Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 17.858
Filtrar
1.
Int J Nanomedicine ; 15: 6355-6372, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32922006

RESUMO

Background: Cerium oxide nanoparticles (CeO2NPs) are potent scavengers of cellular reactive oxygen species (ROS). Their antioxidant properties make CeO2NPs promising therapeutic agents for bone diseases and bone tissue engineering. However, the effects of CeO2NPs on intracellular ROS production in osteoclasts (OCs) are still unclear. Numerous studies have reported that intracellular ROS are essential for osteoclastogenesis. The aim of this study was to explore the effects of CeO2NPs on osteoclast differentiation and the potential underlying mechanisms. Methods: The bidirectional modulation of osteoclast differentiation by CeO2NPs was explored by different methods, such as fluorescence microscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), quantitative real-time polymerase chain reaction (qRT-PCR), and Western blotting. The cytotoxic and proapoptotic effects of CeO2NPs were detected by cell counting kit (CCK-8) assay, TdT-mediated dUTP nick-end labeling (TUNEL) assay, and flow cytometry. Results: The results of this study demonstrated that although CeO2NPs were capable of scavenging ROS in acellular environments, they facilitated the production of ROS in the acidic cellular environment during receptor activator of nuclear factor kappa-Β ligand (RANKL)-dependent osteoclast differentiation of bone marrow-derived macrophages (BMMs). CeO2NPs at lower concentrations (4.0 µg/mL to 8.0 µg/mL) promoted osteoclast formation, as shown by increased expression of Nfatc1 and C-Fos, F-actin ring formation and bone resorption. However, at higher concentrations (greater than 16.0 µg/mL), CeO2NPs inhibited osteoclast differentiation and promoted apoptosis of BMMs by reducing Bcl2 expression and increasing the expression of cleaved caspase-3, which may be due to the overproduction of ROS. Conclusion: This study demonstrates that CeO2NPs facilitate osteoclast formation at lower concentrations while inhibiting osteoclastogenesis in vitro by inducing the apoptosis of BMMs at higher concentrations by modulating cellular ROS levels.


Assuntos
Diferenciação Celular , Cério/química , Osteoclastos/citologia , Espécies Reativas de Oxigênio/metabolismo , Actinas/metabolismo , Animais , Apoptose/efeitos dos fármacos , Apoptose/genética , Células da Medula Óssea/citologia , Células da Medula Óssea/efeitos dos fármacos , Reabsorção Óssea/metabolismo , Diferenciação Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Macrófagos/ultraestrutura , Masculino , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Nanopartículas/ultraestrutura , Osteoclastos/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Ligante RANK/farmacologia , Transdução de Sinais/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos
2.
Zhonghua Zhong Liu Za Zhi ; 42(8): 629-634, 2020 Aug 23.
Artigo em Chinês | MEDLINE | ID: mdl-32867453

RESUMO

Objective: To investigate the effect of esculin on the proliferation of triple negative breast cancer cells and its molecular mechanism. Methods: MDA-MB-231 cells were treated with 28, 56, 112, 225, 450 and 900 µmol/L of esculin for 24, 48 and 72 h, respectively, and the cell viability was detected by cell counting kit 8 (CCK-8) assay. In addition, MDA-MB-231 cells were treated with 0, 225, 450 and 900 µmol/L of esculin for 48 h. And then the changes in cell morphology were observed by inverted microscope. The clone-forming ability was detected by colony formation assay. The mRNA expression levels of FBI-1, p53 and p21 were detected using real-time fluorescence quantitative polymerase chain reaction. The protein expression levels of FBI-1, p53, p21 and Ki67 were detected by western blot. Results: Compared with the blank control group, the cell viability of MDA-MB-231 cells that treated with esculin significantly decreased in a dose-dependent and time-dependent manners. After treatment with esculin, MDA-MB-231 cells shrunk, flattened, adhered poorly to the culture dish and the cell spacing became larger. Meanwhile, shedding and incomplete cells appeared, of which 900 µmol/L of esculin treatment group showed the most dramatic changes. In addition, the colony formation ratios were decreased to (77.18±5.13)%, (65.94±4.98)% and (45.92±3.70)% in the 225, 450 and 900 µmol/L of esculin treatment groups compared with blank control, respectively (P<0.01). Furthermore, the mRNA and protein expressions of FBI-1 increased, while the levels of p53 and p21 mRNA and protein, as well as the protein expression of Ki67 decreased in a concentration-dependent manner (P<0.01). Conclusion: Esculin may regulate cell cycle-related p53-p21 pathway via FBI-1 mediated DNA replication, thus inhibit the proliferation of triple negative breast cancer cells.


Assuntos
Neoplasias da Mama/patologia , Proliferação de Células/efeitos dos fármacos , Esculina/farmacologia , RNA Mensageiro/genética , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Neoplasias da Mama/metabolismo , Ciclo Celular , Linhagem Celular Tumoral , Proteínas de Ligação a DNA , Regulação para Baixo/efeitos dos fármacos , Feminino , Humanos , Fatores de Transcrição , Neoplasias de Mama Triplo Negativas/patologia
3.
PLoS One ; 15(9): e0238301, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32881954

RESUMO

BACKGROUND: Neuromyelitis optica spectrum disorders (NMOSD) is a primary astrocytopathy driven by antibodies directed against the aquaporin-4 water channel located at the end-feet of the astrocyte. Although blood-brain barrier (BBB) breakdown is considered one of the key steps for the development and lesion formation, little is known about the molecular mechanisms involved. The aim of the study was to evaluate the effect of human immunoglobulins from NMOSD patients (NMO-IgG) on BBB properties. METHODS: Freshly isolated brain microvessels (IBMs) from rat brains were used as a study model. At first, analysis of the secretome profile from IBMs exposed to purified NMO-IgG, to healthy donor IgG (Control-IgG), or non-treated, was performed. Second, tight junction (TJ) proteins expression in fresh IBMs and primary cultures of brain microvascular endothelial cells (BMEC) was analysed by Western blotting (Wb) after exposition to NMO-IgG and Control-IgG. Finally, functional BBB properties were investigated evaluating the presence of rat-IgG in tissue lysate from brain using Wb in the rat-model, and the passage of NMO-IgG and sucrose in a bicameral model. RESULTS: We found that NMO-IgG induces functional and morphological BBB changes, including: 1) increase of pro-inflammatory cytokines production (CXCL-10 [IP-10], IL-6, IL-1RA, IL-1ß and CXCL-3) in IBMs when exposed to NMO-IgG; 2) decrease of Claudin-5 levels by 25.6% after treatment of fresh IBMs by NMO-IgG compared to Control-IgG (p = 0.002), and similarly, decrease of Claudin-5 by at least 20% when BMEC were cultured with NMO-IgG from five different patients; 3) a higher level of rat-IgG accumulated in periventricular regions of NMO-rats compared to Control-rats and an increase in the permeability of BBB after NMO-IgG treatment in the bicameral model. CONCLUSION: Human NMO-IgG induces both structural and functional alterations of BBB properties, suggesting a direct role of NMO-IgG on modulation of BBB permeability in NMOSD.


Assuntos
Aquaporina 4/imunologia , Barreira Hematoencefálica/metabolismo , Imunoglobulina G/farmacologia , Neuromielite Óptica/patologia , Permeabilidade/efeitos dos fármacos , Animais , Barreira Hematoencefálica/efeitos dos fármacos , Células Cultivadas , Quimiocinas/metabolismo , Claudina-5/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças , Regulação para Baixo/efeitos dos fármacos , Células Endoteliais/citologia , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Humanos , Imunoglobulina G/isolamento & purificação , Microvasos/citologia , Microvasos/metabolismo , Neuromielite Óptica/metabolismo , Ratos
4.
PLoS One ; 15(8): e0237976, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32822399

RESUMO

Environmental exposure to arsenite (As3+) has a strong association with the development of human urothelial cancer (UC) and is the 5th most common cancer in men and the 12th most common cancer in women. Muscle invasive urothelial cancer (MIUC) are grouped into basal or luminal molecular subtypes based on their gene expression profile. The basal subtype is more aggressive and can be associated with squamous differentiation, characterized by high expression of keratins (KRT1, 5, 6, 14, and 16) and epidermal growth factor receptor (EGFR) within the tumors. The luminal subtype is less aggressive and is predominately characterized by elevated gene expression of peroxisome proliferator-activated receptor- gamma (PPARγ) and forkhead box protein A1 (FOXA1). We have previously shown that As3+-transformed urothelial cells (As-T) exhibit a basal subtype of UC expressing genes associated with squamous differentiation. We hypothesized that the molecular subtype of the As-T cells could be altered by inducing the expression of PPARγ and/or inhibiting the proliferation of the cells. Non-transformed and As-T cells were treated with Troglitazone (TG, PPARG agonist, 10 µM), PD153035 (PD, an EGFR inhibitor, 1 µM) or a combination of TG and PD for 3 days. The results obtained demonstrate that treatment of the As-T cells with TG upregulated the expression of PPARγ and FOXA1 whereas treatment with PD decreased the expression of some of the basal keratins. However, a combined treatment of TG and PD resulted in a consistent decrease of several proteins associated with the basal subtype of bladder cancers (KRT1, KRT14, KRT16, P63, and TFAP2A). Our data suggests that activation of PPARγ while inhibiting cell proliferation facilitates the regulation of genes involved in maintaining the luminal subtype of UC. In vivo animal studies are needed to address the efficacy of using PPARγ agonists and/or proliferation inhibitors to reduce tumor grade/stage of MIUC.


Assuntos
Arsenitos/farmacologia , Proliferação de Células/efeitos dos fármacos , PPAR gama/metabolismo , Troglitazona/farmacologia , Animais , Biomarcadores Tumorais/metabolismo , Linhagem Celular Tumoral , Regulação para Baixo/efeitos dos fármacos , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/metabolismo , Fator 3-alfa Nuclear de Hepatócito/genética , Fator 3-alfa Nuclear de Hepatócito/metabolismo , Humanos , Queratinas/genética , Queratinas/metabolismo , Camundongos , Camundongos Nus , PPAR gama/agonistas , Quinazolinas/farmacologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcriptoma/efeitos dos fármacos , Transplante Heterólogo , Regulação para Cima/efeitos dos fármacos , Neoplasias da Bexiga Urinária/metabolismo , Neoplasias da Bexiga Urinária/patologia
5.
PLoS One ; 15(8): e0236879, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32790676

RESUMO

Benign prostatic hyperplasia (BPH) is a progressive pathological condition associated with proliferation of prostatic tissues, prostate enlargement, and lower-urinary tract symptoms. However, the mechanism underlying the pathogenesis of BPH is unclear. The aim of this study was to investigate the protective effects of a combination of Stauntonia hexaphylla and Cornus officinalis (SC extract) on a testosterone propionate (TP)-induced BPH model. The effect of SC extract was examined in a TP-induced human prostate adenocarcinoma cell line. Male Sprague-Dawley rats were randomly divided into 5 groups (n = 6) for in vivo experiments. To induce BPH, all rats, except those in the control group, were administered daily with subcutaneous injections of TP (5 mg/kg) and orally treated with appropriate phosphate buffered saline/drugs (finasteride/saw palmetto/SC extract) for 4 consecutive weeks. SC extract significantly downregulated the androgen receptor (AR), prostate specific antigen (PSA), and 5α-reductase type 2 in TP-induced BPH in vitro. In in vivo experiments, SC extract significantly reduced prostate weight, size, serum testosterone, and dihydrotestosterone (DHT) levels. Histologically, SC extract markedly recovered TP-induced abnormalities and reduced prostatic hyperplasia, thereby improving the histo-architecture of TP-induced BPH rats. SC extract also significantly downregulated AR and PSA expression, as assayed using immunoblotting. Immunostaining revealed that SC extract markedly reduced the 5α-reductase type 2 and significantly downregulated the expression of proliferating cell nuclear antigen. In addition, immunoblotting of B-cell lymphoma 2 (Bcl-2) family proteins indicated that SC extract significantly downregulated anti-apoptotic Bcl-2 and markedly upregulated pro-apoptotic B cell lymphoma-associated X (Bax) expression. Furthermore, SC treatment significantly decreased the Bcl-2/Bax ratio, indicating induced prostate cell apoptosis in TP-induced BPH rats. Thus, our findings demonstrated that SC extract protects against BPH by inhibiting 5α-reductase type 2 and inducing prostate cell apoptosis. Therefore, SC extract might be useful in the clinical treatment of BPH.


Assuntos
Apoptose/efeitos dos fármacos , Colestenona 5 alfa-Redutase/química , Extratos Vegetais/farmacologia , Hiperplasia Prostática/prevenção & controle , Substâncias Protetoras/uso terapêutico , Inibidores de 5-alfa Redutase/química , Inibidores de 5-alfa Redutase/farmacologia , Inibidores de 5-alfa Redutase/uso terapêutico , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Colestenona 5 alfa-Redutase/metabolismo , Cornus/química , Cornus/metabolismo , Regulação para Baixo/efeitos dos fármacos , Humanos , Masculino , Extratos Vegetais/química , Extratos Vegetais/uso terapêutico , Folhas de Planta/química , Folhas de Planta/metabolismo , Antígeno Prostático Específico/sangue , Hiperplasia Prostática/etiologia , Substâncias Protetoras/farmacologia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Ranunculales/química , Ranunculales/metabolismo , Ratos , Ratos Sprague-Dawley , Propionato de Testosterona/efeitos adversos
6.
Life Sci ; 258: 118175, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32750436

RESUMO

AIMS: Human podocytes (hPC) play an important role in the pathogenesis of renal diseases. In this context, angiotensin II (Ang II) and nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB) play a crucial role in podocyte injury. Recently, transmembrane protein (Tmem) 63c, a member of the Tmem-family was found to be expressed in kidney and associated with podocyte function. In this study, we analysed the expression regulation and functional impact of Tmem63c on cell viability and apoptosis in hPC in the context of Ang II activation. MATERIALS AND METHODS: Expression of Tmem63c in response to Ang II and the NFκB inhibitor Bay 11-7082 was analysed by Real-Time PCR and Western blotting. Cellular functions were determined by functional assays. KEY FINDINGS: We found Ang II to induce Tmem63c expression in hPC in a concentration-dependent manner. Inhibition of NFκB by Bay 11-7082 reduced basal as well as Ang II-induced Tmem63c expression. SiRNA-mediated down-regulation of Tmem63c diminished cell viability and protein kinase B (Akt) signaling and increased cell apoptosis of resting as well as Ang II-activated hPC. SIGNIFICANCE: These data show that Ang II induced the expression of Tmem63c in hPC, possibly via NFκB-dependent mechanisms. Moreover, down-regulation of Tmem63c was associated with reduced cell viability, indicating Tmem63c to be a potential pro-survival factor in hPC.


Assuntos
Angiotensina II/farmacologia , Canais de Cálcio/metabolismo , Podócitos/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Humanos , NF-kappa B/metabolismo , Fosforilação/efeitos dos fármacos , Podócitos/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos
7.
Life Sci ; 258: 118222, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32768577

RESUMO

AIMS: We previously reported that fenugreek-derived 4-hydroxyisoleucine ameliorates insulin resistance via regulation of TNF-α converting enzyme (TACE) expression. In the present study, we further investigate the effects and mechanisms of fenugreek on obesity-induced inflammation and insulin signaling in the high-fat diet (HFD)-challenged obese mice. MAIN METHODS: After 12 weeks of HFD intervention, mice were treated with the low or high dosages of fenugreek. Serum levels of glucose, insulin, lipid profile, inflammation cytokines, and adipokines were detected. Macrophage infiltration and adipose tissue morphology were observed. Western blot was conducted to investigate the expressions of inactive rhomboid 2 (iRhom2) and TACE as well as other signaling pathways in subcutaneous adipose tissue. KEY FINDINGS: We showed that fenugreek significantly suppressed body weight gain and fat accumulation in HFD-challenged obese mice. Meanwhile, fasting glucose, insulin, and HOMA-IR in fenugreek-treated mice were remarkably decreased, which were properly explained by fenugreek-induced activation of the insulin receptor signaling pathway. Moreover, the anti-inflammatory properties of fenugreek were shown by the decrease of systemic and local expressions of pro-inflammatory cytokines as well as reduced macrophage infiltration into adipose tissue. Additionally, fenugreek markedly deactivated NF-κB and JNK pathways. Finally, we demonstrated that fenugreek strikingly repressed the transcriptions and expressions of iRhom2 and TACE. SIGNIFICANCE: Fenugreek shows an encouraging and promising property in ameliorating insulin resistance and suppressing inflammation in obesity, which might be realized by fenugreek-mediated inhibition of iRhom2/TACE axis-facilitated TNF-α release from adipocytes.


Assuntos
Proteína ADAM17/antagonistas & inibidores , Proteínas de Transporte/antagonistas & inibidores , Mediadores da Inflamação/antagonistas & inibidores , Resistência à Insulina/fisiologia , Obesidade/tratamento farmacológico , Trigonella , Proteína ADAM17/sangue , Animais , Proteínas de Transporte/sangue , Relação Dose-Resposta a Droga , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/fisiologia , Inflamação/sangue , Inflamação/tratamento farmacológico , Mediadores da Inflamação/sangue , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/sangue , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Sementes
8.
Life Sci ; 258: 118176, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32771556

RESUMO

AIMS: We investigated the anti-inflammatory activity of 3ß-hydroxycholest-5-en-7-one from Hippocampus trimaculatus leach and provided a theoretical basis for identifying its therapeutic targets. MAIN METHODS: Small-RNA libraries were constructed for untreated control RAW 264.7 cells and cells treated with lipopolysaccharide (LPS; 1.0 µg/mL) or 10 µM 3ß-hydroxycholest-5-en-7-one +1.0 µg/mL LPS. We constructed and tested a miR-98-5p-interfering lentivirus to evaluate the role of miR-98-5p in the 3ß-hydroxycholest-5-en-7-one-dependent regulation of inflammatory responses in LPS-induced macrophage and murine inflammation models. The small-RNA libraries were analyzed using high-throughput sequencing. KEY FINDINGS: Among the differentially expressed microRNAs, miR-98-5p showed the most significant difference. Bioinformatics tools were used to identify the potential regulatory targets of miR-98-5p, which were tested using dual-luciferase reporter assays. Our results demonstrated that 3ß-hydroxycholest-5-en-7-one exerted an anti-inflammatory effect via miR-98-5p, which negatively regulated the expression of its target gene TNFAIP3. The results indicate that miR-98-5p interference and 3ß-hydroxycholest-5-en-7-one treatment significantly upregulated the low TNFAIP3 expression induced by LPS stimulation, thereby inhibiting TRAF6, RIP, NF-κB, IL-1ß, and TNF-α secretion. SIGNIFICANCE: 3ß-Hydroxycholest-5-en-7-one alleviates inflammation by downregulating miR-98-5p and upregulating TNFAIP3, thereby blocking NF-κB pathway activation. These results reveal the specific anti-inflammatory mechanism of 3ß-hydroxycholest-5-en-7-one, providing a foundation for developing new drugs and identifying drug targets.


Assuntos
Colestenonas/farmacologia , Regulação para Baixo/genética , Inflamação/patologia , MicroRNAs/metabolismo , Smegmamorpha/metabolismo , Regiões 3' não Traduzidas/genética , Animais , Colestenonas/química , Regulação para Baixo/efeitos dos fármacos , Genes Reporter , Inflamação/genética , Lentivirus/metabolismo , Lipopolissacarídeos , Luciferases/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , MicroRNAs/genética , Células RAW 264.7 , Reprodutibilidade dos Testes
9.
Int J Nanomedicine ; 15: 4793-4810, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32764921

RESUMO

Background: Platinum resistance is a major challenge in the management of ovarian cancer. Even low levels of acquired resistance at the cellular level lead to impaired response to cisplatin. In ovarian cancer intraperitoneal therapy, nanoparticle formulation can improve the cisplatin's pharmacokinetics and safety profile. Purpose: This work aimed to investigate the chemo-sensitivity of ovarian cancer SKOV3 cells upon short-term (72h) single treatment of cisplatin and cisplatin-loaded biodegradable nanoparticles (Cis-NP). The aim was then to determine the therapeutic properties of Cis-NP in vivo using a SKOV3-luc cells' xenograft model in mice. Methods: Cell cytotoxicity was assessed after the exposure of the cell culture to cisplatin or Cis-NP. The effect of treatments on EMT and CSC-like phenotype was studied by analyzing a panel of markers by flow cytometry. Intracellular platinum concentration was determined by inductively coupled plasma mass spectrometry (ICS-MS), and gene expression was evaluated by RNAseq analysis. The efficacy of intraperitoneal chemotherapy was evaluated in a SKOV3-luc cells' xenograft model in mice, through a combination of bioluminescence imaging, histological, and immunohistochemical analyses. Results: We observed in vitro that short-term treatment of cisplatin has a critical role in determining the potential induction of chemoresistance, and a nanotechnology-based drug delivery system can modulate it. The RNAseq analysis underlines a protective effect of nanoparticle system according to their ability to down-regulate several genes involved in chemoresistance, cell proliferation, and apoptosis. The highest intracellular platinum concentration obtained with Cis-NP treatment significantly improved the efficacy. Consistent with in vitro results, we found that Cis-NP treatment in vivo can significantly reduce tumor burden and aggressiveness compared to the free drug. Conclusion: Nanoparticle-mediated cisplatin delivery may serve as an intracellular depot impacting the cisplatin pharmacodynamic performance at cellular levels. These features may contribute to improving the drawbacks of conventional intraperitoneal therapy, and therefore will require further investigations in vivo.


Assuntos
Antineoplásicos/farmacologia , Cisplatino/farmacologia , Portadores de Fármacos/química , Espaço Intracelular/metabolismo , Nanomedicina/métodos , Nanopartículas/química , Neoplasias Ovarianas/tratamento farmacológico , Animais , Antineoplásicos/química , Antineoplásicos/metabolismo , Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cisplatino/química , Cisplatino/metabolismo , Cisplatino/uso terapêutico , Regulação para Baixo/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Feminino , Humanos , Camundongos , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Toxicol Lett ; 332: 146-154, 2020 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-32683294

RESUMO

Occludin is an important tight junction (TJ) protein in pulmonary epithelial cells. In this study, we identified changes in occludin in arsenic-induced lung injury in vivo and in vitro. Upon intratracheal instillation with arsenic trioxide (As2O3) at a daily dose of 30 µg/kg for 1 week, levels of occludin mRNA and protein expression decreased significantly in mouse lung tissue. Levels of occludin mRNA and protein expression in BEAS-2B cells were reduced upon exposure to As2O3 in a concentration- and time-dependent manner. In addition, exposure to As2O3 significantly increased expression of p-p38, p-ERK1/2, p-ELK1, and MLCK in mouse lung tissue and BEAS-2B cells. Treatment with As2O3 induced oxidative stress in mouse lung tissue and BEAS-2B cells. In BEAS-2B cells, exposure to As2O3 reduced transepithelial resistance, which was partially restored with N-acetyl-cysteine (NAC) treatment. Reduced expression of occludin mRNA and protein induced by As2O3 was entirely restored with NAC and resveratrol. However, SB203580, PD98059, and ML-7 partially blocked As2O3-induced occludin reduction in BEAS-2B cells. These results indicate that As2O3 inhibits occludin expression in vivo and in vitro at least partially via the ROS/ERK/ELK1/MLCK and ROS/p38 MAPK signaling pathways.


Assuntos
Arsenitos/toxicidade , Pulmão/metabolismo , Ocludina/biossíntese , Transdução de Sinais/efeitos dos fármacos , Animais , Linhagem Celular , Regulação para Baixo/efeitos dos fármacos , Glutationa/metabolismo , Humanos , Pulmão/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ocludina/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Peptídeos/efeitos dos fármacos , Peptídeos/metabolismo , Espécies Reativas de Oxigênio , Superóxido Dismutase/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/efeitos dos fármacos
11.
Toxicol Lett ; 332: 192-201, 2020 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-32693020

RESUMO

Fenvalerate, a synthetic pyrethroid insecticide, is an environmental endocrine disruptor and neurodevelopmental toxicant. An early report found that pubertal exposure to high-dose fenvalerate impaired cognitive and behavioral development. Here, we aimed to further investigate the effect of pubertal exposure to low-dose fenvalerate on cognitive and behavioral development. Mice were orally administered with fenvalerate (0.2, 1.0 and 5.0 mg/kg) daily from postnatal day (PND) 28 to PND56. Learning and memory were assessed by Morris water maze. Anxiety-related activities were detected by open-field and elevated plus-maze. Increased anxiety activities were observed only in females exposed to fenvalerate. Spatial learning and memory were damaged only in females exposed to fenvalerate. Histopathology observed numerous scattered shrinking neurons and nuclear pyknosis in hippocampal CA1 region. Neuronal density was reduced in hippocampal CA1 region of fenvalerate-exposed mice. Mechanistically, hippocampal thyroid hormone receptor (TR)ß1 was down-regulated in a dose-dependent manner in females. In addition, TRα1 was declined only in females exposed to 5.0 mg/kg fenvalerate. Taken together, these suggests that pubertal exposure to low-dose fenvalerate impairs cognitive and behavioral development in a gender-dependent manner. Hippocampal TR signaling may be, at least partially, involved in fenvalerate-induced impairment of cognitive and behavioral development.


Assuntos
Transtornos Cognitivos/induzido quimicamente , Hipocampo/metabolismo , Inseticidas/toxicidade , Nitrilos/toxicidade , Piretrinas/toxicidade , Transdução de Sinais/efeitos dos fármacos , Hormônios Tireóideos , Animais , Ansiedade/induzido quimicamente , Ansiedade/psicologia , Peso Corporal/efeitos dos fármacos , Região CA1 Hipocampal/efeitos dos fármacos , Região CA1 Hipocampal/metabolismo , Transtornos Cognitivos/psicologia , Relação Dose-Resposta a Droga , Regulação para Baixo/efeitos dos fármacos , Ingestão de Alimentos/efeitos dos fármacos , Disruptores Endócrinos , Feminino , Hipocampo/efeitos dos fármacos , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos ICR , Neurônios/patologia , Receptores dos Hormônios Tireóideos/efeitos dos fármacos , Caracteres Sexuais
12.
Anticancer Res ; 40(8): 4707-4710, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32727796

RESUMO

BACKGROUND/AIM: Serum-derived macrophage activating factor (serum-MAF) can rapidly activate macrophage phagocytic activity by inducing characteristic membrane ruffles designated as Frill-like structures. Serum-MAF contains γ-globulin, an activator of phagocytosis. This study examined whether serum-MAF and γ-globulin activate macrophages similarly. MATERIALS AND METHODS: Morphological changes in macrophages were observed by time-lapse imaging and the efficiency of engulfment was analysed quantitatively. Immunological staining of talin-1 and a calpain inhibitor were performed. RESULTS: The engulfment efficiency of serum-MAF- and γ-globulin-activated macrophages was significantly different. Talin-1 showed weak co-localisation with the Frill-like structures. Treatment with a calpain inhibitor similarly down-regulated phagocytosis irrespective of the activation factor. CONCLUSION: There was a difference between macrophage activation mechanisms by γ-globulin and serum-MAF. Talin may slightly contribute to serum-MAF activation. It is possible to distinguish between the calpain-dependent fundamental 'mechanism of phagocytosis' and the activating factor-dependent rapid 'activation mechanism'.


Assuntos
Ativação de Macrófagos/efeitos dos fármacos , Fatores Ativadores de Macrófagos/farmacologia , Macrófagos/efeitos dos fármacos , gama-Globulinas/farmacologia , Calpaína/farmacologia , Linhagem Celular , Regulação para Baixo/efeitos dos fármacos , Humanos , Fagocitose/efeitos dos fármacos , Células THP-1
13.
Chem Biol Interact ; 329: 109202, 2020 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-32717189

RESUMO

Triple-negative breast cancer (TNBC) is highly metastatic and lacks effective therapeutic targets among several subtypes of breast cancer. Cancer metastasis promotes the malignancy of TNBC and is closely related to the poor prognosis of the TNBC patients. We aim to explore novel agents that effectively inhibit cancer metastasis to treat TNBC. In our study, 2-Methoxy-5((3,4,5-trimethosyphenyl)seleninyl) phenol (SQ), a CA-4 analogue, could inhibit cell motility and invasion in MDA-MB-231 cells, and the mechanism is closely associated to the inhibition of epithelial-to-mesenchymal transition (EMT). Meanwhile, SQ significantly inhibited the expression and secretion of vascular endothelial growth factor (VEGF) in MDA-MB-231 cells. Moreover, the conditioned medium from SQ-treated MDA-MB-231 cells significantly inhibited the motility and invasion of human umbilical vein endothelial cells (HUVECs), which was correlated with the inhibition of EMT process in HUVECs. In addition, exogenous application of VEGF reversed the occurrence of EMT in HUVECs which stimulated by conditioned medium from SQ-treated cells. Furthermore, SQ inhibited vasculogenic mimicry (VM) formation in MDA-MB-231 cells, which was associated with VE-cadherin and EphA2 down-regulation. This study indicates that SQ inhibits MDA-MB-231 cell metastasis through suppressing EMT and VEGF, thereby implicating this compound might be a potential therapeutic agent against metastatic TNBC.


Assuntos
Transição Epitelial-Mesenquimal/efeitos dos fármacos , Compostos Organosselênicos/farmacologia , Fenóis/farmacologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Caderinas/metabolismo , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Meios de Cultivo Condicionados/farmacologia , Regulação para Baixo/efeitos dos fármacos , Feminino , Células Endoteliais da Veia Umbilical Humana , Humanos , Metaloproteinase 9 da Matriz/metabolismo , Neovascularização Fisiológica/efeitos dos fármacos , Compostos Organosselênicos/química , Fenóis/química , Receptor EphA2/metabolismo , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Fator A de Crescimento do Endotélio Vascular/genética
14.
Life Sci ; 258: 118094, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32673663

RESUMO

AIMS: Docosahexaenoic acid (DHA) as an omega 3 free fatty acid has been reported to exert anti-angiogenesis effects. However, our current understanding regarding the precise mechanisms of such effects is still limited. Exosomes secreted by cancer cells may act as angiogenesis promoters. The aim of the study was to determine altered expression levels of HIF-1α, TGF-ß, VEGFR, Snail1, Snail2 and SOX2 and their regulating microRNAs in MDA-MB-231 and BT-474 cell lines after treatment with DHA in both normoxic and hypoxic conditions. MAIN METHODS: Human breast cancer cell lines including MDA-MB-231 and BT-474 were treated for 24 h with 100 uM DHA under normoxic and hypoxic conditions. Exosomes were isolated from untreated and treated cells and characterized by transmission electron microscopy (TEM) and western blotting. RNAs from cells and isolated exosomes were extracted and cDNAs were synthesized. Expression levels of miRNAs and their pro-angiogenic target genes were analyzed using quantitative real-time PCR (qRT-PCR). KEY FINDINGS: We showed significant decrease in the expression of pro-angiogenic genes including HIF1-α, TGF-ß, SOX2, Snail1, Snail2 and VEGFR in cells and also their secreted exosomes after treatment with DHA in normoxic and hypoxic conditions. Also the expression levels of tumor suppressor miRs including miR-101, miR-199, miR-342 were increased and the expression levels of oncomiRs including mir-382 and miR-21 were decreased after treatment with DHA in cells and exosomes. SIGNIFICANCE: DHA can alter the expression of pro-angiogenic genes and microRNA contents in breast cancer cells and their derived-exosomes in favor of the inhibition of angiogenesis. Our data demonstrated new insight into DHA's anti-cancer action to target not only breast cancer cells but also their derived exosomes to suppress tumor angiogenesis.


Assuntos
Neoplasias da Mama/irrigação sanguínea , Neoplasias da Mama/genética , Ácidos Docosa-Hexaenoicos/farmacologia , Regulação para Baixo , Exossomos/genética , MicroRNAs/genética , Neovascularização Patológica/genética , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/ultraestrutura , Linhagem Celular Tumoral , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/genética , Exossomos/efeitos dos fármacos , Exossomos/ultraestrutura , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , MicroRNAs/metabolismo
15.
Arch Biochem Biophys ; 690: 108479, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32679194

RESUMO

The upregulation of checkpoint inhibitor PD-L1 expression has recently been associated with nasopharyngeal carcinoma (NPC) resistance to therapy. The mechanism of induction of PD-L1 has also been linked to enhanced aerobic glycolysis promoted by HIF1-α dysregulation and LDH-A activity in cancer. Here, we investigated the effect of the anti-tumoral compound Silibinin on HIF-1α/LDH-A mediated cancer cell metabolism and PD-L1 expression in NPC. Our results demonstrate that exposure to Silibinin potently inhibits tumor growth and promotes a shift from aerobic glycolysis toward oxidative phosphorylation. The EBV + NPC cell line C666-1 and glycolytic human tumor explants treated with Silibinin displayed a reduction in LDH-A activity which consistently associated with a reduction in lactate levels. This effect was accompanied by an increase in intracellular citrate levels in C666-1 cells. Accordingly, expression of HIF-1α, a critical regulator of glycolysis, was down-regulated after treatment. This event associated with a down-regulation in PD-L1. Altogether, our results provide evidence that silibinin can alter PD-L1 expression by interfering with HIF-1α/LDH-A mediated cell metabolism in NPC. These results provide a new perspective for Silibinin use to overcome PD-L1 mediated NPC resistance to therapy.


Assuntos
Antineoplásicos Fitogênicos/metabolismo , Antígeno B7-H1/genética , Glicólise/efeitos dos fármacos , Carcinoma Nasofaríngeo/tratamento farmacológico , Neoplasias Nasofaríngeas/tratamento farmacológico , Silibina/metabolismo , Adolescente , Adulto , Antineoplásicos Fitogênicos/farmacologia , Antígeno B7-H1/metabolismo , Biópsia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ciclo do Ácido Cítrico , Regulação para Baixo/efeitos dos fármacos , Descoberta de Drogas , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Lactato Desidrogenase 5/metabolismo , Pessoa de Meia-Idade , Fosforilação Oxidativa , Transdução de Sinais , Silibina/farmacologia
16.
Am J Chin Med ; 48(5): 1221-1241, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32668964

RESUMO

Tamoxifen is one of the most common hormone therapy drug for estrogen receptor (ER)-positive breast cancer. Tumor cells with drug resistance often cause recurrence and metastasis in cancer patients. Luteolin is a natural compound found from various types of vegetables and exhibit anticancer activity in different cancers. This study demonstrated that luteolin inhibits the proliferation and induces apoptosis of tamoxifen-resistant ER-positive breast cancer cells. Luteolin also causes cell cycle arrest at the G2/M phase and decreases mitochondrial membrane potential. Besides, luteolin reduces the levels of activated PI3K/AKT/mTOR signaling pathway. The combination treatment of luteolin and PI3K, AKT, or mTOR inhibitors synergistically increases apoptosis in tamoxifen-resistant ER-positive breast cancer cells. Ras gene family (K-Ras, H-Ras, and N-Ras), an activator of PI3K, was transcriptionally repressed by luteolin via induction of tumor suppressor mixed-lineage leukemia 3 (MLL3) expression. MLL3 increases the level of monomethylation of Histone 3 Lysine 4 on the enhancer and promoter region of Ras genes, thus causes repression of Ras expressions. Our finding implies that luteolin was a promising natural agent against tamoxifen resistance of breast cancer.


Assuntos
Apoptose/efeitos dos fármacos , Apoptose/genética , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Proteínas de Ligação a DNA/fisiologia , Expressão Gênica/efeitos dos fármacos , Luteolina/farmacologia , Antineoplásicos Fitogênicos , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/genética , Regulação para Baixo/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Feminino , Humanos , Metilação/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR , Tamoxifeno/farmacologia , Proteínas ras/genética , Proteínas ras/metabolismo
17.
Am J Chin Med ; 48(5): 1103-1120, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32668965

RESUMO

Centella asiatica (L.) Urb. (C. asiatica) has been widely treated for inflammation-related diseases in China for thousands of years. While C. asiatica showed relevant effects as traditional medicine, the mechanism of C. asiatica suppressing inflammation has not been thoroughly investigated. Therefore, this study was conducted to reveal the anti-inflammatory mechanism of methanol fraction from C. asiatica (MCA) at the molecular level in murine macrophages. Levels of inflammation-related mediators were observed with treatment of MCA. MCA significantly suppressed nitric oxide production and iNOS expression in RAW 264.7 macrophages. Prostaglandin E2 production was alleviated by MCA via the downregulation of cyclooxygenase-2. MCA treatment also reduced pro-inflammatory tumor necrosis factor-[Formula: see text] and interleukin (IL)-6 levels. LPS/D-GalN-induced acute hepatitis in mouse was alleviated by MCA treatment. In addition, MCA decreased the phosphorylation of inhibitory [Formula: see text]B[Formula: see text] (I[Formula: see text]B[Formula: see text]) at Ser32/36 and thereby blocked I[Formula: see text]B[Formula: see text] degradation. TXY motif phosphorylation in the activation loops of mitogen-activated protein kinases (MAPKs) was also suppressed by MCA treatment. Further investigation revealed that MCA inhibited transforming growth factor-[Formula: see text]-activated kinase 1 (TAK1) phosphorylation and IL-1 receptor-associated kinase (IRAK1) degradation, the upstream kinases activating nuclear factor [Formula: see text]B and MAPKs. Taken together, MCA exhibited anti-inflammatory properties via the downregulation of IRAK1-TAK1 signaling pathways.


Assuntos
Anti-Inflamatórios , Centella/química , Regulação para Baixo/efeitos dos fármacos , Expressão Gênica/efeitos dos fármacos , Quinases Associadas a Receptores de Interleucina-1/genética , Quinases Associadas a Receptores de Interleucina-1/metabolismo , MAP Quinase Quinase Quinases/genética , MAP Quinase Quinase Quinases/metabolismo , Macrófagos/metabolismo , Animais , Mediadores da Inflamação/metabolismo , Interleucina-6/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fosforilação/efeitos dos fármacos , Células RAW 264.7
18.
Am J Chin Med ; 48(5): 1121-1140, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32668966

RESUMO

Achillea millefolium L. (AM) is an aromatic herb with a variety of pharmacological properties, such as anti-inflammatory and anti-allergic activities. However, AM's effects on atopic dermatitis (AD) have not been investigated. This study evaluates the anti-AD activity of 50% ethanol-extracted AM in murine macrophage Raw 264.7 cells, in tumor necrosis factor-alpha/interferon-gamma (TNF-[Formula: see text]/IFN-[Formula: see text])-stimulated human immortal keratinocyte HaCaT cells in vitro, and in Biostir-AD-treated NC/Nga mice in vivo. The results showed that AM significantly downregulated expression of pro-inflammatory cytokines, such as INOS, COX-2, and interleukin (IL)-6 in lipopolysaccharide (LPS)-treated Raw 264.7 cells. The mRNA expressions of INOS, COX-2, and IL-6 decreased by 76.1%, 69.3%, and 31.8%, respectively. Overexpression of chemokines, such as activation-regulated chemokine and macrophage-derived chemokine, regulated on activation of normal T-cell expressed and secreted, and IL-8 was inhibited by 70.01%, 52.91%, 73.53%, and 18.93%, respectively, in TNF-[Formula: see text]/IFN-[Formula: see text]-stimulated HaCaT cells by downregulating the mitogen-activated protein kinase, I[Formula: see text]B[Formula: see text], and the signal transducer and activator of transcription 1 signaling pathways. AD-like symptoms, such as elevated serum immunoglobin E levels, epidermal thickening, high dermatitis severity score, transepidermal water loss, and reduced skin hydration, were relieved by the dietary administration of AM in Biostir-AD-treated NC/Nga mice. In addition, filaggrin expression increased significantly in AM-treated groups. These results suggest that AM could be a useful candidate for AD treatment.


Assuntos
Achillea/química , Anti-Inflamatórios , Fitoterapia , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Animais , Citocinas/metabolismo , Dermatite Atópica/tratamento farmacológico , Regulação para Baixo/efeitos dos fármacos , Humanos , Mediadores da Inflamação/metabolismo , Interferon gama/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Células RAW 264.7 , Fator de Necrose Tumoral alfa/metabolismo
19.
Am J Chin Med ; 48(5): 1159-1178, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32668973

RESUMO

Hepatic ischemia-reperfusion (IR) injury remains the major cause of liver damage post-liver surgery or transplantation. Diminishing oxidative stress and inflammatory responses is a powerful channel to reduce the rate of morbidity and mortality. Gastrodin (GSTD), a bioactive compound extracted from the traditional Chinese herbal agent with a long history of clinical application in nervous system diseases, is suggested to possess anti-oxidative effects on liver diseases, such as nonalcoholic fatty liver disease. However, the therapeutic potential of GSTD in liver IR injury remains unclear. In this paper, we performed surgery to set up the 70% hepatic IR injury models in mice after a three-day pretreatment of GSTD. We found the administration of GSTD reduced liver damage, which correlated with lower histological Suzuki's score, lower serum alanine transaminase (AST) and alanine transaminase (ALT) levels, less oxidative stress, and cell apoptosis in a dose-responsive manner, as compared to the parallel control. Meanwhile, we observed a great induction of heme oxygenase-1 (HO-1) and an activation of the p38 mitogen-activated protein kinases/nuclear factor erythroid 2-related factor 2 (p38MAPK/Nrf2) pathway in response to the GSTD pretreatment, while the protective effects upon GSTD diminished in mice with HO-1 heterozygous mutation. In addition, GSTD inhibited IR induced toll-like receptor (TLR) 4, but not TLR2 in a HO-1 dependent manner, leading to a down-regulation of cytokines, such as interleukin (IL)-6 and TNF-[Formula: see text]. Collectively, our findings revealed GSTD attenuated liver IR injury via activation of the HO-1 pathway, providing a novel therapeutic strategy to minimize the IR induced oxidative stress in the process of liver transplantation.


Assuntos
Antioxidantes , Álcoois Benzílicos/administração & dosagem , Álcoois Benzílicos/farmacologia , Glucosídeos/administração & dosagem , Glucosídeos/farmacologia , Fígado , Fator 2 Relacionado a NF-E2/metabolismo , Fitoterapia , Traumatismo por Reperfusão/prevenção & controle , Transdução de Sinais/efeitos dos fármacos , Animais , Citocinas/metabolismo , Modelos Animais de Doenças , Regulação para Baixo/efeitos dos fármacos , Medicamentos de Ervas Chinesas , Heme Oxigenase-1/metabolismo , Camundongos Endogâmicos C57BL , Estresse Oxidativo/efeitos dos fármacos , Cuidados Pré-Operatórios , Receptor 4 Toll-Like/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
20.
PLoS One ; 15(6): e0232068, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32559187

RESUMO

Cyclin Dependent Kinase 9 (CDK9) associates with Bromodomain and Extra-Terminal Domain (BET) proteins to promote transcriptional elongation by phosphorylation of serine 2 of RNAP II C-terminal domain. We examined the therapeutic potential of selective CDK9 inhibitors (AZD 4573 and MC180295) against human multiple myeloma cells in vitro. Short-hairpin RNA silencing of CDK9 in Multiple Myeloma (MM) cell lines reduced cell viability compared to control cells showing the dependency of MM cells on CDK9. In order to explore synergy with the CDK9 inhibitor, proteolysis targeting chimeric molecule (PROTAC) ARV 825 was added. This latter drug causes ubiquitination of BET proteins resulting in their rapid and efficient degradation. Combination treatment of MM cells with ARV 825 and AZD 4573 markedly reduced their protein expression of BRD 2, BRD 4, MYC and phosphorylated RNA pol II as compared to each single agent alone. Combination treatment synergistically inhibited multiple myeloma cells both in vitro and in vivo with insignificant weight loss. The combination also resulted in marked increase of apoptotic cells at low dose compared to single agent alone. Taken together, our studies show for the first time that the combination of a BET PROTAC (ARV 825) plus AZD 4573 (CDK9 inhibitor) is effective against MM cells.


Assuntos
Quinase 9 Dependente de Ciclina/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Proteínas/metabolismo , Proteólise/efeitos dos fármacos , Animais , Azepinas/farmacologia , Azepinas/uso terapêutico , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Quinase 9 Dependente de Ciclina/genética , Quinase 9 Dependente de Ciclina/metabolismo , Regulação para Baixo/efeitos dos fármacos , Sinergismo Farmacológico , Humanos , Camundongos , Camundongos SCID , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/patologia , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas/genética , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Interferência de RNA , RNA Polimerase II/metabolismo , RNA Interferente Pequeno/metabolismo , Talidomida/análogos & derivados , Talidomida/farmacologia , Talidomida/uso terapêutico , Transplante Heterólogo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA