Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.982
Filtrar
1.
PLoS One ; 15(7): e0236424, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32730292

RESUMO

Grapevines, although adapted to occasional drought or salt stress, are relatively sensitive to growth- and yield-limiting salinity stress. To understand the molecular mechanisms of salt tolerance and endoplasmic reticulum (ER) stress and identify genes commonly regulated by both stresses in grapevine, we investigated transcript profiles in leaves of the salt-tolerant grapevine rootstock 1616C under salt- and ER-stress. Among 1643 differentially expressed transcripts at 6 h post-treatment in leaves, 29 were unique to ER stress, 378 were unique to salt stress, and 16 were common to both stresses. At 24 h post-treatment, 243 transcripts were unique to ER stress, 1150 were unique to salt stress, and 168 were common to both stresses. GO term analysis identified genes in categories including 'oxidative stress', 'protein folding', 'transmembrane transport', 'protein phosphorylation', 'lipid transport', 'proteolysis', 'photosynthesis', and 'regulation of transcription'. The expression of genes encoding transporters, transcription factors, and proteins involved in hormone biosynthesis increased in response to both ER and salt stresses. KEGG pathway analysis of differentially expressed genes for both ER and salt stress were divided into four main categories including; carbohydrate metabolism, amino acid metabolism, signal transduction and lipid metabolism. Differential expression of several genes was confirmed by qRT-PCR analysis, which validated our microarray results. We identified transcripts for genes that might be involved in salt tolerance and also many genes differentially expressed under both ER and salt stresses. Our results could provide new insights into the mechanisms of salt tolerance and ER stress in plants and should be useful for genetic improvement of salt tolerance in grapevine.


Assuntos
Estresse do Retículo Endoplasmático/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Raízes de Plantas/genética , Estresse Salino/genética , Vitis/genética , Metabolismo dos Carboidratos/genética , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Ontologia Genética , Análise de Sequência com Séries de Oligonucleotídeos , Osmose , Reguladores de Crescimento de Planta/farmacologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/efeitos dos fármacos , Caules de Planta/efeitos dos fármacos , Caules de Planta/fisiologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reprodutibilidade dos Testes , Estresse Salino/efeitos dos fármacos , Cloreto de Sódio/farmacologia , Fatores de Transcrição/metabolismo , Tunicamicina/farmacologia
2.
Chemosphere ; 259: 127356, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32650176

RESUMO

Growth of the most important nitrogen fixing cyanobacterium Nostoc muscorum is reported to be badly affected by the application of insecticides. To overcome their damaging effects, several strategies are being used. Out of these, some works on kinetin (KN, a synthetic cytokinin) has been recognized that it can overcome toxicity of insecticides in cyanobacteria. Besides this, it is now known that every hormone needs certain second messengers such as nitric oxide (NO) for its action. But implication of NO in KN-mediated regulation of insecticide toxicity is yet to be investigated. Hence in the current study, we have investigated the possible involvement of NO in KN-mediated regulation of cypermethrin toxicity in the cyanobacterium Nostoc muscorum. Cypermethrin decreased growth of Nostoc muscorum which was accompanied by decreased pigment contents and altered photosystem II (PS II) photochemistry that resulted in inhibition of photosynthetic process but KN significantly ameliorated cypermethrin toxicity. Cypermethrin induced production of free radicals (in-vivo and in-vitro) and weakened defensive mechanism (enzymatic and non-enzymatic defense system) which was restored by KN. Further, the results revealed that NG-nitro-l-arginine methyl ester (l-NAME, an inhibitor of nitric oxide synthase) worsened the effect of cypermethrin toxicity even in the presence of KN while 2-4-carboxyphenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (c-PTIO, a scavenger of NO) reversed KN-mediated amelioration even in the presence of sodium nitroprusside (SNP, an NO donor), suggesting that endogenous NO is required for mitigation of cypermethrin toxicity. Overall, our results first time show that endogenous NO is essential for KN-mediated mitigation of cypermethrin toxicity in the Nostoc muscorum.


Assuntos
Citocininas/farmacologia , Nostoc muscorum/fisiologia , Reguladores de Crescimento de Planta/farmacologia , Polissacarídeos Bacterianos/metabolismo , Piretrinas/toxicidade , Cianobactérias/metabolismo , Homeostase/efeitos dos fármacos , Inseticidas/farmacologia , Óxido Nítrico/farmacologia , Doadores de Óxido Nítrico/farmacologia , Nitroprussiato/farmacologia , Nostoc muscorum/efeitos dos fármacos , Nostoc muscorum/metabolismo , Fotoquímica , Fotossíntese/efeitos dos fármacos , Complexo de Proteína do Fotossistema II/metabolismo , Espécies Reativas de Oxigênio/farmacologia
3.
Food Chem ; 331: 127282, 2020 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-32559597

RESUMO

Phenolics are important secondary metabolites in plants with strong antioxidant effects. Seeds germination and exogenous stimulation could activate endogenous enzymes to enhance the content of phenolic acids and flavonoids. Barley seeds geminated under NaCl (1-20 mM) treatment to evaluate the accumulation of phenolics in this study. Results showed that NaCl treatment significantly enhanced the growth of seedlings, especially bud length. NaCl treatment up-regulated genes and proteins expression of phenylalanine ammonia lyase (PAL), cinnamate-4-hydroxylase (C4H) and 4-coumarate-CoA ligase (4CL), resulting in the enhancement of their activities. As a result, phenolic acids and flavonoids contents increased by 11.19% and 32.54%, respectively, in which gallic acid, protocatechuic, fisetin, myricetin and quercetin were affected mostly. Moreover, NaCl treatment enhanced 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) and 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical scavenging capacity. Hence, NaCl stimulated the synthesis of phenolic components via enhancing gene, protein expression and the activity of key enzymes.


Assuntos
Hordeum/efeitos dos fármacos , Hordeum/metabolismo , Fenóis/metabolismo , Plântula/efeitos dos fármacos , Cloreto de Sódio/farmacologia , Antioxidantes/análise , Flavonoides/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Germinação/efeitos dos fármacos , Fenóis/análise , Fenilalanina Amônia-Liase/genética , Fenilalanina Amônia-Liase/metabolismo , Reguladores de Crescimento de Planta/farmacologia , Proteínas de Plantas/metabolismo , Plântula/metabolismo , Sementes/efeitos dos fármacos , Sementes/crescimento & desenvolvimento , Transcinamato 4-Mono-Oxigenase/genética , Transcinamato 4-Mono-Oxigenase/metabolismo
4.
Ecotoxicol Environ Saf ; 201: 110832, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32563158

RESUMO

Ozone (O3), an oxidizing toxic air pollutant, is ubiquitous in industrialized and developing countries. To understand the effects of O3 exposure on apple (Malus) and to explore its defense mechanisms, we exposed 'Hongjiu' crabapple to O3 and monitored its responses using physiological, transcriptomics, and metabolomics analyses. Exposure to 300 nL L-1 O3 for 3 h caused obvious damage to the leaves of Malus crabapple, affected chlorophyll and anthocyanin contents, and activated antioxidant enzymes. The gene encoding phospholipase A was highly responsive to O3 in Malus crabapple. McWRKY75 is a key transcription factor in the response to O3 stress, and its transcript levels were positively correlated with those of flavonoid-related structural genes (McC4H, McDFR, and McANR). The ethylene response factors McERF019 and McERF109-like were also up-regulated by O3. Exogenous methyl jasmonate (MeJA) decreased the damaging effects of O3 on crabapple and was most effective at 200 µmol L -1. Treatments with MeJA altered the metabolic pathways of crabapple under O3 stress. In particular, MeJA activated the flavonoid metabolic pathway in Malus, which improved its resistance to O3 stress.


Assuntos
Acetatos/farmacologia , Poluentes Atmosféricos/toxicidade , Ciclopentanos/farmacologia , Malus , Oxilipinas/farmacologia , Ozônio/toxicidade , Reguladores de Crescimento de Planta/farmacologia , Transcriptoma/efeitos dos fármacos , Antocianinas/genética , Antocianinas/metabolismo , Antioxidantes/metabolismo , Clorofila/metabolismo , Flavonoides/metabolismo , Malus/efeitos dos fármacos , Malus/genética , Malus/metabolismo , Metabolômica , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/genética , Folhas de Planta/metabolismo , Fatores de Transcrição/genética
5.
Ecotoxicol Environ Saf ; 201: 110735, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32480163

RESUMO

Methyl jasmonate (Me-JA) is a plant growth regulator known for modulating plant responses to various abiotic and biotic stresses. The unavoidable arsenic (As) contamination in rice (Oryza sativa) results in reduced crop yield and greater carcinogenic risk to humans. The present work examines the significance of Me-JA induced molecular signaling and tolerance towards arsenic toxicity in rice. The arsenite (AsIII; 25 µM) stress hampered the overall growth and development of the rice seedling. However, the co-application (25 µM AsIII+0.25 µM Me-JA) resulted in increased biomass, chlorophyll content, enhanced antioxidant enzyme activities as compared to AsIII treated plants. The co-application also demonstrated a marked decrease in malondialdehyde content, electrolyte leakage and accumulation of total AsIII content (root + shoot) as compared to AsIII treated plants. The co-application also modulated the expression of genes involved in downstream JA signaling pathway (OsCOI, OsJAZ3, OsMYC2), AsIII uptake (OsLsi1, OsLsi2, OsNIP1;1, OsNIP3;1), translocation (OsLsi6, and OsINT5) and detoxification (OsNRAMP1, OsPCS2, and OsABCC2) which revealed the probable adaptive response of the rice plant to cope up arsenic stress. Our findings reveal that Me-JA alleviates AsIII toxicity by modulating signaling components involved in As uptake, translocation, and detoxification and JA signaling in rice. This study augments our knowledge for the future use of Me-JA in improving tolerance against AsIII stress.


Assuntos
Acetatos/farmacologia , Arsênico/toxicidade , Ciclopentanos/farmacologia , Oryza/efeitos dos fármacos , Oxilipinas/farmacologia , Reguladores de Crescimento de Planta/farmacologia , Acetatos/metabolismo , Arsênico/metabolismo , Arsenitos/metabolismo , Arsenitos/toxicidade , Transporte Biológico , Ciclopentanos/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Humanos , Oryza/crescimento & desenvolvimento , Oryza/metabolismo , Oxilipinas/metabolismo , Reguladores de Crescimento de Planta/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Plântula/efeitos dos fármacos , Plântula/crescimento & desenvolvimento , Plântula/metabolismo , Transdução de Sinais/efeitos dos fármacos , Estresse Fisiológico/efeitos dos fármacos
6.
J Plant Physiol ; 250: 153184, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32464590

RESUMO

Although it is well known that parasitic weeds such as Orobanche (broomrape) significantly reduce the yield of economically important crops, their infection-induced oxidative changes need more exploration in their host plants. Moreover, applying an eco-friendly approach to minimize the infection is not yet available. This study was conducted to understand the effect of Orobanche ramosa infection on oxidative and redox status of tomato plants and the impact of hormonal (indole acetic acid (IAA); 0.09 mM and salicylic acid (SA); 1.0 mM) seed-priming upon mitigating the infection threats. Although Orobanche invades tomato roots, its inhibitory effects on shoot biomass were also indicted. Orobanche infection usually induces oxidative damage i.e., high lipid peroxidation, lipoxygenase activity and H2O2 levels, particularly for roots. Interestingly, hormonal seed-priming significantly enhanced tomato shoots and roots growth under both healthy and infected conditions. Also, IAA and SA treatment significantly reduced Orobanche infection-induced oxidative damage. The protective effect of seed-priming was explained by increasing the antioxidant defense markers including the antioxidant metabolites (i.e., total antioxidant capacity, carotenoids, phenolics, flavonoids, ASC, GSH, tocopherols) and enzymes (CAT, POX, GPX, SOD, GR, APX, MDHAR, DHAR), particularly in infected tomato seedlings. Additionally, cluster analysis indicated the differential impact of IAA- and SA-seed-priming, whereas lower oxidative damage and higher antioxidant enzymes' activities in tomato root were particularly reported for IAA treatment. The principal component analysis (PCA) also proclaimed an organ specificity depending on their response to Orobanche infection. Collectively, here and for the first time, we shed the light on the potential of seed-priming with either IAA or SA to mitigate the adverse effect of O. ramosa stress in tomato plants, especially at oxidative stress levels.


Assuntos
Ácidos Indolacéticos/farmacologia , Lycopersicon esculentum/fisiologia , Orobanche/fisiologia , Estresse Oxidativo/fisiologia , Reguladores de Crescimento de Planta/farmacologia , Plantas Daninhas/fisiologia , Ácido Salicílico/farmacologia , Lycopersicon esculentum/efeitos dos fármacos , Lycopersicon esculentum/parasitologia , Estresse Oxidativo/efeitos dos fármacos , Sementes/efeitos dos fármacos , Sementes/parasitologia , Sementes/fisiologia
7.
PLoS One ; 15(5): e0232269, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32357181

RESUMO

Susceptibility of plants to abiotic stresses, including extreme temperatures, salinity and drought, poses an increasing threat to crop productivity worldwide. Here the drought-induced response of maize was modulated by applications of methyl jasmonate (MeJA) and salicylic acid (SA) to seeds prior to sowing and to leaves prior to stress treatment. Pot experiments were conducted to ascertain the effects of exogenous applications of these hormones on maize growth, physiology and biochemistry under drought stress and well-watered (control) conditions. Maize plants were subjected to single as well as combined pre-treatments of MeJA and SA. Drought stress severely affected maize morphology and reduced relative water content, above and below-ground biomass, rates of photosynthesis, and protein content. The prolonged water deficit also led to increased relative membrane permeability and oxidative stress induced by the production of malondialdehyde (from lipid peroxidation), lipoxygenase activity (LOX) and the production of H2O2. The single applications of MeJA and SA were not found to be effective in maize for drought tolerance while the combined pre-treatments with exogenous MeJA+SA mitigated the adverse effects of drought-induced oxidative stress, as reflected in lower levels of lipid peroxidation, LOX activity and H2O2. The same pre-treatment also maintained adequate water status of the plants under drought stress by increasing osmolytes including proline, total carbohydrate content and total soluble sugars. Furthermore, exogenous applications of MeJA+SA approximately doubled the activities of the antioxidant enzymes catalase, peroxidase and superoxide dismutase. Pre-treatment with MeJA alone gave the highest increase in drought-induced production of endogenous abscisic acid (ABA). Pre-treatment with MeJA+SA partially prevented drought-induced oxidative stress by modulating levels of osmolytes and endogenous ABA, as well as the activities of antioxidant enzymes. Taken together, the results show that seed and foliar pre-treatments with exogenous MeJA and/or SA can have positive effects on the responses of maize seedlings to drought.


Assuntos
Acetatos/farmacologia , Ciclopentanos/farmacologia , Secas , Oxilipinas/farmacologia , Reguladores de Crescimento de Planta/farmacologia , Ácido Salicílico/farmacologia , Estresse Fisiológico/efeitos dos fármacos , Zea mays/efeitos dos fármacos , Antioxidantes/metabolismo , Carotenoides/metabolismo , Clorofila/metabolismo , Concentração Osmolar , Estresse Oxidativo/efeitos dos fármacos , Proteínas de Plantas/metabolismo , Análise de Componente Principal , Sementes/efeitos dos fármacos , Solo , Zea mays/crescimento & desenvolvimento , Zea mays/metabolismo
8.
Plant Mol Biol ; 103(3): 341-354, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32227258

RESUMO

KEY MESSAGE: We employed both metabolomic and transcriptomic approaches to explore the accumulation patterns of physalins, flavonoids and chlorogenic acid in Physalis angulata and revealed the genes associated with the biosynthesis of bioactive compounds under methyl-jasmonate (MeJA) treatment. Physalis angulata L. is an annual Solanaceae plant with a number of medicinally active compounds. Despite the potential pharmacological benefits of P. angulata, the scarce genomic information regarding this plant has limited the studies on the mechanisms of bioactive compound biosynthesis. To facilitate the basic understanding of the main chemical constituent biosynthesis pathways, we performed both metabolomic and transcriptomic approaches to reveal the genes associated with the biosynthesis of bioactive compounds under methyl-jasmonate (MeJA) treatment. Untargeted metabolome analysis showed that most physalins, flavonoids and chlorogenic acid were significantly upregulated. Targeted HPLC-MS/MS analysis confirmed variations in the contents of two important representative steroid derivatives (physalins B and G), total flavonoids, neochlorogenic acid, and chlorogenic acid between MeJA-treated plants and controls. Transcript levels of a few steroid biosynthesis-, flavonoid biosynthesis-, and chlorogenic acid biosynthesis-related genes were upregulated, providing a potential explanation for MeJA-induced active ingredient synthesis in P. angulata. Systematic correlation analysis identified a number of novel candidate genes associated with bioactive compound biosynthesis. These results may help to elucidate the regulatory mechanism underlying MeJA-induced active compound accumulation and provide several valuable candidate genes for further functional study.


Assuntos
Acetatos/farmacologia , Ciclopentanos/farmacologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Oxilipinas/farmacologia , Physalis/efeitos dos fármacos , Physalis/metabolismo , Proteínas de Plantas/metabolismo , Flavonoides/biossíntese , Flavonoides/química , Metaboloma , Estrutura Molecular , Reguladores de Crescimento de Planta/farmacologia , Proteínas de Plantas/genética , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , RNA de Plantas/genética , Transcriptoma
9.
Gene ; 747: 144674, 2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-32304781

RESUMO

Very long chain fatty acids (VLCFAs) that are structural components of cell membrane lipid, cuticular waxes and seed oil, play crucial roles in plant growth, development and stress response. Fatty acid elongases (FAEs) comprising KCS and ELO, are key enzymes for VLCFA biosynthesis in plants. Although reference genomes of Brassica napus and its parental speices both have been sequenced, whole-genome analysis of FAE gene family in these Brassica speices is not reported. Here, 58, 33 and 30 KCS genes were identified in B. napus, B. rapa and B. oleracea genomes, respectively, whereas 14, 6 and 8 members were obtained for ELO genes. These KCS genes were unevenly located in 37 chromosomes and 3 scaffolds of 3 Brassica species, while these ELO genes were mapped to 19 chromosomes. The KCS and ELO proteins were divided into 8 and 4 subclasses, respectively. Gene structure and protein motifs remained highly conserved in each KCS or ELO subclass. Most promoters of KCS and ELO genes harbored various plant growth-, phytohormone-, and stress response-related cis-acting elements. 20 SSR loci existed in the KCS and ELO genes/promoters. The whole-genome duplication and segmental duplication mainly contributed to expansion of KCS and ELO genes in these genomes. Transcriptome analysis showed that KCS and ELO genes in 3 Brassica species were expressed in various tissues/organs with different levels, whereas 1 BnELO gene and 6 BnKCS genes might be pathogen-responsive genes. The qRT-PCR assay showed that BnKCS22 and BnELO04 responded to various phytohormone treatments and abiotic stresses. This work lays the foundation for further function identification of KCS and ELO genes in B. napus and its progenitors.


Assuntos
Brassica napus/enzimologia , Brassica napus/genética , Elongases de Ácidos Graxos/genética , Genes de Plantas , Estudo de Associação Genômica Ampla , Família Multigênica , Brassica napus/efeitos dos fármacos , Cromossomos de Plantas/genética , Sequência Conservada/genética , Duplicação Gênica , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Loci Gênicos , Repetições de Microssatélites/genética , Motivos de Nucleotídeos , Filogenia , Reguladores de Crescimento de Planta/farmacologia , Sequências Reguladoras de Ácido Nucleico/genética , Estresse Fisiológico/efeitos dos fármacos , Estresse Fisiológico/genética , Sintenia/genética
10.
Artigo em Inglês | MEDLINE | ID: mdl-32289638

RESUMO

Chenopodium quinoa, a halophytic crop belonging to the Amaranthaceae, has remarkable resistance to harsh growth conditions and produces seed with excellent nutritional value. This makes it a suitable crop for marginal soils. However, to date most of the commercial cultivars are susceptible to preharvest sprouting (PHS). Meanwhile, understanding of the PHS regulatory mechanisms is still limited. Abscisic acid (ABA) has been demonstrated to be tightly associated with seed dormancy and germination regulation in many crops. Whether ABA metabolism pathway could be manipulated to prevent PHS in quinoa is worth investigating. In the present study, we tested the inhibitory effects of exogenous ABA on quinoa seed germination. By RNA-seq analysis we investigated the global gene expression changes during seed germination, and obtained 1066 ABA-repressed and 392 ABA-induced genes. Cis-elements enrichment analysis indicated that the promoters of these genes were highly enriched in motifs "AAAAAAAA" and "ACGTGKC (K = G/T)", the specific binding motifs of ABI3/VP1 and ABI5. Transcription factor annotation showed that 13 genes in bHLH, MADS-box, G2-like and NF-YB, and five genes in B3, bZIP, GATA and LBD families were specifically ABA-repressed and -induced, respectively. Furthermore, expression levels of 53 key homologs involved in seed dormancy and germination regulation were markedly changed. Hence, we speculated that the 18 transcription factors and the homologs were potential candidates involved in ABA-mediated seed dormancy and germination regulation, which could be manipulated for molecular breeding of quinoa elites with PHS tolerance in future.


Assuntos
Chenopodium quinoa , Perfilação da Expressão Gênica , Germinação , Dormência de Plantas , Sementes , Fatores de Transcrição , Ácido Abscísico/farmacologia , Chenopodium quinoa/genética , Chenopodium quinoa/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Germinação/efeitos dos fármacos , Germinação/genética , Dormência de Plantas/genética , Reguladores de Crescimento de Planta/farmacologia , Sementes/efeitos dos fármacos , Sementes/genética , Sementes/crescimento & desenvolvimento , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
11.
Artigo em Inglês | MEDLINE | ID: mdl-32289640

RESUMO

Seed dormancy and germination in rice (Oryza sativa L.) are complex and important agronomic traits that involve a number of physiological processes and energy. A mutant named h470 selected from a60Co-radiated indica cultivar N22 population had weakened dormancy that was insensitive to Gibberellin (GA) and Abscisic acid (ABA). The levels of GA4 and ABA were higher in h470 than in wild-type (WT) plants. The gene controlling seed dormancy in h470 was cloned by mut-map and transgenesis and confirmed to encode an ADP-glucose transporter protein. A 1 bp deletion in Os02g0202400 (OsBT1) caused the weaker seed dormancy in h470. Metabolomics analyses showed that most sugar components were higher in h470 seeds than the wild type. The mutation in h470 affected glycometabolism.


Assuntos
Oryza , Dormência de Plantas , Proteínas de Plantas , Sementes , Ácido Abscísico/farmacologia , Regulação da Expressão Gênica de Plantas , Germinação , Giberelinas/farmacologia , Oryza/fisiologia , Dormência de Plantas/efeitos dos fármacos , Dormência de Plantas/genética , Reguladores de Crescimento de Planta/farmacologia , Proteínas de Plantas/genética , Sementes/genética
12.
PLoS One ; 15(4): e0231426, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32271848

RESUMO

Demand for agricultural crop continues to escalate in response to increasing population and damage of prime cropland for cultivation. Research interest is diverted to utilize soils with marginal plant production. Moisture stress has negative impact on crop growth and productivity. The plant growth promoting rhizobacteria (PGPR) and plant growth regulators (PGR) are vital for plant developmental process under moisture stress. The current study was carried out to investigate the effect of PGPR and PGRs (Salicylic acid and Putrescine) on the physiological activities of chickpea grown in sandy soil. The bacterial isolates were characterized based on biochemical characters including Gram-staining, P-solubilisation, antibacterial and antifungal activities and catalases and oxidases activities and were also screened for the production of indole-3-acetic acid (IAA), hydrogen cyanide (HCN) and ammonia (NH3). The bacterial strains were identified as Bacillus subtilis, Bacillus thuringiensis and Bacillus megaterium based on the results of 16S-rRNA gene sequencing. Chickpea seeds of two varieties (Punjab Noor-2009 and 93127) differing in sensitivity to drought were soaked for 3 h before sowing in fresh grown cultures of isolates. Both the PGRs were applied (150 mg/L), as foliar spray on 20 days old seedlings of chickpea. Moisture stress significantly reduced the physiological parameters but the inoculation of PGPR and PGR treatment effectively ameliorated the adverse effects of moisture stress. The result showed that chickpea plants treated with PGPR and PGR significantly enhanced the chlorophyll, protein and sugar contents. Shoot and root fresh (81%) and dry weights (77%) were also enhanced significantly in the treated plants. Leaf proline content, lipid peroxidation and antioxidant enzymes (CAT, APOX, POD and SOD) were increased in reaction to drought stress but decreased due to PGPR. The plant height (61%), grain weight (41%), number of nodules (78%) and pod (88%), plant yield (76%), pod weight (53%) and total biomass (54%) were higher in PGPR and PGR treated chickpea plants grown in sandy soil. It is concluded from the present study that the integrative use of PGPR and PGRs is a promising method and eco-friendly strategy for increasing drought tolerance in crop plants.


Assuntos
Agricultura , Bacillaceae/fisiologia , Cicer/crescimento & desenvolvimento , Reguladores de Crescimento de Planta/farmacologia , Amônia/metabolismo , Bacillaceae/genética , Bacillaceae/isolamento & purificação , Bacillus megaterium/genética , Bacillus megaterium/isolamento & purificação , Bacillus subtilis/genética , Bacillus subtilis/isolamento & purificação , Bacillus subtilis/fisiologia , Biomassa , Clorofila/análise , Cicer/efeitos dos fármacos , Cicer/metabolismo , Ácidos Indolacéticos/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Reguladores de Crescimento de Planta/metabolismo , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Raízes de Plantas/metabolismo , Raízes de Plantas/microbiologia , Putrescina/metabolismo , Putrescina/farmacologia , RNA Ribossômico 16S/química , RNA Ribossômico 16S/metabolismo , Chuva , Ácido Salicílico/metabolismo , Ácido Salicílico/farmacologia , Plântula/efeitos dos fármacos , Plântula/crescimento & desenvolvimento , Microbiologia do Solo
13.
PLoS One ; 15(3): e0230177, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32182273

RESUMO

Jasmonates (JAs) are key phytohormones involved in regulation of plant growth and development, stress responses, and secondary metabolism. It has been reported that treatments with JAs could increase the contents of Amaryllidaceae alkaloids in Amaryllidaceae plants. Jasmonate ZIM (zinc-finger inflorescence meristem) domain (JAZ) proteins are key components in JA signal processes. However, JAZ proteins have not been characterized in genus Lycoris. In this study, we identified and cloned seven differentially expressed JAZ genes (namely LaJAZ1-LaJAZ7) from Lycoris aurea. Bioinformatic analyses revealed that these seven LaJAZ proteins contain the ZIM domain and JA-associated (Jas, also named CCT_2) motif. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) analysis revealed that these LaJAZ genes display different expression patterns in L. aurea tissues, and most of them are inducible when treated with methyl jasmonate (MeJA) treatment. Subcellular localization assay demonstrated that LaJAZ proteins are localized in the cell nucleus or cytoplasm. In addition, LaJAZ proteins could interact with each other to form homodimer and/or heterodimer. The findings in this study may facilitate further functional research of the LaJAZ genes, especially the potential regulatory mechanism of plant secondary metabolites including Amaryllidaceae alkaloids in L. aurea.


Assuntos
Regulação da Expressão Gênica de Plantas/genética , Lycoris/genética , Proteínas de Plantas/genética , Dedos de Zinco/genética , Acetatos/farmacologia , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/genética , Biologia Computacional/métodos , Ciclopentanos/farmacologia , Citoplasma/efeitos dos fármacos , Citoplasma/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Lycoris/efeitos dos fármacos , Oxilipinas/farmacologia , Reguladores de Crescimento de Planta/farmacologia , Domínios Proteicos/genética
14.
J Biotechnol ; 313: 29-38, 2020 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-32151644

RESUMO

The involvement of two extremely important signalling molecules, nitric oxide (NO) and abscisic acid (ABA) has been employed by plants to facilitate the adaptive/tolerate response during stressful conditions. However, the interactive role of exogenously applied NO and ABA is very less studied at physiological, biochemical and molecular levels. The present study therefore, evaluated the effects of individual and simultaneous addition of exogenous NO donor SNP (100µM) and ABA (10µM) on photosynthesis, Calvin-Benson cycle enzymes, S-assimilation enzymes, oxidative stress components, and genotoxicity in Brassica juncea cv. Varuna, exposed to polyethylene glycol (PEG)-induced drought stress. Results showed that a loss induced by PEG was significantly surpassed by the application of NO or/and ABA with PEG for chlorophyll content, net photosynthestic rate (Pn), internal CO2 concentration (Ci), stomatal conductance (gs), transpiration rate (Tr), maximum photosystem II (PSII) efficiency (Fv/Fm), actual PSII efficiency (ΦPSII), intrinsic PSII efficiency (Fv´/ Fm´), photochemical quenching (qP), non-photochemical quenching (NPQ), electron transport chain (ETC), ribulose 1,5-bisphosphate carboxylase/oxygenase (RuBisCo), glyceraldehyde-3-phosphate dehydrogenase (GapDH), phosphoribulokinase (PRK), ATP-sulfurylase (ATP-S), and serine acetyltransferase (SAT) activities. The genomic template stability (GTS) (measured as changes in RAPD profiles) was significantly affected and showed varying degrees of DNA polymorphism, highest in PEG and lowest in PEG + NO and PEG + NO + ABA. Furthermore, the changes in RAPD profiles showed consistent results when compared with various photosynthetic and oxidative parameters. Altogether, this study concluded that supplementation of individual NO and together with ABA was more effective than individual ABA in alleviating PEG-induced drought stress in B. juncea L. seedlings.


Assuntos
Ácido Abscísico/farmacologia , Mostardeira/fisiologia , Óxido Nítrico/farmacologia , Fotossíntese/efeitos dos fármacos , Reguladores de Crescimento de Planta/farmacologia , Transdução de Sinais/efeitos dos fármacos , Clorofila/metabolismo , Secas , Fluorescência , Mostardeira/efeitos dos fármacos , Mostardeira/genética , Polietilenoglicóis/farmacologia , Técnica de Amplificação ao Acaso de DNA Polimórfico , Plântula/efeitos dos fármacos , Plântula/fisiologia , Estresse Fisiológico
15.
Artigo em Inglês | MEDLINE | ID: mdl-32155449

RESUMO

Plants and crops are widely suffered by shade stress in the natural communities or in the agricultural fields. The three main phytohormones auxin, gibberellins (GAs) and brassinosteroids (BRs) were found essential in shade avoidance in Arabidopsis. However, their relationship have been seldom reported in plant shade avoidance control. Here, we report our investigation of the crosstalk of auxin, GAs and BRs in shade-induced hypocotyl elongation of soybean. Exogenous feeding of indol-3-acetic acid (IAA), GA3 or 24-epibrassinolide (EBL) distinctly promoted hypocotyl elongation in the white light, while the potent biosynthesis inhibitors of GA3, IAA, BRs severely diminished shade-induced hypocotyl elongation. Synergistic treatment of their biosynthesis inhibitors showed that GA3 fully, while EBL slightly, restored the hypocotyl elongation that was efficiently repressed by IAA biosynthesis inhibitor, GA3 and IAA dramatically suppressed the hypocotyl growth inhibition by BR biosynthesis inhibitor in the shade, whereas both IAA and EBL feeding cannot suppress the elongation inhibition by GA biosynthesis inhibitor. Further analyses revealed that shade remarkably upregulated expression of key genes of IAA, GA and BR biosynthesis in the soybean hypocotyls, and GA biosynthesis genes were effectively blocked by IAA, GA and BR biosynthesis inhibitors in the shade. Taken together, these results suggest that GAs modulate shade-induced hypocotyl elongation downstream of mutual promotion of auxin and BRs in soybean.


Assuntos
Proteínas de Arabidopsis , Brassinosteroides , Giberelinas , Hipocótilo , Ácidos Indolacéticos , Proteínas de Arabidopsis/genética , Brassinosteroides/farmacologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Giberelinas/farmacologia , Hipocótilo/efeitos dos fármacos , Hipocótilo/crescimento & desenvolvimento , Ácidos Indolacéticos/metabolismo , Mutação , Reguladores de Crescimento de Planta/farmacologia , Soja/efeitos dos fármacos
16.
Proc Natl Acad Sci U S A ; 117(12): 6910-6917, 2020 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-32152121

RESUMO

Auxin is a class of plant hormone that plays a crucial role in the life cycle of plants, particularly in the growth response of plants to ever-changing environments. Since the auxin responses are concentration-dependent and higher auxin concentrations might often be inhibitory, the optimal endogenous auxin level must be closely controlled. However, the underlying mechanism governing auxin homeostasis remains largely unknown. In this study, a UDP-glycosyltransferase (UGT76F1) was identified from Arabidopsis thaliana, which participates in the regulation of auxin homeostasis by glucosylation of indole-3-pyruvic acid (IPyA), a major precursor of the auxin indole-3-acetic acid (IAA) biosynthesis, in the formation of IPyA glucose conjugates (IPyA-Glc). In addition, UGT76F1 was found to mediate hypocotyl growth by modulating active auxin levels in a light- and temperature-dependent manner. Moreover, the transcription of UGT76F1 was demonstrated to be directly and negatively regulated by PIF4, which is a key integrator of both light and temperature signaling pathways. This study sheds a light on the trade-off between IAA biosynthesis and IPyA-Glc formation in controlling auxin levels and reveals a regulatory mechanism for plant growth adaptation to environmental changes through glucosylation of IPyA.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Glucose/metabolismo , Hipocótilo/crescimento & desenvolvimento , Ácidos Indolacéticos/farmacologia , Indóis/metabolismo , Arabidopsis/efeitos dos fármacos , Arabidopsis/metabolismo , Arabidopsis/efeitos da radiação , Proteínas de Arabidopsis/genética , Depuradores de Radicais Livres/química , Depuradores de Radicais Livres/metabolismo , Glucosiltransferases/metabolismo , Glicosilação , Hipocótilo/efeitos dos fármacos , Hipocótilo/metabolismo , Hipocótilo/efeitos da radiação , Indóis/química , Luz , Reguladores de Crescimento de Planta/farmacologia , Plântula , Temperatura
17.
J Agric Food Chem ; 68(10): 3267-3276, 2020 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-32101430

RESUMO

Cross-talk between various hormones is important in regulating many aspects of plant growth, development, and senescence, including fruit ripening. Here, exogenous ethylene (ETH, 100 µL/L, 12 h) rapidly accelerated 'Hayward' kiwifruit (Actinidia deliciosa) softening and ethylene production and was enhanced by supplementing with continuous treatment with methyl jasmonate (MeJA, 100 µM/L, 12 h) (ETH+MeJA). ETH+MeJA enhanced ACC synthase (ACS) activities and 1-aminocyclopropane-1-carboxylic acid (ACC) accumulation but not ACC oxidase (ACO) activity. Increased transcripts of ACS genes AdACS1 and AdACS2, ACS activity, and ethylene production were positively correlated. The abundance of AdACS1 was about 6-fold higher than AdACS2. RNA-seq identified 6 transcription factors among the 87 differentially expressed unigenes induced by ETH+MeJA. Dual-luciferase and electrophoretic mobility shift assays (EMSA) indicated that AdNAC2/3 physically interacted with and trans-activated the AdACS1 promoter 2.2- and 3.5-fold, respectively. Collectively, our results indicate that MeJA accelerates ethylene production in kiwifruit induced by exogenous ethylene, via a preferential activation of AdACS1 and AdACS2.


Assuntos
Acetatos/farmacologia , Actinidia/efeitos dos fármacos , Coenzima A Ligases/metabolismo , Ciclopentanos/farmacologia , Etilenos/biossíntese , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Oxilipinas/farmacologia , Reguladores de Crescimento de Planta/farmacologia , Proteínas de Plantas/metabolismo , Fatores de Transcrição/metabolismo , Actinidia/enzimologia , Actinidia/genética , Actinidia/metabolismo , Frutas/efeitos dos fármacos , Frutas/enzimologia , Frutas/genética , Frutas/metabolismo , Proteínas de Plantas/genética , Fatores de Transcrição/genética
18.
Arq Neuropsiquiatr ; 78(1): 21-27, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-32074185

RESUMO

OBJECTIVE: The phytohormone abscisic acid (ABA) as a signaling molecule exists in various types of organisms from early multicellular to animal cells and tissues. It has been demonstrated that ABA has an antinociceptive effect in rodents. The present study was designed to assess the possible role of PKA and phosphorylated ERK (p-ERK) on the antinociceptive effects of intrathecal (i.t.) ABA in male Wistar rats. METHODS: The animals were cannulated intrathecally and divided into different experimental groups (n=6‒7): Control (no surgery), vehicle (received ABA vehicle), ABA-treated groups (received ABA in doses of 10 or 20 µg/rat), ABA plus H.89 (PKA inhibitor)-treated group which received the inhibitor 15 min prior to the ABA injection. Tail-flick and hot-plate tests were used as acute nociceptive stimulators to assess ABA analgesic effects. p-ERK was evaluated in the dorsal portion of the spinal cord using immunoblotting. RESULTS: Data showed that a microinjection of ABA (10 and 20 µg/rat, i.t.) significantly increased the nociceptive threshold in tail flick and hot plate tests. The application of PKA inhibitor (H.89, 100 nM/rat) significantly inhibited ABA-induced analgesic effects. Expression of p-ERK was significantly decreased in ABA-injected animals, which were not observed in the ABA+H.89-treated group. CONCLUSIONS: Overall, i.t. administration of ABA (10 µg/rat) induced analgesia and p-ERK down-expression likely by involving the PKA-dependent mechanism.


Assuntos
Ácido Abscísico/farmacologia , Analgésicos/farmacologia , Proteínas Quinases Dependentes de AMP Cíclico/efeitos dos fármacos , MAP Quinases Reguladas por Sinal Extracelular/efeitos dos fármacos , Reguladores de Crescimento de Planta/farmacologia , Medula Espinal/metabolismo , Animais , Western Blotting , Proteínas Quinases Dependentes de AMP Cíclico/análise , MAP Quinases Reguladas por Sinal Extracelular/análise , Peptídeos e Proteínas de Sinalização Intracelular/farmacologia , Masculino , Ratos Wistar , Valores de Referência , Reprodutibilidade dos Testes , Medula Espinal/efeitos dos fármacos , Fatores de Tempo
19.
Plant Mol Biol ; 103(1-2): 91-111, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32043226

RESUMO

KEY MESSAGE: Auxin treatment of grape (Vitis vinifera L.) berries delays ripening by inducing changes in gene expression and cell wall metabolism and could combat some deleterious climate change effects. Auxins are inhibitors of grape berry ripening and their application may be useful to delay harvest to counter effects of climate change. However, little is known about how this delay occurs. The expression of 1892 genes was significantly changed compared to the control during a 48 h time-course where the auxin 1-naphthaleneacetic acid (NAA) was applied to pre-veraison grape berries. Principal component analysis showed that the control and auxin-treated samples were most different at 3 h post-treatment when approximately three times more genes were induced than repressed by NAA. There was considerable cross-talk between hormone pathways, particularly between those of auxin and ethylene. Decreased expression of genes encoding putative cell wall catabolic enzymes (including those involved with pectin) and increased expression of putative cellulose synthases indicated that auxins may preserve cell wall structure. This was confirmed by immunochemical labelling of berry sections using antibodies that detect homogalacturonan (LM19) and methyl-esterified homogalacturonan (LM20) and by labelling with the CMB3a cellulose-binding module. Comparison of the auxin-induced changes in gene expression with the pattern of these genes during berry ripening showed that the effect on transcription is a mix of changes that may specifically alter the progress of berry development in a targeted manner and others that could be considered as non-specific changes. Several lines of evidence suggest that cell wall changes and associated berry softening are the first steps in ripening and that delaying cell expansion can delay ripening providing a possible mechanism for the observed auxin effects.


Assuntos
Parede Celular/efeitos dos fármacos , Ácidos Indolacéticos/farmacologia , Células Vegetais/efeitos dos fármacos , Reguladores de Crescimento de Planta/farmacologia , Vitis/efeitos dos fármacos , Crescimento Celular/efeitos dos fármacos , Parede Celular/genética , Frutas/efeitos dos fármacos , Frutas/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Ácidos Naftalenoacéticos/farmacologia , Células Vegetais/fisiologia , Tempo , Vitis/crescimento & desenvolvimento
20.
Plant Mol Biol ; 103(1-2): 113-128, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32086696

RESUMO

KEY MESSAGE: Using a time-course RNA-seq analysis we identified transcriptomic changes during formation of nodule-like structures (NLS) in rice and compared rice RNA-seq dataset with a nodule transcriptome dataset in Medicago truncatula. Plant hormones can induce the formation of nodule-like structures (NLS) in plant roots even in the absence of bacteria. These structures can be induced in roots of both legumes and non-legumes. Moreover, nitrogen-fixing bacteria can recognize and colonize these root structures. Therefore, identifying the genetic switches controlling the NLS organogenesis program in crops, especially cereals, can have important agricultural implications. Our recent study evaluated the transcriptomic response occurring in rice roots during NLS formation, 7 days post-treatment (dpt) with auxin, 2,4-D. In this current study, we investigated the regulation of gene expression occurring in rice roots at different stages of NLS formation: early (1-dpt) and late (14-dpt). At 1-dpt and 14-dpt, we identified 1662 and 1986 differentially expressed genes (DEGs), respectively. Gene ontology enrichment analysis revealed that the dataset was enriched with genes involved in auxin response and signaling; and in anatomical structure development and morphogenesis. Next, we compared the gene expression profiles across the three time points (1-, 7-, and 14-dpt) and identified genes that were uniquely or commonly differentially expressed at all three time points. We compared our rice RNA-seq dataset with a nodule transcriptome dataset in Medicago truncatula. This analysis revealed there is some amount of overlap between the molecular mechanisms governing nodulation and NLS formation. We also identified that some key nodulation genes were not expressed in rice roots during NLS formation. We validated the expression pattern of several genes via reverse transcriptase polymerase chain reaction (RT-PCR). The DEGs identified in this dataset may serve as a useful resource for future studies to characterize the genetic pathways controlling NLS formation in cereals.


Assuntos
Regulação da Expressão Gênica de Plantas , Oryza/genética , RNA de Plantas , RNA-Seq , Conjuntos de Dados como Assunto , Perfilação da Expressão Gênica , Ontologia Genética , Medicago truncatula/genética , Oryza/anatomia & histologia , Oryza/efeitos dos fármacos , Reguladores de Crescimento de Planta/farmacologia , Proteínas de Plantas/genética , Raízes de Plantas/anatomia & histologia , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Proteínas Quinases/genética , Fatores de Transcrição/metabolismo , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA