Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 10.765
Filtrar
1.
J Transl Med ; 19(1): 338, 2021 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-34372858

RESUMO

BACKGROUND: Fine tuned balance of reactive oxygen species (ROS) is essential for tumor cells and tumor cells use immune checkpoints to evade attack form immunity system. However, it's unclear whether there is any crosstalk between these two pathways. CYB561D2, an antioxidant protein, is part of 5-gene prognosis signature in gliomas and its involvement in gliomas is unknown. Here, we aim to provide a detailed characterization of CYB561D2 in gliomas. METHODS: CYB561D2 expression was measured in clinical samples of gilomas and normal tissues. The effects of CYB561D2 on immunity related genes and tumor behaviors were investigated in glioma cell lines with various in vitro and in vivo assays. RESULTS: CYB561D2 expression was enhanced in gliomas compared to control tissues. CYB561D2 up-regulation was associated with high grading of gliomas and short survival in patients. CYB561D2 expression was induced by H2O2 in glioma cell lines. CYB561D2 and its functional product ascorbate activated STAT3 dose-dependently. CYB561D2 over-expression increased PD-L1, CCL2 and TDO2 expression, and induced immunosuppression in co-cultured T cells. In in vitro assays, CYB561D2 knock-down suppressed cell growth, colony formation, migration and promoted apoptosis. In contrast, CYB561D2 over-expression reduced survival rate in intracranial glioma model and this effect could be blocked by dominant negative-STAT3. The CYB561D2 up-regulation and the positive association of CYB561D2 with PD-L1, CCL2 and TDO2 expression were cross-validated in open-access datasets. CONCLUSIONS: CYB561D2 up-regulation induces immunosuppression and aggression via activating STAT3 in gliomas and CYB561D2 mediates ROS-tumor immunity crosstalk.


Assuntos
Neoplasias Encefálicas , Glioma , Agressão , Neoplasias Encefálicas/genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Glioma/genética , Humanos , Peróxido de Hidrogênio , Imunossupressão , Fator de Transcrição STAT3/metabolismo , Regulação para Cima/genética
2.
FASEB J ; 35(9): e21827, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34383980

RESUMO

Neuron-derived orphan receptor 1, NR4A3 (Nor1)/NR4A3 is an orphan nuclear receptor involved in the transcriptional control of developmental and neurological functions. Oxidative stress-induced conditions are primarily associated with neurological defects in humans, yet the impact on Nor1-mediated transcription of neuronal genes remains with unknown mechanism. Here, we demonstrate that Nor1 is a non-conventional target of SUMO2/3 conjugation at Lys-137 contained in an atypic ψKxSP motif referred to as the pSuM. Nor1 pSuM SUMOylation differs from the canonical process with the obligate phosphorylation of Ser-139 by Ras signaling to create the required negatively charged interface for SUMOylation. Additional phosphorylation at sites flanking the pSuM is also mediated by the coordinated action of protein kinase casein kinase 2 to function as a small ubiquitin-like modifier enhancer, regulating Nor1-mediated transcription and proteasomal degradation. Nor1 responsive genes involved in cell proliferation and metabolism, such as activating transcription factor 3, cyclin D1, CASP8 and FADD-like apoptosis regulator, and enolase 3 were upregulated in response to pSuM disruption in mouse HT-22 hippocampal neuronal cells and human neuroblastoma SH-SY5Y cells. We also identified critical antioxidant genes, such as catalase, superoxide dismutase 1, and microsomal glutathione S-transferase 2, as responsive targets of Nor1 under pSuM regulation. Nor1 SUMOylation impaired gene transcription through less effective Nor1 chromatin binding and reduced enrichment of histone H3K27ac marks to gene promoters. These effects resulted in decreased neuronal cell growth, increased apoptosis, and reduced survival to oxidative stress damage, underlying the role of pSuM-modified Nor1 in redox homeostasis. Our findings uncover a hierarchical post-translational mechanism that dictates Nor1 non-canonical SUMOylation, disrupting Nor1 transcriptional competence, and neuroprotective redox sensitivity.


Assuntos
Sobrevivência Celular/genética , Proteínas de Ligação a DNA/genética , Receptores de Esteroides/genética , Receptores dos Hormônios Tireóideos/genética , Sumoilação/genética , Animais , Apoptose/genética , Linhagem Celular , Linhagem Celular Tumoral , Proliferação de Células/genética , Quinase do Ponto de Checagem 2/genética , Regulação da Expressão Gênica/genética , Células HEK293 , Hipocampo/metabolismo , Homeostase/genética , Humanos , Camundongos , Neuroblastoma/genética , Neurônios/metabolismo , Oxirredução , Estresse Oxidativo/genética , Fosforilação/genética , Regiões Promotoras Genéticas/genética , Processamento de Proteína Pós-Traducional/genética , Transcrição Genética/genética , Ativação Transcricional/genética , Regulação para Cima/genética
3.
FASEB J ; 35(9): e21789, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34383983

RESUMO

Normal pregnancy is essential for human reproduction. However, BaP (benzo(a)pyrene) and its metabolite BPDE (benzo(a)pyrene-7,8-dihydrodiol-9,10-epoxide) could cause dysfunctions of human trophoblast cells and might further induce miscarriage. Yet, the underlying mechanisms remain largely unknown. Herein, we identified a novel upregulated lnc-HZ04 and a novel downregulated miR-hz04 in villous tissues of unexplained recurrent miscarriage (RM) relative to those in healthy control tissues and also in BPDE-treated human trophoblast cells. Lnc-HZ04 directly and specifically bound with miR-hz04, diminished the reduction effects of miR-hz04 on IP3 R1 mRNA expression level and on IP3 R1 mRNA stability, and then activated the Ca2+ -mediated IP3 R1 /p-CaMKII/SGCB pathway, which further promoted trophoblast cell apoptosis. The miR-hz04 target site on lnc-HZ04 played crucial roles in these regulations. In normal trophoblast, relatively less lnc-HZ04 and more miR-hz04 suppressed this apoptosis pathway and gave normal pregnancy. After exposure to BPDE or in RM tissues, p53 was upregulated, which might promote p53-mediated lnc-HZ04 transcription. Relatively more lnc-HZ04 and less miR-hz04 activated this apoptosis pathway and might further induce miscarriage. BaP could also induce mice miscarriage by upregulating its corresponding murine apoptosis pathway. Therefore, BPDE-induced apoptosis of human trophoblast cells was associated with the occurrence of miscarriage. This work discovered the regulation roles of lnc-HZ04 and miR-hz04 and provided scientific and clinical understanding of the occurrence of unexplained miscarriage.


Assuntos
Aborto Habitual/genética , Apoptose/genética , MicroRNAs/genética , RNA Longo não Codificante/genética , Transdução de Sinais/genética , Trofoblastos/metabolismo , Regulação para Cima/genética , 7,8-Di-Hidro-7,8-Di-Hidroxibenzo(a)pireno 9,10-óxido/farmacologia , Aborto Habitual/tratamento farmacológico , Animais , Apoptose/efeitos dos fármacos , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Linhagem Celular , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/genética , Feminino , Humanos , Receptores de Inositol 1,4,5-Trifosfato/genética , Camundongos , Camundongos Endogâmicos C57BL , Gravidez , Sarcoglicanas/genética , Transdução de Sinais/efeitos dos fármacos , Trofoblastos/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos
4.
EBioMedicine ; 70: 103525, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34392148

RESUMO

BACKGROUND: While our battle with the COVID-19 pandemic continues, a multitude of Omics data have been generated from patient samples in various studies. Translation of these data into clinical interventions against COVID-19 remains to be accomplished. Exploring host response to COVID-19 in the upper respiratory tract can unveil prognostic markers and therapeutic targets. METHODS: We conducted a meta-analysis of published transcriptome and proteome profiles of respiratory samples of COVID-19 patients to shortlist high confidence upregulated host factors. Subsequently, mRNA overexpression of selected genes was validated in nasal swabs from a cohort of COVID-19 positive/negative, symptomatic/asymptomatic individuals. Guided by this analysis, we sought to check for potential drug targets. An FDA-approved drug, Auranofin, was tested against SARS-CoV-2 replication in cell culture and Syrian hamster challenge model. FINDINGS: The meta-analysis and validation in the COVID-19 cohort revealed S100 family genes (S100A6, S100A8, S100A9, and S100P) as prognostic markers of severe COVID-19. Furthermore, Thioredoxin (TXN) was found to be consistently upregulated. Auranofin, which targets Thioredoxin reductase, was found to mitigate SARS-CoV-2 replication in vitro. Furthermore, oral administration of Auranofin in Syrian hamsters in therapeutic as well as prophylactic regimen reduced viral replication, IL-6 production, and inflammation in the lungs. INTERPRETATION: Elevated mRNA level of S100s in the nasal swabs indicate severe COVID-19 disease, and FDA-approved drug Auranofin mitigated SARS-CoV-2 replication in preclinical hamster model. FUNDING: This study was supported by the DBT-IISc partnership program (DBT (IED/4/2020-MED/DBT)), the Infosys Young Investigator award (YI/2019/1106), DBT-BIRAC grant (BT/CS0007/CS/02/20) and the DBT-Wellcome Trust India Alliance Intermediate Fellowship (IA/I/18/1/503613) to ST lab.


Assuntos
COVID-19/genética , Nasofaringe/virologia , Proteoma/genética , Transcriptoma/genética , Adulto , Animais , Biomarcadores/metabolismo , COVID-19/patologia , COVID-19/virologia , Linhagem Celular , Chlorocebus aethiops , Estudos de Coortes , Feminino , Células HEK293 , Humanos , Inflamação/genética , Inflamação/virologia , Interleucina-6/genética , Masculino , Mesocricetus , Pessoa de Meia-Idade , Nasofaringe/patologia , Pandemias , Prognóstico , RNA Mensageiro/genética , SARS-CoV-2/patogenicidade , Regulação para Cima/genética , Células Vero , Replicação Viral/genética
5.
Mol Cell Biol ; 41(9): e0058020, 2021 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-34228494

RESUMO

Cardiac fibrosis is a hallmark of various heart diseases and ultimately leads to heart failure. Although long noncoding RNA (lncRNA) SNHG20 has been reported to play important roles in various cancers, its function in cardiac fibrosis remains unclear. The expression of SNHG20 and microRNA 335 (miR-335) in heart tissues of angiotensin II-induced mice and angiotensin II-stimulated mouse cardiomyocyte cell line HL-1 were detected by quantitative real-time PCR (qRT-PCR). Cell viability was evaluated by cell counting kit-8 assay. The expression of galectin-3, fibrosis-related proteins (fibronectin, collagen IaI, and α-SMA), and apoptosis-related proteins [cleaved caspase-3 and cleaved poly(ADP-ribose) polymerase (PARP)] was detected by Western blotting. Bioinformatics prediction, luciferase reporter assay, and RNA pulldown assay were performed to determine the relationship between SNHG20 and miR-335 as well as miR-335 and Galectin-3. Gain- and loss-function assays were performed to determine the role of SNHG20/miR-335/Galectin-3 in cardiac fibrosis. SNHG20 was significantly upregulated and miR-335 was downregulated in heart tissues of angiotensin II-treated mice and angiotensin II-stimulated HL-1 cells. Downregulation of SNHG20 effectively enhanced cell viability and decreased cell size of HL-1 cells and the expression levels of fibrosis-related proteins (fibronectin, collagen IaI, and α-SMA) and apoptosis-related proteins (cleaved caspase-3 and cleaved PARP), which were induced by angiotensin II treatment. Furthermore, SNHG20 elevated the expression levels of Galectin-3 by directly regulating miR-335. Our study revealed that downregulation of SNHG20 improved angiotensin II-induced cardiac fibrosis by targeting the miR-335/Galectin-3 axis, suggesting that SNHG20 is a therapeutic target for cardiac fibrosis and hypertrophy.


Assuntos
Cardiomegalia/genética , Galectina 3/genética , Regulação da Expressão Gênica , MicroRNAs/genética , Miocárdio/patologia , RNA Longo não Codificante/metabolismo , Angiotensina II , Animais , Sequência de Bases , Cardiotônicos/metabolismo , Linhagem Celular , Regulação para Baixo/genética , Fibrose , Galectina 3/metabolismo , Camundongos Endogâmicos C57BL , MicroRNAs/metabolismo , Miócitos Cardíacos/metabolismo , RNA Longo não Codificante/genética , Regulação para Cima/genética
6.
Nutrients ; 13(7)2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-34209243

RESUMO

Many studies have shown the beneficial effects of calorie restriction (CR) on rodents' aging; however, the molecular mechanism explaining these beneficial effects is still not fully understood. Previously, we conducted transcriptomic analysis on rat liver with short-term and mild-to-moderate CR to elucidate its early response to such diet. Here, we expanded transcriptome analysis to muscle, adipose tissue, intestine, and brain and compared the gene expression profiles of these multiple organs and of our previous dataset. Several altered gene expressions were found, some of which known to be related to CR. Notably, the commonly regulated genes by CR include nicotinamide phosphoribosyltransferase and heat shock protein 90, which are involved in declining the aging process and thus potential therapeutic targets for aging-related diseases. The data obtained here provide information on early response markers and key mediators of the CR-induced delay in aging as well as on age-associated pathological changes in mammals.


Assuntos
Restrição Calórica , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Especificidade de Órgãos/genética , Animais , Regulação para Baixo/genética , Masculino , Metanálise como Assunto , Ratos Wistar , Regulação para Cima/genética
7.
Int J Mol Sci ; 22(14)2021 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-34298922

RESUMO

The coordinated transcription of the genome is the fundamental mechanism in molecular biology. Transcription in eukaryotes is carried out by three main RNA polymerases: Pol I, II, and III. One basic problem is how a decrease in tRNA levels, by downregulating Pol III efficiency, influences the expression pattern of protein-coding genes. The purpose of this study was to determine the mRNA levels in the yeast mutant rpc128-1007 and its overdose suppressors, RBS1 and PRT1. The rpc128-1007 mutant prevents assembly of the Pol III complex and functionally mimics similar mutations in human Pol III, which cause hypomyelinating leukodystrophies. We applied RNAseq followed by the hierarchical clustering of our complete RNA-seq transcriptome and functional analysis of genes from the clusters. mRNA upregulation in rpc128-1007 cells was generally stronger than downregulation. The observed induction of mRNA expression was mostly indirect and resulted from the derepression of general transcription factor Gcn4, differently modulated by suppressor genes. rpc128-1007 mutation, regardless of the presence of suppressors, also resulted in a weak increase in the expression of ribosome biogenesis genes. mRNA genes that were downregulated by the reduction of Pol III assembly comprise the proteasome complex. In summary, our results provide the regulatory links affected by Pol III assembly that contribute differently to cellular fitness.


Assuntos
RNA Polimerase III/genética , RNA Mensageiro/genética , Saccharomyces cerevisiae/genética , RNA Polimerases Dirigidas por DNA/genética , Regulação para Baixo/genética , Regulação Fúngica da Expressão Gênica/genética , Humanos , RNA Polimerase II/genética , RNA de Transferência/genética , Proteínas de Saccharomyces cerevisiae/genética , Fatores de Transcrição/genética , Transcrição Genética/genética , Ativação Transcricional/genética , Transcriptoma/genética , Regulação para Cima/genética
8.
Mol Cell ; 81(14): 2989-3006.e9, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-34197737

RESUMO

Stalled DNA replication fork restart after stress as orchestrated by ATR kinase, BLM helicase, and structure-specific nucleases enables replication, cell survival, and genome stability. Here we unveil human exonuclease V (EXO5) as an ATR-regulated DNA structure-specific nuclease and BLM partner for replication fork restart. We find that elevated EXO5 in tumors correlates with increased mutation loads and poor patient survival, suggesting that EXO5 upregulation has oncogenic potential. Structural, mechanistic, and mutational analyses of EXO5 and EXO5-DNA complexes reveal a single-stranded DNA binding channel with an adjacent ATR phosphorylation motif (T88Q89) that regulates EXO5 nuclease activity and BLM binding identified by mass spectrometric analysis. EXO5 phospho-mimetic mutant rescues the restart defect from EXO5 depletion that decreases fork progression, DNA damage repair, and cell survival. EXO5 depletion furthermore rescues survival of FANCA-deficient cells and indicates EXO5 functions epistatically with SMARCAL1 and BLM. Thus, an EXO5 axis connects ATR and BLM in directing replication fork restart.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/genética , Replicação do DNA/genética , DNA/genética , Exonucleases/genética , Instabilidade Genômica/genética , RecQ Helicases/genética , Linhagem Celular , Linhagem Celular Tumoral , Dano ao DNA/genética , DNA Helicases/genética , Análise Mutacional de DNA/métodos , Reparo do DNA/genética , Proteínas de Ligação a DNA/genética , Células HEK293 , Células HeLa , Humanos , Mutação/genética , Oncogenes/genética , Fosforilação/genética , Regulação para Cima/genética
9.
Biomed Pharmacother ; 139: 111633, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34243624

RESUMO

Idiopathic pulmonary fibrosis (IPF) is the most common and most deadly form of interstitial lung disease. Osteopontin (OPN), a matricellular protein with proinflammatory and profibrotic properties, plays a major role in several fibrotic diseases, including IPF; OPN is highly upregulated in patients' lung samples. In this study, we knocked down OPN in a bleomycin (BLM)-induced pulmonary fibrosis (PF) mouse model using small interfering RNA (siRNA) to determine whether the use of OPN siRNA is an effective therapeutic strategy for IPF. We found that fibrosing areas were significantly smaller in specimens from OPN siRNA-treated mice. The number of alveolar macrophages, neutrophils, and lymphocytes in bronchoalveolar lavage fluid was also reduced in OPN siRNA-treated mice. Regarding the expression of epithelial-mesenchymal transition (EMT)-related proteins, the administration of OPN-siRNA to BLM-treated mice upregulated E-cadherin expression and downregulated vimentin expression. Moreover, in vitro, we incubated the human alveolar adenocarcinoma cell line A549 with transforming growth factor (TGF)-ß1 and subsequently transfected the cells with OPN siRNA. We found a significant upregulation of Col1A1, fibronectin, and vimentin after TGF-ß1 stimulation in A549 cells. In contrast, a downregulation of Col1A1, fibronectin, and vimentin mRNA levels was observed in TGF-ß1-stimulated OPN knockdown A549 cells. Therefore, the downregulation of OPN effectively reduced pulmonary fibrotic and EMT changes both in vitro and in vivo. Altogether, our results indicate that OPN siRNA exerts a protective effect on BLM-induced PF in mice. Our results provide a basis for the development of novel targeted therapeutic strategies for IPF.


Assuntos
Bleomicina/farmacologia , Transição Epitelial-Mesenquimal/genética , Fibrose Pulmonar Idiopática/induzido quimicamente , Fibrose Pulmonar Idiopática/genética , Osteopontina/genética , Células A549 , Animais , Líquido da Lavagem Broncoalveolar , Linhagem Celular Tumoral , Regulação para Baixo/genética , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Humanos , Pulmão/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , RNA Interferente Pequeno/genética , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Fator de Crescimento Transformador beta1/genética , Regulação para Cima/genética
10.
Aging (Albany NY) ; 13(13): 17428-17441, 2021 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-34257163

RESUMO

Skeletal muscle is capable of repairing itself after injury to maintain the stability of its own tissue, but this ability declines with aging. Circular RNAs (circRNAs) are involved in cell aging. However, there is little research into their role and underlying mechanisms, especially in skeletal muscle stem cells (SkMSCs). In this study, we assessed circRNA FUT10 expression in aged and adult SkMSCs. We observed that circRNA FUT10 was upregulated in aged SkMSCs compared with that in adult SkMSCs. Furthermore, we identified putative miR-365-3p binding sites on circRNA FUT10, suggesting that this circRNA sponges miR-365a-3p. We also found that HOXA9 is a downstream target of miR-365a-3p and confirmed that miR-365a-3p can bind to circRNA FUT10 and the 3'-untranslated region of HOXA9 mRNA. This finding indicated that miR-365a-3p might serve as a "bridge" between circRNA FUT10 and HOXA9. Finally, we found that the circRNA FUT10/miR365a-3p/HOXA9 axis is involved in SkMSC aging. Collectively, our results show that the circRNA FUT10/miR365a-3p/HOXA9 axis is a promising therapeutic target and are expected to facilitate the development of therapeutic strategies to improve the prognosis of degenerative muscle disease.


Assuntos
Fucosiltransferases/genética , Proteínas de Homeodomínio/genética , Fibras Musculares Esqueléticas/fisiologia , RNA Circular/genética , Células-Tronco , Regiões 3' não Traduzidas , Envelhecimento/genética , Animais , Feminino , Marcação de Genes , Camundongos , Camundongos Endogâmicos BALB C , Doenças Musculares/genética , Doenças Musculares/patologia , Regulação para Cima/genética
11.
Front Immunol ; 12: 595150, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34262555

RESUMO

As one of the current global health conundrums, COVID-19 pandemic caused a dramatic increase of cases exceeding 79 million and 1.7 million deaths worldwide. Severe presentation of COVID-19 is characterized by cytokine storm and chronic inflammation resulting in multi-organ dysfunction. Currently, it is unclear whether extrapulmonary tissues contribute to the cytokine storm mediated-disease exacerbation. In this study, we applied systems immunology analysis to investigate the immunomodulatory effects of SARS-CoV-2 infection in lung, liver, kidney, and heart tissues and the potential contribution of these tissues to cytokines production. Notably, genes associated with neutrophil-mediated immune response (e.g. CXCL1) were particularly upregulated in lung, whereas genes associated with eosinophil-mediated immune response (e.g. CCL11) were particularly upregulated in heart tissue. In contrast, immune responses mediated by monocytes, dendritic cells, T-cells and B-cells were almost similarly dysregulated in all tissue types. Focused analysis of 14 cytokines classically upregulated in COVID-19 patients revealed that only some of these cytokines are dysregulated in lung tissue, whereas the other cytokines are upregulated in extrapulmonary tissues (e.g. IL6 and IL2RA). Investigations of potential mechanisms by which SARS-CoV-2 modulates the immune response and cytokine production revealed a marked dysregulation of NF-κB signaling particularly CBM complex and the NF-κB inhibitor BCL3. Moreover, overexpression of mucin family genes (e.g. MUC3A, MUC4, MUC5B, MUC16, and MUC17) and HSP90AB1 suggest that the exacerbated inflammation activated pulmonary and extrapulmonary tissues remodeling. In addition, we identified multiple sets of immune response associated genes upregulated in a tissue-specific manner (DCLRE1C, CHI3L1, and PARP14 in lung; APOA4, NFASC, WIPF3, and CD34 in liver; LILRA5, ISG20, S100A12, and HLX in kidney; and ASS1 and PTPN1 in heart). Altogether, these findings suggest that the cytokines storm triggered by SARS-CoV-2 infection is potentially the result of dysregulated cytokine production by inflamed pulmonary and extrapulmonary (e.g. liver, kidney, and heart) tissues.


Assuntos
COVID-19/epidemiologia , COVID-19/imunologia , Rim/imunologia , Fígado/imunologia , Pulmão/imunologia , Miocárdio/imunologia , Pandemias , SARS-CoV-2/imunologia , Índice de Gravidade de Doença , Biomarcadores/sangue , COVID-19/sangue , COVID-19/complicações , Estudos de Casos e Controles , Síndrome da Liberação de Citocina/etiologia , Síndrome da Liberação de Citocina/imunologia , Citocinas/biossíntese , Humanos , Imunidade/genética , Monócitos/imunologia , Neutrófilos/imunologia , Transcriptoma , Regulação para Cima/genética
12.
Int J Mol Sci ; 22(14)2021 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-34298927

RESUMO

Adult human subcutaneous adipose tissue (AT) harbors a rich population of mesenchymal stromal cells (MSCs) that are of interest for tissue repair. For this purpose, it is of utmost importance to determine the response of AT-MSCs to proliferative and inflammatory signals within the damaged tissue. We have characterized the transcriptional profile of cytokines, regulatory mediators and Toll-like receptors (TLR) relevant to the response of MSCs. AT-MSCs constitutively present a distinct profile for each gene and differentially responded to inflammation and cell-passaging. Inflammation leads to an upregulation of IL-6, IL-8, IL-1ß, TNFα and CCL5 cytokine expression. Inflammation and cell-passaging increased the expression of HGF, IDO1, PTGS1, PTGS2 and TGFß. The expression of the TLR pattern was differentially modulated with TLR 1, 2, 3, 4, 9 and 10 being increased, whereas TLR 5 and 6 downregulated. Functional enrichment analysis demonstrated a complex interplay between cytokines, TLR and regulatory mediators central for tissue repair. This profiling highlights that following a combination of inflammatory and proliferative signals, the sensitivity and responsive capacity of AT-MSCs may be significantly modified. Understanding these transcriptional changes may help the development of novel therapeutic approaches.


Assuntos
Citocinas/genética , Regulação da Expressão Gênica/genética , Inflamação/genética , Células-Tronco Mesenquimais/metabolismo , Transdução de Sinais/genética , Receptores Toll-Like/genética , Transcrição Genética/genética , Proliferação de Células/genética , Regulação para Baixo/genética , Humanos , Gordura Subcutânea/metabolismo , Regulação para Cima/genética
13.
Int J Mol Sci ; 22(14)2021 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-34298928

RESUMO

Salt stress seriously restricts crop yield and quality, leading to an urgent need to understand its effects on plants and the mechanism of plant responses. Although phytohormones are crucial for plant responses to salt stress, the role of phytohormone signal transduction in the salt stress responses of stress-resistant species such as Sophora alopecuroides has not been reported. Herein, we combined transcriptome and metabolome analyses to evaluate expression changes of key genes and metabolites associated with plant hormone signal transduction in S. alopecuroides roots under salt stress for 0 h to 72 h. Auxin, cytokinin, brassinosteroid, and gibberellin signals were predominantly involved in regulating S. alopecuroides growth and recovery under salt stress. Ethylene and jasmonic acid signals may negatively regulate the response of S. alopecuroides to salt stress. Abscisic acid and salicylic acid are significantly upregulated under salt stress, and their signals may positively regulate the plant response to salt stress. Additionally, salicylic acid (SA) might regulate the balance between plant growth and resistance by preventing reduction in growth-promoting hormones and maintaining high levels of abscisic acid (ABA). This study provides insight into the mechanism of salt stress response in S. alopecuroides and the corresponding role of plant hormones, which is beneficial for crop resistance breeding.


Assuntos
Estresse Salino/genética , Transdução de Sinais/genética , Sophora/genética , Ácido Abscísico/metabolismo , Brassinosteroides/metabolismo , Citocininas/genética , Etilenos/metabolismo , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica de Plantas/genética , Ácidos Indolacéticos/metabolismo , Melhoramento Vegetal/métodos , Reguladores de Crescimento de Plantas/genética , Proteínas de Plantas/genética , Ácido Salicílico/metabolismo , Tolerância ao Sal/genética , Sophora/metabolismo , Estresse Fisiológico/genética , Transcriptoma/genética , Regulação para Cima/genética
14.
Int J Mol Sci ; 22(14)2021 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-34298931

RESUMO

Rhus potaninii Maxim is an economically and medicinally important tree species in China. It produces galls (induced by aphids) with a high abundance of tannins. Here, we discuss the histology, cellular structures and their distribution, and the macromolecular components of secretive glandular trichomes on the leaves of R. potaninii. A variation in the density of glandular trichomes and tomenta was found between the adaxial and abaxial sides of a leaf in different regions and stages of the leaf. The glandular trichomes on R. potaninii trees comprise a stalk with no cellular structure and a head with 8-15 cells. Based on staining, we found that the secretion of glandular trichomes has many polysaccharides, phenolic compounds, and acidic lipids but very few neutral lipids. The dense glandular trichomes provide mechanical protection for young tissues; additionally, their secretion protects the young tissues from pathogens by a special chemical component. According to transcriptome analysis, we found enhanced biosynthetic and metabolism pathways of glycan, lipids, toxic amino acids, and phenylpropanoids. This shows a similar tendency to the staining. The numbers of differentially expressed genes were large or small; the averaged range of upregulated genes was greater than that of the downregulated genes in most subpathways. Some selectively expressed genes were found in glandular trichomes, responsible for the chitinase activity and pathogenesis-related proteins, which all have antibacterial activity and serve for plant defense. To our knowledge, this is the first study showing the components of the secretion from glandular trichomes on the leaf surface of R. potaninii.


Assuntos
Regulação da Expressão Gênica de Plantas/genética , Expressão Gênica/genética , Folhas de Planta/genética , Rhus/genética , Transcriptoma/genética , Tricomas/genética , Regulação para Baixo/genética , Perfilação da Expressão Gênica/métodos , Lipídeos/genética , Fenol/metabolismo , Polissacarídeos/metabolismo , Tricomas/metabolismo , Regulação para Cima/genética
15.
Int J Mol Sci ; 22(14)2021 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-34298930

RESUMO

(1) Background: Non-alcoholic fatty liver disease (NAFLD) is a growing global health problem. NAFLD progression involves a complex interplay of imbalanced inflammatory cell populations and inflammatory signals such as reactive oxygen species and cytokines. These signals can derive from the liver itself but also from adipose tissue or be mediated via changes in the gut microbiome. We analyzed the effects of a simultaneous migration blockade caused by L-selectin-deficiency and an enhancement of the anti-oxidative stress response triggered by hepatocytic Kelch-like ECH-associated protein 1 (Keap1) deletion on NAFLD progression. (2) Methods: L-selectin-deficient mice (Lsel-/-Keap1flx/flx) and littermates with selective hepatic Keap1 deletion (Lsel-/-Keap1Δhepa) were compared in a 24-week Western-style diet (WD) model. (3) Results: Lsel-/-Keap1Δhepa mice exhibited increased expression of erythroid 2-related factor 2 (Nrf2) target genes in the liver, decreased body weight, reduced epidydimal white adipose tissue with decreased immune cell frequencies, and improved glucose response when compared to their Lsel-/-Keap1flx/flx littermates. Although WD feeding caused drastic changes in fecal microbiota profiles with decreased microbial diversity, no genotype-dependent shifts were observed. (4) Conclusions: Upregulation of the anti-oxidative stress response improves metabolic changes in L-selectin-deficient mice but does not prevent NAFLD progression and shifts in the gut microbiota.


Assuntos
Fezes/microbiologia , Selectina L/genética , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , Estresse Oxidativo/genética , Regulação para Cima/genética , Animais , Dieta Ocidental , Microbioma Gastrointestinal/genética , Hepatócitos/metabolismo , Hepatócitos/patologia , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fator 2 Relacionado a NF-E2/genética , Hepatopatia Gordurosa não Alcoólica/patologia , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/genética
16.
Int J Mol Sci ; 22(14)2021 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-34298935

RESUMO

In vitro evaluation of bone graft materials is generally performed by analyzing the interaction with osteoblasts or osteoblast precursors. In vitro bone models comprising different cell species can give specific first information on the performance of those materials. In the present study, a 3D co-culture model was established comprising primary human osteoblasts, osteoclasts and osteocytes. Osteocytes were differentiated from osteoblasts embedded in collagen gels and were cultivated with osteoblast and osteoclasts seeded in patterns on a porous membrane. This experimental setup allowed paracrine signaling as well as separation of the different cell types for final analysis. After 7 days of co-culture, the three cell species showed their typical morphology and gene expression of typical markers like ALPL, BSPII, BLGAP, E11, PHEX, MEPE, RANKL, ACP5, CAII and CTSK. Furthermore, relevant enzyme activities for osteoblasts (ALP) and osteoclasts (TRAP, CTSK, CAII) were detected. Osteoclasts in triple culture showed downregulated TRAP (ACP5) and CAII expression and decreased TRAP activity. ALP and BSPII expression of osteoblasts in triple culture were upregulated. The expression of the osteocyte marker E11 (PDPN) was unchanged; however, osteocalcin (BGLAP) expression was considerably downregulated both in osteoblasts and osteocytes in triple cultures compared to the respective single cultures.


Assuntos
Osso e Ossos/metabolismo , Osteoblastos/metabolismo , Osteoclastos/metabolismo , Osteócitos/metabolismo , Idoso , Diferenciação Celular/genética , Células Cultivadas , Técnicas de Cocultura , Colágeno/metabolismo , Regulação para Baixo/genética , Feminino , Expressão Gênica/genética , Humanos , Leucócitos Mononucleares/metabolismo , Masculino , Pessoa de Meia-Idade , Regulação para Cima/genética
17.
Front Immunol ; 12: 686462, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34276672

RESUMO

Immune homeostasis is disturbed during severe viral infections, which can lead to loss of tolerance to self-peptides and result in short- or long-term autoimmunity. Using publicly available transcriptomic datasets, we conducted an in-silico analyses to evaluate the expression levels of 52 autoantigens, known to be associated with 24 autoimmune diseases, during SAR-CoV-2 infection. Seven autoantigens (MPO, PRTN3, PADI4, IFIH1, TRIM21, PTPRN2, and TSHR) were upregulated in whole blood samples. MPO and TSHR were overexpressed in both lung autopsies and whole blood tissue and were associated with more severe COVID-19. Neutrophil activation derived autoantigens (MPO, PRTN3, and PADI4) were prominently increased in blood of both SARS-CoV-1 and SARS-CoV-2 viral infections, while TSHR and PTPRN2 autoantigens were specifically increased in SARS-CoV-2. Using single-cell dataset from peripheral blood mononuclear cells (PBMCs), we observed an upregulation of MPO, PRTN3, and PADI4 autoantigens within the low-density neutrophil subset. To validate our in-silico analysis, we measured plasma protein levels of two autoantigens, MPO and PRTN3, in severe and asymptomatic COVID-19. The protein levels of these two autoantigens were significantly upregulated in more severe COVID-19 infections. In conclusion, the immunopathology and severity of COVID-19 could result in transient autoimmune activation. Longitudinal follow-up studies of confirmed cases of COVID-19 could determine the enduring effects of viral infection including development of autoimmune disease.


Assuntos
Autoantígenos/genética , Autoimunidade/genética , COVID-19/imunologia , SARS-CoV-2/imunologia , Transcriptoma , Doenças Assintomáticas , Autoantígenos/sangue , Doenças Autoimunes/sangue , Doenças Autoimunes/imunologia , COVID-19/sangue , COVID-19/patologia , COVID-19/virologia , Simulação por Computador , Bases de Dados Genéticas , Humanos , Pulmão/patologia , Mieloblastina/sangue , Mieloblastina/genética , Ativação de Neutrófilo , Neutrófilos/imunologia , Peroxidase/sangue , Peroxidase/genética , RNA-Seq , Índice de Gravidade de Doença , Regulação para Cima/genética
18.
Int J Mol Sci ; 22(12)2021 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-34198485

RESUMO

Brain microvascular endothelial cells (BMECs) constitute the structural and functional basis for the blood-brain barrier (BBB) and play essential roles in bacterial meningitis. Although the BBB integrity regulation has been under extensive investigation, there is little knowledge regarding the roles of long non-coding RNAs (lncRNAs) in this event. The present study aimed to investigate the roles of one potential lncRNA, lncRSPH9-4, in meningitic E. coli infection of BMECs. LncRSPH9-4 was cytoplasm located and significantly up-regulated in meningitic E. coli-infected hBMECs. Electrical cell-substrate impedance sensing (ECIS) measurement and Western blot assay demonstrated lncRSPH9-4 overexpression in hBMECs mediated the BBB integrity disruption. By RNA-sequencing analysis, 639 mRNAs and 299 miRNAs were significantly differentiated in response to lncRSPH9-4 overexpression. We further found lncRSPH9-4 regulated the permeability in hBMECs by competitively sponging miR-17-5p, thereby increasing MMP3 expression, which targeted the intercellular tight junctions. Here we reported the infection-induced lncRSPH9-4 aggravated disruption of the tight junctions in hBMECs, probably through the miR-17-5p/MMP3 axis. This finding provides new insights into the function of lncRNAs in BBB integrity during meningitic E. coli infection and provides the novel nucleic acid targets for future treatment of bacterial meningitis.


Assuntos
Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/patologia , Escherichia coli/fisiologia , Metaloproteinase 3 da Matriz/metabolismo , Meningites Bacterianas/genética , Meningites Bacterianas/microbiologia , MicroRNAs/metabolismo , RNA Longo não Codificante/metabolismo , Sequência de Bases , Citoplasma/metabolismo , Células Endoteliais/metabolismo , Células Endoteliais/microbiologia , Redes Reguladoras de Genes , Humanos , MicroRNAs/genética , Microvasos/patologia , Modelos Biológicos , Permeabilidade , RNA Longo não Codificante/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais , Junções Íntimas/metabolismo , Transcrição Genética , Regulação para Cima/genética
19.
Int J Mol Sci ; 22(12)2021 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-34198528

RESUMO

Intracellular free zinc ([Zn2+]i) is mobilized in neuronal and non-neuronal cells under physiological and/or pathophysiological conditions; therefore, [Zn2+]i is a component of cellular signal transduction in biological systems. Although several transporters and ion channels that carry Zn2+ have been identified, proteins that are involved in Zn2+ supply into cells and their expression are poorly understood, particularly under inflammatory conditions. Here, we show that the expression of Zn2+ transporters ZIP8 and ZIP14 is increased via the activation of hypoxia-induced factor 1α (HIF-1α) in inflammation, leading to [Zn2+]i accumulation, which intrinsically activates transient receptor potential ankyrin 1 (TRPA1) channel and elevates basal [Zn2+]i. In human fibroblast-like synoviocytes (FLSs), treatment with inflammatory mediators, such as tumor necrosis factor-α (TNF-α) and interleukin-1α (IL-1α), evoked TRPA1-dependent intrinsic Ca2+ oscillations. Assays with fluorescent Zn2+ indicators revealed that the basal [Zn2+]i concentration was significantly higher in TRPA1-expressing HEK cells and inflammatory FLSs. Moreover, TRPA1 activation induced an elevation of [Zn2+]i level in the presence of 1 µM Zn2+ in inflammatory FLSs. Among the 17 out of 24 known Zn2+ transporters, FLSs that were treated with TNF-α and IL-1α exhibited a higher expression of ZIP8 and ZIP14. Their expression levels were augmented by transfection with an active component of nuclear factor-κB P65 and HIF-1α expression vectors, and they could be abolished by pretreatment with the HIF-1α inhibitor echinomycin (Echi). The functional expression of ZIP8 and ZIP14 in HEK cells significantly increased the basal [Zn2+]i level. Taken together, Zn2+ carrier proteins, TRPA1, ZIP8, and ZIP14, induced under HIF-1α mediated inflammation can synergistically change [Zn2+]i in inflammatory FLSs.


Assuntos
Proteínas de Transporte de Cátions/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Inflamação/genética , Sinoviócitos/metabolismo , Canal de Cátion TRPA1/genética , Regulação para Cima/genética , Zinco/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Fibroblastos/metabolismo , Fibroblastos/patologia , Humanos , Inflamação/patologia , Espaço Intracelular/metabolismo , Sinoviócitos/patologia , Canal de Cátion TRPA1/metabolismo
20.
Int J Mol Sci ; 22(12)2021 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-34208313

RESUMO

Intrahepatic cholangiocarcinoma (iCCA) is a heterogeneous bile duct cancer with a poor prognosis. Integrin αvß6 (ß6) has been shown to be upregulated in iCCA and is associated with its subclassification and clinicopathological features. In the present study, two ITGB6-knockout HuCCT1 CCA cell lines (ITGB6-ko cells) were established using the clustered regulatory interspaced short palindromic repeats (CRISPR), an associated nuclease 9 (Cas9) system, and single-cell cloning. RNA sequencing analysis, real-time polymerase chain reaction (PCR), and immunofluorescent methods were applied to explore possible downstream factors. ITGB6-ko cells showed significantly decreased expression of integrin ß6 on flow cytometric analysis. Both cell lines exhibited significant inhibition of cell migration and invasion, decreased wound-healing capability, decreased colony formation ability, and cell cycle dysregulation. RNA sequencing and real-time PCR analysis revealed a remarkable decrease in podocalyxin-like protein 2 (PODXL2) expression in ITGB6-ko cells. Colocalization of PODXL2 and integrin ß6 was also observed. S100 calcium-binding protein P and mucin 1, which are associated with CCA subclassification, were downregulated in ITGB6-ko cells. These results describe the successful generation of ITGB6-ko CCA cell clones with decreased migration and invasion and downregulation of PODXL2, suggesting the utility of integrin ß6 as a possible therapeutic target or diagnostic marker candidate.


Assuntos
Movimento Celular , Colangiocarcinoma/patologia , Técnicas de Inativação de Genes , Cadeias beta de Integrinas/genética , Sialoglicoproteínas/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Proteínas de Ligação ao Cálcio/metabolismo , Ciclo Celular , Linhagem Celular Tumoral , Movimento Celular/genética , Colangiocarcinoma/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Cadeias beta de Integrinas/metabolismo , Masculino , Pessoa de Meia-Idade , Invasividade Neoplásica , Proteínas de Neoplasias/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Sialoglicoproteínas/genética , Ensaio Tumoral de Célula-Tronco , Regulação para Cima/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...