D in the pathogenesis of malaria. Further, we find that monocytes from malaria patients express active caspases-1, -4 and -8 suggesting that these inflammatory caspases may also play a role in the pathogenesis of human disease.


Assuntos
Caspase 8/metabolismo , Inflamação/patologia , Malária Cerebral/enzimologia , Animais , Encéfalo/patologia , Caspase 1/metabolismo , Células Dendríticas/metabolismo , Ativação Enzimática , Matriz Extracelular/metabolismo , Regulação da Expressão Gênica , Humanos , Interferon gama/metabolismo , Interleucina-1beta/metabolismo , Lipopolissacarídeos , Malária Cerebral/genética , Camundongos Endogâmicos C57BL , Monócitos/metabolismo , Plasmodium chabaudi/fisiologia , Baço/metabolismo , Receptores Toll-Like/metabolismo
16.
Int J Mol Med ; 46(4): 1266-1273, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32945352

RESUMO

The outbreak of the 2019 coronavirus disease (named, COVID­19), caused by the novel SARS­CoV­2 virus, represents a worldwide severe threat to public health. It is of the utmost importance to characterize the immune responses against the SARS­CoV­2 and the mechanisms of hyperinflammation, in order to design better therapeutic strategies for COVID­19. In the present study, a transcriptomic analysis was performed to profile the immune signatures in lung and the bronchoalveolar lavage fluid samples from COVID­19 patients and controls. Our data concordantly revealed increased humoral responses to infection. The elucidation of the host responses to SARS­CoV­2 infection may further improve our understanding of COVID­19 pathogenesis and suggest better therapeutic strategies.


Assuntos
Linfócitos B/imunologia , Betacoronavirus/imunologia , Infecções por Coronavirus/imunologia , Ativação Linfocitária , Pneumonia Viral/imunologia , Transcriptoma , Linfócitos B/metabolismo , Betacoronavirus/fisiologia , Líquido da Lavagem Broncoalveolar , Infecções por Coronavirus/genética , Bases de Dados Factuais , Feminino , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Interações Hospedeiro-Patógeno , Humanos , Pulmão/imunologia , Pulmão/metabolismo , Masculino , Pandemias , Pneumonia Viral/genética
17.
Eur Rev Med Pharmacol Sci ; 24(16): 8606-8620, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32894568

RESUMO

OBJECTIVE: COVID-19 immune syndrome is a multi-systemic disorder induced by the COVID-19 infection. Pathobiological transitions and clinical stages of the COVID-19 syndrome following the attack of SARS-CoV-2 on the human body have not been fully explored. The aim of this review is to outline the three critical prominent phase regarding the clinicogenomics course of the COVID-19 immune syndrome. MATERIALS AND METHODS: In the clinical setting, the COVID-19 process presents as "asymptomatic/pre-symptomatic phase", "respiratory phase with mild/moderate/severe symptoms" and "multi-systemic clinical syndrome with impaired/disproportionate and/or defective immunity". The corresponding three genomic phases include the "ACE2, ANPEP transcripts in the initial phase", "EGFR and IGF2R transcripts in the propagating phase" and the "immune system related critical gene involvements of the complicating phase". RESULTS: The separation of the phases is important since the genomic features of each phase are different from each other and these different mechanisms lead to distinct clinical multi-systemic features. Comprehensive genomic profiling with next generation sequencing may play an important role in defining and clarifying these three unique separate phases for COVID-19. From our point of view, it is important to understand these unique phases of the syndrome in order to approach a COVID-19 patient bedside. CONCLUSIONS: This three-phase approach may be useful for future studies which will focus on the clinical management and development of the vaccines and/or specific drugs targeting the COVID-19 processes. ANPEP gene pathway may have a potential for the vaccine development. Regarding the specific disease treatments, MAS agonists, TXA127, Angiotensin (1-7) and soluble ACE2 could have therapeutic potential for the COVID-19 course. Moreover, future CRISPR technology can be utilized for the genomic editing and future management of the clinical course of the syndrome.


Assuntos
Doenças Assintomáticas , Infecções por Coronavirus/patologia , Sistema Imunitário/metabolismo , Pneumonia Viral/patologia , Betacoronavirus/isolamento & purificação , Infecções por Coronavirus/complicações , Infecções por Coronavirus/metabolismo , Infecções por Coronavirus/virologia , Citocinas/metabolismo , Receptores ErbB/genética , Receptores ErbB/metabolismo , Regulação da Expressão Gênica , Humanos , Insuficiência de Múltiplos Órgãos/etiologia , Insuficiência de Múltiplos Órgãos/patologia , Pandemias , Peptidil Dipeptidase A/genética , Peptidil Dipeptidase A/metabolismo , Pneumonia Viral/complicações , Pneumonia Viral/metabolismo , Pneumonia Viral/virologia , Prognóstico , Receptor IGF Tipo 2/genética , Receptor IGF Tipo 2/metabolismo , Sepse/complicações , Sepse/patologia , Índice de Gravidade de Doença , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo
18.
Mol Genet Genomics ; 295(6): 1547-1558, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32915308

RESUMO

MicroRNAs (miRNAs) are key in the post-transcriptional regulation of gene expression and thus characterization of miRNAs and investigation of the relative abundance and specificity of tissue expression are essential for understanding gene expression in the golden snub-nosed monkey (GSM, Rhinopithecus roxellanae). Here, we report the first dataset of GSM miRNAs where we identified 460 miRNAs in seven tissues, with 246 conserved known mature miRNAs and 214 novel mature miRNAs. We determined miRNA abundance and expression in the seven tissues using a Tissue Specificity Index score and found that most novel GSM miRNAs showed a highly tissue-specific expression pattern. In particular, 67 novel miRNAs and the miR-34 family were expressed in abundance only in the lung. Five known miRNAs were highly abundant in digestive organs such as the pancreas and liver, and four novel miRNAs were highly expressed in the heart and muscle. Annotation of target genes of GSM miRNAs indicated that target genes were enriched in many important pathways, such as the HIF-1 signaling pathway and xenobiotic biodegradation-related pathways. Collectively, these results emphasize that miRNAs play important roles in GSM diet and high-elevation adaptation regulation. In summary, this study provides essential information on GSM miRNAs and will benefit further investigations of the function and mechanism of miRNAs in controlling gene expression in the GSM.


Assuntos
Adaptação Fisiológica , Colobinae/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , MicroRNAs/genética , Animais , Masculino , Especificidade de Órgãos
19.
Proc Natl Acad Sci U S A ; 117(39): 24464-24474, 2020 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-32929007

RESUMO

Microglia are considered both pathogenic and protective during recovery from demyelination, but their precise role remains ill defined. Here, using an inhibitor of colony stimulating factor 1 receptor (CSF1R), PLX5622, and mice infected with a neurotropic coronavirus (mouse hepatitis virus [MHV], strain JHMV), we show that depletion of microglia during the time of JHMV clearance resulted in impaired myelin repair and prolonged clinical disease without affecting the kinetics of virus clearance. Microglia were required only during the early stages of remyelination. Notably, large deposits of extracellular vesiculated myelin and cellular debris were detected in the spinal cords of PLX5622-treated and not control mice, which correlated with decreased numbers of oligodendrocytes in demyelinating lesions in drug-treated mice. Furthermore, gene expression analyses demonstrated differential expression of genes involved in myelin debris clearance, lipid and cholesterol recycling, and promotion of oligodendrocyte function. The results also demonstrate that microglial functions affected by depletion could not be compensated by infiltrating macrophages. Together, these results demonstrate that microglia play key roles in debris clearance and in the initiation of remyelination following infection with a neurotropic coronavirus but are not necessary during later stages of remyelination.


Assuntos
Infecções por Coronavirus/patologia , Doenças Desmielinizantes/patologia , Microglia/patologia , Remielinização , Animais , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/virologia , Doenças Desmielinizantes/imunologia , Doenças Desmielinizantes/virologia , Modelos Animais de Doenças , Feminino , Regulação da Expressão Gênica , Imunidade Celular/efeitos dos fármacos , Inflamação , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microglia/efeitos dos fármacos , Microglia/metabolismo , Vírus da Hepatite Murina/efeitos dos fármacos , Vírus da Hepatite Murina/fisiologia , Bainha de Mielina/metabolismo , Bainha de Mielina/patologia , Oligodendroglia/patologia , Compostos Orgânicos/administração & dosagem , Compostos Orgânicos/efeitos adversos , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/antagonistas & inibidores , Remielinização/genética , Medula Espinal/imunologia , Medula Espinal/patologia
20.
Int J Mol Sci ; 21(19)2020 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-32993015

RESUMO

The outbreak of a novel coronavirus SARS-CoV-2 responsible for the COVID-19 pandemic has caused a worldwide public health emergency. Due to the constantly evolving nature of the coronaviruses, SARS-CoV-2-mediated alterations on post-transcriptional gene regulations across human tissues remain elusive. In this study, we analyzed publicly available genomic datasets to systematically dissect the crosstalk and dysregulation of the human post-transcriptional regulatory networks governed by RNA-binding proteins (RBPs) and micro-RNAs (miRs) due to SARS-CoV-2 infection. We uncovered that 13 out of 29 SARS-CoV-2-encoded proteins directly interacted with 51 human RBPs, of which the majority of them were abundantly expressed in gonadal tissues and immune cells. We further performed a functional analysis of differentially expressed genes in mock-treated versus SARS-CoV-2-infected lung cells that revealed enrichment for the immune response, cytokine-mediated signaling, and metabolism-associated genes. This study also characterized the alternative splicing events in SARS-CoV-2-infected cells compared to the control, demonstrating that skipped exons and mutually exclusive exons were the most abundant events that potentially contributed to differential outcomes in response to the viral infection. A motif enrichment analysis on the RNA genomic sequence of SARS-CoV-2 clearly revealed the enrichment for RBPs such as SRSFs, PCBPs, ELAVs, and HNRNPs, suggesting the sponging of RBPs by the SARS-CoV-2 genome. A similar analysis to study the interactions of miRs with SARS-CoV-2 revealed functionally important miRs that were highly expressed in immune cells, suggesting that these interactions may contribute to the progression of the viral infection and modulate the host immune response across other human tissues. Given the need to understand the interactions of SARS-CoV-2 with key post-transcriptional regulators in the human genome, this study provided a systematic computational analysis to dissect the role of dysregulated post-transcriptional regulatory networks controlled by RBPs and miRs across tissue types during a SARS-CoV-2 infection.


Assuntos
Betacoronavirus/genética , Betacoronavirus/metabolismo , Infecções por Coronavirus/virologia , Redes Reguladoras de Genes , MicroRNAs/genética , Pneumonia Viral/virologia , Processamento Pós-Transcricional do RNA , Proteínas de Ligação a RNA/metabolismo , Regulação da Expressão Gênica , Genoma Viral , Humanos , MicroRNAs/metabolismo , Pandemias , Mapas de Interação de Proteínas , Proteínas de Ligação a RNA/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA