Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59.380
Filtrar
1.
Signal Transduct Target Ther ; 5(1): 218, 2020 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-33011739

Assuntos
Antivirais/farmacologia , Betacoronavirus/efeitos dos fármacos , Glicosídeos Cardíacos/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Animais , Antivirais/química , Betacoronavirus/patogenicidade , Produtos Biológicos/química , Produtos Biológicos/farmacologia , Bufanolídeos/química , Bufanolídeos/farmacologia , Glicosídeos Cardíacos/química , Sobrevivência Celular/efeitos dos fármacos , Chlorocebus aethiops , Cloroquina/química , Cloroquina/farmacologia , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/virologia , Digoxina/química , Digoxina/farmacologia , Ensaios de Triagem em Larga Escala , Interações Hospedeiro-Patógeno/genética , Humanos , Janus Quinases/antagonistas & inibidores , Janus Quinases/genética , Janus Quinases/metabolismo , Proteínas Quinases Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fator 2 Relacionado a NF-E2/antagonistas & inibidores , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/antagonistas & inibidores , NF-kappa B/genética , NF-kappa B/metabolismo , Pandemias , Fenantrenos/química , Fenantrenos/farmacologia , Pneumonia Viral/tratamento farmacológico , Pneumonia Viral/virologia , Transdução de Sinais , ATPase Trocadora de Sódio-Potássio/antagonistas & inibidores , ATPase Trocadora de Sódio-Potássio/genética , ATPase Trocadora de Sódio-Potássio/metabolismo , Células Vero , Replicação Viral/efeitos dos fármacos
2.
Nat Commun ; 11(1): 4510, 2020 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-32908143

RESUMO

With human median lifespan extending into the 80s in many developed countries, the societal burden of age-related muscle loss (sarcopenia) is increasing. mTORC1 promotes skeletal muscle hypertrophy, but also drives organismal aging. Here, we address the question of whether mTORC1 activation or suppression is beneficial for skeletal muscle aging. We demonstrate that chronic mTORC1 inhibition with rapamycin is overwhelmingly, but not entirely, positive for aging mouse skeletal muscle, while genetic, muscle fiber-specific activation of mTORC1 is sufficient to induce molecular signatures of sarcopenia. Through integration of comprehensive physiological and extensive gene expression profiling in young and old mice, and following genetic activation or pharmacological inhibition of mTORC1, we establish the phenotypically-backed, mTORC1-focused, multi-muscle gene expression atlas, SarcoAtlas (https://sarcoatlas.scicore.unibas.ch/), as a user-friendly gene discovery tool. We uncover inter-muscle divergence in the primary drivers of sarcopenia and identify the neuromuscular junction as a focal point of mTORC1-driven muscle aging.


Assuntos
Envelhecimento/fisiologia , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Fibras Musculares Esqueléticas/patologia , Junção Neuromuscular/patologia , Sarcopenia/patologia , Envelhecimento/efeitos dos fármacos , Animais , Linhagem Celular , Modelos Animais de Doenças , Eletromiografia , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/fisiologia , Humanos , Microdissecção e Captura a Laser , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina/antagonistas & inibidores , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Camundongos , Mioblastos , Junção Neuromuscular/efeitos dos fármacos , Técnicas de Patch-Clamp , RNA-Seq , Sarcopenia/genética , Sarcopenia/fisiopatologia , Sarcopenia/prevenção & controle , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Sirolimo/administração & dosagem
3.
BMC Infect Dis ; 20(1): 612, 2020 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-32811479

RESUMO

BACKGROUND: Pulmonary tuberculosis (PTB) is one of the serious infectious diseases worldwide; however, the gene network involved in the host response remain largely unclear. METHODS: This study integrated two cohorts profile datasets GSE34608 and GSE83456 to elucidate the potential gene network and signaling pathways in PTB. Differentially expressed genes (DEGs) were obtained for Gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis using Metascape database. Protein-Protein Interaction (PPI) network of DEGs was constructed by the online database the Search Tool for the Retrieval of Interacting Genes (STRING). Modules were identified by the plug-in APP Molecular Complex Detection (MCODE) in Cytoscape. GO and KEGG pathway of Module 1 were further analyzed by STRING. Hub genes were selected for further expression validation in dataset GSE19439. The gene expression level was also investigated in the dataset GSE31348 to display the change pattern during the PTB treatment. RESULTS: Totally, 180 shared DEGs were identified from two datasets. Gene function and KEGG pathway enrichment revealed that DEGs mainly enriched in defense response to other organism, response to bacterium, myeloid leukocyte activation, cytokine production, etc. Seven modules were clustered based on PPI network. Module 1 contained 35 genes related to cytokine associated functions, among which 14 genes, including chemokine receptors, interferon-induced proteins and Toll-like receptors, were identified as hub genes. Expression levels of the hub genes were validated with a third dataset GSE19439. The signature of this core gene network showed significant response to Mycobacterium tuberculosis (Mtb) infection, and correlated with the gene network pattern during anti-PTB therapy. CONCLUSIONS: Our study unveils the coordination of causal genes during PTB infection, and provides a promising gene panel for PTB diagnosis. As major regulators of the host immune response to Mtb infection, the 14 hub genes are also potential molecular targets for developing PTB drugs.


Assuntos
Biologia Computacional/métodos , Redes Reguladoras de Genes , Mycobacterium tuberculosis , Mapas de Interação de Proteínas/genética , Transcriptoma , Tuberculose Pulmonar/genética , Biomarcadores , Estudos de Coortes , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Transdução de Sinais/genética , Tuberculose Pulmonar/diagnóstico , Tuberculose Pulmonar/tratamento farmacológico , Tuberculose Pulmonar/microbiologia
4.
Nature ; 584(7820): 286-290, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32760002

RESUMO

The histone deacetylases (HDACs) are a superfamily of chromatin-modifying enzymes that silence transcription through the modification of histones. Among them, HDAC3 is unique in that interaction with nuclear receptor corepressors 1 and 2 (NCoR1/2) is required to engage its catalytic activity1-3. However, global loss of HDAC3 also results in the repression of transcription, the mechanism of which is currently unclear4-8. Here we report that, during the activation of macrophages by lipopolysaccharides, HDAC3 is recruited to activating transcription factor 2 (ATF2)-bound sites without NCoR1/2 and activates the expression of inflammatory genes through a non-canonical mechanism. By contrast, the deacetylase activity of HDAC3 is selectively engaged at ATF3-bound sites that suppress Toll-like receptor signalling. Loss of HDAC3 in macrophages safeguards mice from lethal exposure to lipopolysaccharides, but this protection is not conferred upon genetic or pharmacological abolition of the catalytic activity of HDAC3. Our findings show that HDAC3 is a dichotomous transcriptional activator and repressor, with a non-canonical deacetylase-independent function that is vital for the innate immune system.


Assuntos
Histona Desacetilases/metabolismo , Inflamação/genética , Inflamação/metabolismo , Fator 2 Ativador da Transcrição/metabolismo , Fator 3 Ativador da Transcrição/metabolismo , Animais , Biocatálise , Regulação da Expressão Gênica/efeitos dos fármacos , Imunidade Inata/efeitos dos fármacos , Imunidade Inata/genética , Lipopolissacarídeos/imunologia , Lipopolissacarídeos/farmacologia , Macrófagos/imunologia , Masculino , Camundongos , Correpressor 1 de Receptor Nuclear , Correpressor 2 de Receptor Nuclear , Proteínas Repressoras/metabolismo , Transcrição Genética/efeitos dos fármacos
5.
Toxicol Appl Pharmacol ; 404: 115182, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32763356

RESUMO

Due to the pandemic of coronavirus disease 2019, the use of disinfectants is rapidly increasing worldwide. Didecyldimethylammonium chloride (DDAC) is an EPA-registered disinfectant, it was also a component in humidifier disinfectants that had caused idiopathic pulmonary diseases in Korea. In this study, we identified the possible pulmonary toxic response and mechanism using human bronchial epithelial (BEAS-2B) cells and mice. First, cell viability decreased sharply at a 4 µg/mL of concentration. The volume of intracellular organelles and the ROS level reduced, leading to the formation of apoptotic bodies and an increase of the LDH release. Secretion of pro-inflammatory cytokines (IL-1ß, IL-6, and TNF-α) and matrix metalloproteinase-1 also significantly increased. More importantly, lamellar body-like structures were formed in both the cells and mice exposed to DDAC, and the expression of both the indicator proteins for lamellar body (ABCA3 and Rab11a) and surfactant proteins (A, B, and D) was clearly enhanced. In addition, chronic fibrotic pulmonary lesions were notably observed in mice instilled twice (weekly) with DDAC (500 µg), ultimately resulting in death. Taken together, we suggest that disruption of pulmonary surfactant homeostasis may contribute to DDAC-induced cell death and subsequent pathophysiology and that the formation of lamellar body-like structures may play a role as the trigger. In addition, we propose that the cause of sudden death of mice exposed to DDAC should be clearly elucidated for the safe application of DDAC.


Assuntos
Betacoronavirus/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Infecções por Coronavirus/prevenção & controle , Pandemias/prevenção & controle , Pneumonia Viral/prevenção & controle , Compostos de Amônio Quaternário/toxicidade , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular , Relação Dose-Resposta a Droga , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Masculino , Camundongos , Camundongos Endogâmicos ICR , Compostos de Amônio Quaternário/administração & dosagem
6.
Int J Nanomedicine ; 15: 4943-4956, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32764927

RESUMO

Background: Hydroxyapatite (HA) [Ca5(PO4)3(OH)] is a naturally occurring calcium phosphate which makes up 60-70% of the dry weight of human bones. Nano-scale HA particles are increasingly being used as carriers for controlled and targeted delivery of bioactive agents like drugs, proteins, and nucleic acids due to their high porosity, negative charge, and biodegradability. Purpose: Although much effort has been devoted to understanding the delivery kinetics and effects of the payloads in such carriers, a thorough understanding of the influence of the carriers themselves is lacking. Methods: HA particles (300 µg/mL) were administered to primary human dermal fibroblasts (HDFs). The uptake and intracellular localization of the particles were determined by flow cytometry, confocal imaging, and transmission electron microscopy (TEM). Immunological assays and PCR were performed to determine the levels of pro-inflammatory cytokines and collagens in cell lysates and media supernatant. Results: The current study explores the effects of poly-dispersed HA particles on primary HDFs as a model system. The majority of the particles were determined to range between 150 and 200 nm in diameter. Upon exposure to HA suspensions, primary HDFs internalized the particles by endocytosis within 6 hours of exposure, showing maximum uptake at 72 hours following which the particles were exocytosed by 168 hours. This correlated to reduced secretion of various pro-inflammatory and pro-collagenic cytokines. Biochemical analysis further revealed a reduction in Type I collagen expression and secretion. Conclusion: HA particles have an immune-modulatory effect on dermal fibroblasts and reduce collagen production, which may impact the integrity of the extracellular matrix (ECM). This study demonstrates the need to consider the secondary effects of particulate carriers like HA, beyond basic cytotoxicity, in the specific tissue environment where the intended function is to be realized.


Assuntos
Colágeno/metabolismo , Durapatita/farmacologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Pele/citologia , Colágeno Tipo I/metabolismo , Citocinas/metabolismo , Durapatita/química , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/metabolismo , Fibroblastos/citologia , Humanos
7.
Vet Microbiol ; 247: 108793, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32768236

RESUMO

Porcine epidemic diarrhea virus (PEDV) belongs to the Alphacoronavirus genus in the Coronaviridae family. Similar to other coronaviruses, PEDV encodes two papain-like proteases. Papain-like protease (PLP)2 has been proposed to play a key role in antagonizing host innate immunity. However, the function of PLP1 remains unclear. In this study, we found that overexpression of PLP1 significantly promoted PEDV replication and inhibited production of interferon-ß. Immunoprecipitation and mass spectrometry were used to identify cellular interaction partners of PLP1. Host cell poly(C) binding protein 2 (PCBP2) was determined to bind and interact with PLP1. Both endogenous and overexpressed PCBP2 co-localized with PLP1 in the cytoplasm. Overexpression of PLP1 upregulated expression of PCBP2. Furthermore, overexpression of PCBP2 promoted PEDV replication. Silencing of endogenous PCBP2 using small interfering RNAs attenuated PEDV replication. Taken together, these data demonstrated that PLP1 negatively regulated the production of type 1 interferon by interacting with PCBP2 and promoted PEDV replication.


Assuntos
Papaína/metabolismo , Vírus da Diarreia Epidêmica Suína/metabolismo , Proteínas não Estruturais Virais/metabolismo , Replicação Viral/fisiologia , Animais , Chlorocebus aethiops , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/fisiologia , Células HEK293 , Humanos , Interferon beta/genética , Interferon beta/metabolismo , Proteína Proteolipídica de Mielina/metabolismo , Papaína/genética , Vírus da Diarreia Epidêmica Suína/genética , Vírus da Diarreia Epidêmica Suína/fisiologia , Interferência de RNA , Proteínas de Ligação a RNA , Fator de Necrose Tumoral alfa/farmacologia , Células Vero , Proteínas não Estruturais Virais/genética
8.
Molecules ; 25(16)2020 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-32784680

RESUMO

Cardiac glycosides (CGs) have a long history of treating cardiac diseases. However, recent reports have suggested that CGs also possess anticancer and antiviral activities. The primary mechanism of action of these anticancer agents is by suppressing the Na+/k+-ATPase by decreasing the intracellular K+ and increasing the Na+ and Ca2+. Additionally, CGs were known to act as inhibitors of IL8 production, DNA topoisomerase I and II, anoikis prevention and suppression of several target genes responsible for the inhibition of cancer cell proliferation. Moreover, CGs were reported to be effective against several DNA and RNA viral species such as influenza, human cytomegalovirus, herpes simplex virus, coronavirus, tick-borne encephalitis (TBE) virus and Ebola virus. CGs were reported to suppress the HIV-1 gene expression, viral protein translation and alters viral pre-mRNA splicing to inhibit the viral replication. To date, four CGs (Anvirzel, UNBS1450, PBI05204 and digoxin) were in clinical trials for their anticancer activity. This review encapsulates the current knowledge about CGs as anticancer and antiviral drugs in isolation and in combination with some other drugs to enhance their efficiency. Further studies of this class of biomolecules are necessary to determine their possible inhibitory role in cancer and viral diseases.


Assuntos
Antineoplásicos/farmacologia , Antivirais/farmacologia , Glicosídeos Cardíacos/farmacologia , Animais , Autofagia/efeitos dos fármacos , Ensaios Clínicos como Assunto , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Fatores Imunológicos/farmacologia , Transdução de Sinais/efeitos dos fármacos
9.
Proc Natl Acad Sci U S A ; 117(33): 20305-20315, 2020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32737160

RESUMO

Posttranslational modifications (PTMs) of α-synuclein (α-syn), e.g., phosphorylation, play an important role in modulating α-syn pathology in Parkinson's disease (PD) and α-synucleinopathies. Accumulation of phosphorylated α-syn fibrils in Lewy bodies and Lewy neurites is the histological hallmark of these diseases. However, it is unclear how phosphorylation relates to α-syn pathology. Here, by combining chemical synthesis and bacterial expression, we obtained homogeneous α-syn fibrils with site-specific phosphorylation at Y39, which exhibits enhanced neuronal pathology in rat primary cortical neurons. We determined the cryo-electron microscopy (cryo-EM) structure of the pY39 α-syn fibril, which reveals a fold of α-syn with pY39 in the center of the fibril core forming an electrostatic interaction network with eight charged residues in the N-terminal region of α-syn. This structure composed of residues 1 to 100 represents the largest α-syn fibril core determined so far. This work provides structural understanding on the pathology of the pY39 α-syn fibril and highlights the importance of PTMs in defining the polymorphism and pathology of amyloid fibrils in neurodegenerative diseases.


Assuntos
Doença de Parkinson , alfa-Sinucleína/química , Amiloide/química , Amiloide/metabolismo , Animais , Células Cultivadas , Microscopia Crioeletrônica , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Modelos Moleculares , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Fosforilação , Conformação Proteica , Ratos , Ratos Sprague-Dawley , alfa-Sinucleína/síntese química , alfa-Sinucleína/metabolismo
10.
Int J Nanomedicine ; 15: 5227-5237, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32801688

RESUMO

Background: Large-scale production and application of amorphous silica nanoparticles (SiNPs) have enhanced the risk of human exposure to SiNPs. However, the toxic effects and the underlying biological mechanisms of SiNPs on Caenorhabditis elegans remain largely unclear. Purpose: This study was to investigate the genome-wide transcriptional alteration of SiNPs on C. elegans. Methods and Results: In this study, a total number of 3105 differentially expressed genes were identified in C. elegans. Among them, 1398 genes were significantly upregulated and 1707 genes were notably downregulated in C. elegans. Gene ontology analysis revealed that the significant change of gene functional categories triggered by SiNPs was focused on locomotion, determination of adult lifespan, reproduction, body morphogenesis, multicellular organism development, endoplasmic reticulum unfolded protein response, oocyte development, and nematode larval development. Meanwhile, we explored the regulated effects between microRNA and genes or signaling pathways. Pathway enrichment analysis and miRNA-gene-pathway-network displayed that 23 differential expression microRNA including cel-miR-85-3p, cel-miR-793, cel-miR-241-5p, and cel-miR-5549-5p could regulate the longevity-related pathways and inflammation signaling pathways, etc. Additionally, our data confirmed that SiNPs could disrupt the locomotion behavior and reduce the longevity by activating ins-7, daf-16, ftt-2, fat-5, and rho-1 genes in C. elegans. Conclusion: Our study showed that SiNPs induced the change of the whole transcriptome in C. elegans, and triggered negative effects on longevity, development, reproduction, and body morphogenesis. These data provide abundant clues to understand the molecular mechanisms of SiNPs in C. elegans.


Assuntos
Caenorhabditis elegans/efeitos dos fármacos , Caenorhabditis elegans/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Nanopartículas/toxicidade , Animais , Proteínas de Caenorhabditis elegans/genética , Redes Reguladoras de Genes/efeitos dos fármacos , Genoma Helmíntico , Humanos , Longevidade/efeitos dos fármacos , MicroRNAs/genética , Testes de Mutagenicidade/métodos , Nanopartículas/química , Reprodução/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Dióxido de Silício/química , Dióxido de Silício/toxicidade , Transcriptoma , Resposta a Proteínas não Dobradas/genética
11.
PLoS One ; 15(8): e0236392, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32780735

RESUMO

In clinical trials, animal and cell line models are often used to evaluate the potential toxic effects of a novel compound or candidate drug before progressing to human trials. However, relating the results of animal and in vitro model exposures to relevant clinical outcomes in the human in vivo system still proves challenging, relying on often putative orthologs. In recent years, multiple studies have demonstrated that the repeated dose rodent bioassay, the current gold standard in the field, lacks sufficient sensitivity and specificity in predicting toxic effects of pharmaceuticals in humans. In this study, we evaluate the potential of deep learning techniques to translate the pattern of gene expression measured following an exposure in rodents to humans, circumventing the current reliance on orthologs, and also from in vitro to in vivo experimental designs. Of the applied deep learning architectures applied in this study the convolutional neural network (CNN) and a deep artificial neural network with bottleneck architecture significantly outperform classical machine learning techniques in predicting the time series of gene expression in primary human hepatocytes given a measured time series of gene expression from primary rat hepatocytes following exposure in vitro to a previously unseen compound across multiple toxicologically relevant gene sets. With a reduction in average mean absolute error across 76 genes that have been shown to be predictive for identifying carcinogenicity from 0.0172 for a random regression forest to 0.0166 for the CNN model (p < 0.05). These deep learning architecture also perform well when applied to predict time series of in vivo gene expression given measured time series of in vitro gene expression for rats.


Assuntos
Aprendizado Profundo , Regulação da Expressão Gênica/efeitos dos fármacos , Aprendizado de Máquina , Algoritmos , Animais , Ensaios Clínicos como Assunto/estatística & dados numéricos , Regulação da Expressão Gênica/genética , Hepatócitos/efeitos dos fármacos , Humanos , Redes Neurais de Computação , Ratos
12.
Life Sci ; 258: 118192, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32781062

RESUMO

The present study was conducted to identify possible health - promoting effects of wogonin (Wog) on testicular dysfunction in rats caused by cadmium. Pre-treatment of cadmium chloride (Cd: 5 mg/kg b.wt.) administered rats with wogonin (10 mg/kg b.wt) resulted in significant improvement in Cd-induced decrease in body and organ (testes and epididymides) weights. Wogonin treatment significantly improved Cd-induced reduction in sperm quality and quantity, steroidogenic gene (SFI, StAR, CYP11A1, 3ß-HSD, CYP17A1 and 17ß-HSD) and protein (SF1, StAR and CYP17A1) expressions and serum testosterone levels. Wogonin treatment provided significant protection to Cd-induced aggression in testicular oxidative (elevated levels of MDA) and anti-oxidative (diminished activities of SOD, CAT and GPx) status. Wog significantly up-regulated mRNA levels of Nrf2, NQO1 and HO-1 and down-regulation of Keap1 in cadmium treated testes. Wogonin administration significantly suppressed Cd-stimulated increase in inflammatory reactions (increase in NF-κB p65 DNA, p-IKKß, TNF-α levels and decrease in IL-10 levels). Wogonin prevented apoptotic damage by enhanced protein distribution of caspase-9, caspase-3, and Bax due to Cd exposure. Furthermore, Wogonin presented significant protection to histo-morphometric changes resulted after Cd administration. Taken together, the findings of this study provided clear evidence of the therapeutic potential of Cd-induced testicular toxicity at least partly due to its antioxidant, anti-inflammatory and anti-apoptotic properties.


Assuntos
Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Apoptose/efeitos dos fármacos , Cádmio/toxicidade , Flavanonas/farmacologia , Substâncias Protetoras/farmacologia , Transdução de Sinais , Testículo/patologia , Animais , Biomarcadores/metabolismo , Peso Corporal/efeitos dos fármacos , Ingestão de Líquidos/efeitos dos fármacos , Epididimo/efeitos dos fármacos , Epididimo/patologia , Comportamento Alimentar/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Hormônios/sangue , Inflamação/patologia , Masculino , Oxirredução , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos Wistar , Transdução de Sinais/efeitos dos fármacos , Espermatogênese/efeitos dos fármacos , Espermatozoides/efeitos dos fármacos , Espermatozoides/metabolismo , Esteroides/metabolismo , Testículo/efeitos dos fármacos , Testículo/metabolismo
13.
Life Sci ; 258: 118195, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32781073

RESUMO

AIMS: The estrogen-ERα axis participates in osteoblast maturation. This study was designed to further evaluated the roles of the estrogen-ERα axis in bone healing and the possible mechanisms. MAIN METHODS: Female ICR mice were created a metaphyseal bone defect in the left femurs and administered with methylpiperidinopyrazole (MPP), an inhibitor of ERα. Bone healing was evaluated using micro-computed tomography. Colocalization of ERα with alkaline phosphatase (ALP) and ERα translocation to mitochondria were determined. Levels of ERα, ERß, PECAM-1, VEGF, and ß-actin were immunodetected. Expression of chromosomal Runx2, ALP, and osteocalcin mRNAs and mitochondrial cytochrome c oxidase (COX) I and COXII mRNAs were quantified. Angiogenesis was measured with immunohistochemistry. KEY FINDINGS: Following surgery, the bone mass was time-dependently augmented in the bone-defect area. Simultaneously, levels of ERα were specifically upregulated and positively correlated with bone healing. Administration of MPP to mice consistently decreased levels of ERα and bone healing. As to the mechanisms, osteogenesis was enhanced in bone healing, but MPP attenuated osteoblast maturation. In parallel, expressions of osteogenesis-related ALP, Runx2, and osteocalcin mRNAs were induced in the injured zone. Treatment with MPP led to significant inhibition of the alp, runx2, and osteocalcin gene expressions. Remarkably, administration of MPP lessened translocation of ERα to mitochondria and expressions of mitochondrial energy production-related coxI and coxII genes. Furthermore, exposure to MPP decreased levels of PECAM-1 and VEGF in the bone-defect area. SIGNIFICANCE: The present study showed the contributions of the estrogen-ERα axis to bone healing through stimulation of energy production, osteoblast maturation, and angiogenesis.


Assuntos
Regeneração Óssea , Diferenciação Celular , Metabolismo Energético , Receptor alfa de Estrogênio/metabolismo , Neovascularização Fisiológica , Osteoblastos/citologia , Transdução de Sinais , Fosfatase Alcalina/metabolismo , Animais , Peso Corporal/efeitos dos fármacos , Regeneração Óssea/efeitos dos fármacos , Calo Ósseo/efeitos dos fármacos , Calo Ósseo/patologia , Diferenciação Celular/efeitos dos fármacos , Cromossomos de Mamíferos/metabolismo , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/genética , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Metabolismo Energético/efeitos dos fármacos , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Camundongos Endogâmicos ICR , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Neovascularização Fisiológica/efeitos dos fármacos , Tamanho do Órgão/efeitos dos fármacos , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Osteocalcina/metabolismo , Osteogênese/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Pirazóis/administração & dosagem , Pirazóis/farmacologia , Regulação para Cima/efeitos dos fármacos , Cicatrização/efeitos dos fármacos
15.
PLoS One ; 15(8): e0237752, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32817626

RESUMO

Pseudomonas aeruginosa remains a leading cause of nosocomial and serious life-threatening infections, and contributes to increased mortality in immunocompromised individuals. P. aeruginosa infection triggers host immune response and often provokes potent inflammatory mediators, which do not necessarily eradicate the causative pathogen. On the other hand, it causes severe airway damage and eventually decreased lung function. Such unfavorable outcomes of inflammatory injury have necessitated the development of novel effective agents that can combat with P. aeruginosa-mediated inflammation. Herein, we investigated the potential of quercetin in regulating P. aeruginosa-induced inflammation, with particular emphasized on the interleukin-1ß (IL-1ß). Our results showed that quercetin exerted the potent inhibitory activity against the production of IL-1ß in macrophages infected by live P. aeruginosa PAO1, without exhibiting cytotoxicity. According to our settings, such the potent inhibitory activity of quercetin was clearly demonstrated through its ability to efficiently inhibit IL-1ß during P. aeruginosa infection, pre- or even post-infection. In addition, quercetin strongly suppressed MAPK signaling pathway by inhibiting phosphorylation of the p38 MAPK and JNK2, and molecular docking study supported well with this observation. Moreover, quercetin reduced the NLRP3 expression and inhibited the P. aeruginosa-mediated cleavage of caspase-1 as well as mature IL-1ß. These results thus indicated that quercetin inhibition of P. aeruginosa-induced IL-1ß production is mediated by suppressing the initial priming step and by inhibiting the NLRP3 inflammasome activation. Taken together, our findings demonstrated the promising regulatory activity of quercetin against IL-1ß production in P. aeruginosa-infected macrophages, and indicated that quercetin has the potential to be effective as a novel therapeutic agent for treatment of P. aeruginosa-induced inflammation.


Assuntos
Interleucina-1beta/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Infecções por Pseudomonas/tratamento farmacológico , Quercetina/farmacologia , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Linhagem Celular , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Inflamassomos/efeitos dos fármacos , Inflamassomos/genética , Macrófagos/efeitos dos fármacos , Macrófagos/microbiologia , Infecções por Pseudomonas/genética , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/patogenicidade , Transdução de Sinais/efeitos dos fármacos
16.
Environ Pollut ; 266(Pt 2): 115326, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32827984

RESUMO

Excessive exposure to cobalt (Co) is known to make adverse impact on the nervous system, but its detailed mechanisms of neurotoxicity have yet to be determined. In this study, C57BL/6 mice (0, 4, 8, 16 mg/kg CoCl2, 30 days) and human neuroblastoma H4 cells (0, 100, 400, 600 µM CoCl2) were used as in vivo and in vitro models. Our results revealed that CoCl2 intraperitoneal injection caused significant impairments in learning and memory, as well as pathological damage in the nervous system. We further certificated the alteration of m6A methylation induced by CoCl2 exposure. Our findings demonstrate for the first time, significant differences in the degree of m6A modification, the biological function of m6A-modified transcripts between cortex and H4 cell samples. Specifically, MeRIP-seq and RNA-seq elucidate that CoCl2 exposure results in differentially m6A-modified and expressed genes, which were enriched in pathways involving synaptic transmission, and central nervous system (CNS) development. Mechanistic analyses revealed that CoCl2 remarkably changed m6A modification level by affecting the expression of m6A methyltransferase and demethylase, and decreasing the activity of demethylase. We observed variation of m6A modification in neurodegenerative disease-associated genes upon CoCl2 exposure and identified regulatory strategy between m6A and potential targets mRNA. Our novel findings provide novel insight into the functional roles of m6A modification in neurodegenerative damage caused by environmental neurotoxicants and identify Co-mediated specific RNA regulatory strategy for broadening the epigenetic regulatory mechanism of RNA induced by heavy metals.


Assuntos
Cobalto , Neuroblastoma , Doenças Neurodegenerativas , RNA , Adenosina/análogos & derivados , Animais , Cobalto/toxicidade , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Aprendizagem , Memória , Camundongos , Camundongos Endogâmicos C57BL , RNA/efeitos dos fármacos
17.
Life Sci ; 259: 118352, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32860804

RESUMO

AIMS: Lipopolysaccharide (LPS) induces inflammatory cholestasis by impairing expression, localization, and function of carriers involved in bile formation, e.g. bile salt export pump (Bsep) and multidrug resistance-associated protein 2 (Mrp2). A specific therapy against this disease is still lacking. Therefore, we evaluated the anticholestatic effects of spironolactone (SL), a PXR ligand that regulates bile salt homeostasis, up-regulates Mrp2, and bears anti-inflammatory properties. MAIN METHODS: Male Wistar rats were divided into four groups: Control, SL (83.3 mg/kg/day of SL, i.p., for 3 days), LPS (2.5 mg/kg/day, i.p., at 8 am of the last 2 days, and 1.5 mg/kg/day at 8 pm of the last day), and SL + LPS. Biliary and plasma parameters and the expression, function, and localization of Mrp2 and Bsep were evaluated. KEY FINDINGS: SL partially prevented LPS-induced drop of basal bile flow by normalizing the bile salt-independent fraction of bile flow (BSIBF), via improvement of glutathione output. This was due to a recovery in Mrp2 transport function, the major canalicular glutathione transporter, estimated by monitoring the output of its exogenously administered substrate dibromosulfophthalein. SL counteracted the LPS-induced downregulation of Mrp2, but not that of Bsep, at both mRNA and protein levels. LPS induced endocytic internalization of both transporters, visualized by immunofluorescence followed by confocal microscopy, and SL partially prevented this relocalization. SL did not prevent the increase in IL-1ß, IL-6, and TNF-α plasma levels. SIGNIFICANCE: SL prevents the impairment in Mrp2 expression and localization, and the resulting recovery of Mrp2 function normalizes the BSIBF by improving glutathione excretion.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Colestase/tratamento farmacológico , Espironolactona/uso terapêutico , Membro 11 da Subfamília B de Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Bile/metabolismo , Colestase/sangue , Colestase/metabolismo , Citocinas/sangue , Regulação da Expressão Gênica/efeitos dos fármacos , Lipopolissacarídeos/efeitos adversos , Masculino , Ratos , Ratos Wistar , Reação em Cadeia da Polimerase em Tempo Real
18.
PLoS Genet ; 16(8): e1008953, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32776944

RESUMO

Apoptosis of cochlear hair cells is a key step towards age-related hearing loss. Although numerous genes have been implicated in the genetic causes of late-onset, progressive hearing loss, few show direct links to the proapoptotic process. By genome-wide linkage analysis and whole exome sequencing, we identified a heterozygous p.L183V variant in THOC1 as the probable cause of the late-onset, progressive, non-syndromic hearing loss in a large family with autosomal dominant inheritance. Thoc1, a member of the conserved multisubunit THO/TREX ribonucleoprotein complex, is highly expressed in mouse and zebrafish hair cells. The thoc1 knockout (thoc1 mutant) zebrafish generated by gRNA-Cas9 system lacks the C-startle response, indicative of the hearing dysfunction. Both Thoc1 mutant and knockdown zebrafish have greatly reduced hair cell numbers, while the latter can be rescued by embryonic microinjection of human wild-type THOC1 mRNA but to significantly lesser degree by the c.547C>G mutant mRNA. The Thoc1 deficiency resulted in marked apoptosis in zebrafish hair cells. Consistently, transcriptome sequencing of the mutants showed significantly increased gene expression in the p53-associated signaling pathway. Depletion of p53 or applying the p53 inhibitor Pifithrin-α significantly rescued the hair cell loss in the Thoc1 knockdown zebrafish. Our results suggested that THOC1 deficiency lead to late-onset, progressive hearing loss through p53-mediated hair cell apoptosis. This is to our knowledge the first human disease associated with THOC1 mutations and may shed light on the molecular mechanism underlying the age-related hearing loss.


Assuntos
Proteínas de Ligação a DNA/genética , Surdez/genética , Células Ciliadas Auditivas Internas/metabolismo , Proteínas de Ligação a RNA/genética , Proteína Supressora de Tumor p53/genética , Animais , Apoptose/genética , Benzotiazóis/farmacologia , Proteína 9 Associada à CRISPR/genética , Proteínas de Ligação a DNA/deficiência , Surdez/patologia , Modelos Animais de Doenças , Regulação da Expressão Gênica/efeitos dos fármacos , Técnicas de Inativação de Genes , Células Ciliadas Auditivas/metabolismo , Células Ciliadas Auditivas/patologia , Células Ciliadas Auditivas Internas/patologia , Humanos , Camundongos , Mutação , RNA Guia/genética , Transdução de Sinais/efeitos dos fármacos , Tolueno/análogos & derivados , Tolueno/farmacologia , Proteína Supressora de Tumor p53/antagonistas & inibidores , Sequenciamento Completo do Exoma , Peixe-Zebra/genética
19.
PLoS Genet ; 16(8): e1008989, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32810129

RESUMO

Drosophila Myc (dMyc), as a broad-spectrum transcription factor, can regulate the expression of a large number of genes to control diverse cellular processes, such as cell cycle progression, cell growth, proliferation and apoptosis. However, it remains largely unknown about whether dMyc can be involved in Drosophila innate immune response. Here, we have identified dMyc to be a negative regulator of Drosophila Imd pathway via the loss- and gain-of-function screening. We demonstrate that dMyc inhibits Drosophila Imd immune response via directly activating miR-277 transcription, which further inhibit the expression of imd and Tab2-Ra/b. Importantly, dMyc can improve the survival of flies upon infection, suggesting inhibiting Drosophila Imd pathway by dMyc is vital to restore immune homeostasis that is essential for survival. Taken together, our study not only reports a new dMyc-miR-277-imd/Tab2 axis involved in the negative regulation of Drosophila Imd pathway, and provides a new insight into the complex regulatory mechanism of Drosophila innate immune homeostasis maintenance.


Assuntos
Proteínas de Ligação a DNA/genética , Proteínas de Drosophila/genética , Imunidade Inata/genética , MicroRNAs/genética , Fatores de Transcrição/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Divisão Celular/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Homeostase/genética , Humanos , Transdução de Sinais/genética , Fatores de Transcrição/metabolismo , Transcrição Genética/genética
20.
PLoS One ; 15(8): e0236689, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32785240

RESUMO

OBJECTIVE: To compare the effects of photobiomodulation therapy (PBMT) and pharmacological therapy (glucocorticoids and non-steroidal anti-inflammatory drugs) applied alone and in different combinations in mdx mice. METHODS: The animals were randomized and divided into seven experimental groups treated with placebo, PBMT, prednisone, non-steroidal anti-inflammatory drug (NSAIDs), PBMT plus prednisone and PBMT plus NSAID. Wild type animals were used as control. All treatments were performed during 14 consecutive weeks. Muscular morphology, protein expression of dystrophin and functional performance were assessed at the end of the last treatment. RESULTS: Both treatments with prednisone and PBMT applied alone or combined, were effective in preserving muscular morphology. In addition, the treatments with PBMT (p = 0.0005), PBMT plus prednisone (p = 0.0048) and PBMT plus NSAID (p = 0.0021) increased dystrophin gene expression compared to placebo-control group. However, in the functional performance the PBMT presented better results compared to glucocorticoids (p<0.0001). In contrast, the use of NSAIDs did not appear to add benefits to skeletal muscle tissue in mdx mice. CONCLUSION: We believe that the promising and optimistic results about the PBMT in skeletal muscle of mdx mice may in the future contribute to this therapy to be considered a safe alternative for patients with Duchenne Muscular Dystrophy (DMD) in a washout period (between treatment periods with glucocorticoids), allowing them to remain receiving effective and safe treatment in this period, avoiding at this way periods without administration of any treatment.


Assuntos
Distrofina/genética , Terapia com Luz de Baixa Intensidade , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/efeitos da radiação , Distrofia Muscular de Duchenne/terapia , Animais , Anti-Inflamatórios não Esteroides/farmacologia , Terapia Combinada , Modelos Animais de Doenças , Progressão da Doença , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos da radiação , Glucocorticoides/farmacologia , Humanos , Camundongos , Camundongos Endogâmicos mdx , Músculo Esquelético/metabolismo , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/fisiopatologia , Prednisona/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA