Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.057
Filtrar
1.
Int J Mol Sci ; 22(7)2021 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-33805251

RESUMO

The plant hormone jasmonic acid (JA) and its derivative, an amino acid conjugate of JA (jasmonoyl isoleucine: JA-Ile), are signaling compounds involved in the regulation of cellular defense and development in plants [...].


Assuntos
Ciclopentanos/metabolismo , Oxilipinas/metabolismo , Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Reguladores de Crescimento de Planta/metabolismo , Reguladores de Crescimento de Planta/fisiologia , Fenômenos Fisiológicos Vegetais , Plantas/genética , Transdução de Sinais
2.
Plant Sci ; 306: 110852, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33775359

RESUMO

The effect of the rootstock on the acropetal and basipetal transport of photoassimilates and hormones was studied in the 'Kiran' (Ki) melon cultivar grafted onto pumpkin rootstocks with different degrees of compatibility. A complementary experiment was performed to compare the incompatible combination (as evidenced by plant collapse at the fruit ripening stage), designated Ki/r53, with self-grafted r53/r53 as a model compatible combination. Both experiments showed the accumulation of a number of amino acids, sugars, and sugar alcohols in the scion of the incompatible Ki/r53 grafts. Additionally, they showed a marked reduction of trans-zeatin-type cytokinins and an elevated content of cis-zeatin-type cytokinins in the rootstock, and the opposite pattern in the scion, hinting at the possible involvement of a hormonal signal for graft compatibility. There was no direct evidence of a blockage at the graft union, since hormone acropetal and basipetal trafficking was demonstrated for all combinations. Dye uptake experiments did not show xylem flow impairment. A possibly significant finding in the incompatible combination was the deposition of undifferentiated cells in the hollow space that replaces the pith region in melon and pumpkin. The link between the above findings and the collapse of the plants of the incompatible combination remains unclear.


Assuntos
Transporte Biológico/fisiologia , Cucumis sativus/crescimento & desenvolvimento , Cucumis sativus/genética , Cucurbita/crescimento & desenvolvimento , Cucurbita/genética , Fotossíntese/fisiologia , Reguladores de Crescimento de Planta/fisiologia , Produtos Agrícolas/genética , Produtos Agrícolas/crescimento & desenvolvimento , Fotossíntese/genética , Melhoramento Vegetal , Reguladores de Crescimento de Planta/genética , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento
3.
Plant Sci ; 303: 110750, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33487339

RESUMO

Auxin is a major plant growth regulator, but current models on auxin perception and signaling cannot explain the whole plethora of auxin effects, in particular those associated with rapid responses. A possible candidate for a component of additional auxin perception mechanisms is the AUXIN BINDING PROTEIN 1 (ABP1), whose function in planta remains unclear. Here we combined expression analysis with gain- and loss-of-function approaches to analyze the role of ABP1 in plant development. ABP1 shows a broad expression largely overlapping with, but not regulated by, transcriptional auxin response activity. Furthermore, ABP1 activity is not essential for the transcriptional auxin signaling. Genetic in planta analysis revealed that abp1 loss-of-function mutants show largely normal development with minor defects in bolting. On the other hand, ABP1 gain-of-function alleles show a broad range of growth and developmental defects, including root and hypocotyl growth and bending, lateral root and leaf development, bolting, as well as response to heat stress. At the cellular level, ABP1 gain-of-function leads to impaired auxin effect on PIN polar distribution and affects BFA-sensitive PIN intracellular aggregation. The gain-of-function analysis suggests a broad, but still mechanistically unclear involvement of ABP1 in plant development, possibly masked in abp1 loss-of-function mutants by a functional redundancy.


Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/crescimento & desenvolvimento , Proteínas de Plantas/fisiologia , Receptores de Superfície Celular/fisiologia , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Hipocótilo/crescimento & desenvolvimento , Hipocótilo/metabolismo , Ácidos Indolacéticos/metabolismo , Microscopia Confocal , Reguladores de Crescimento de Planta/metabolismo , Reguladores de Crescimento de Planta/fisiologia , Proteínas de Plantas/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Protoplastos/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Receptores de Superfície Celular/metabolismo
4.
Plant Sci ; 303: 110764, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33487349

RESUMO

Side-chain modification contributes to the structural diversity of aliphatic glucosinolates (GSLs), a class of sulfur-containing secondary metabolites found in Brassicales. The first step in side-chain modification of aliphatic GSLs is the S-oxygenation of the methylthioalkyl (MT) moiety to the methylsulfinylalkyl (MS) moiety. This reaction is catalyzed by flavin-containing monooxygenase (FMOGS-OX), which is encoded by seven genes in Arabidopsis thaliana. Therefore, the regulation of FMOGS-OX gene expression is key to controlling side-chain structural diversity. In this study, we demonstrated that the expression of FMOGS-OX2 and FMOGS-OX4 was induced by glucose treatment, independent of MYB28/29 and MYC2/3/4, the transcription factors that positively regulate aliphatic GSL biosynthesis. Glucose treatment of the abscisic acid (ABA)-related mutants indicated that glucose-triggered upregulation of FMOGS-OX2 and FMOGS-OX4 was partially regulated by ABA through the key negative regulators ABI1 and ABI2, and the positive regulator SnRK2, but not via the transcription factor ABI5. In wild-type plants, glucose treatment drastically reduced the accumulation of 4-methylthiobutyl (4MT) GSL, whereas a decrease in 4MT GSL was not observed in the fmogs-ox2, abi1-1, abi2-1, aba2-1, or aba3-1 mutants. This result indicated that the decreased accumulation of 4MT GSL by glucose treatment was attributed to upregulation of FMOGS-OX2 via the ABA signaling pathway.


Assuntos
Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Glucosinolatos/metabolismo , Oxigenases/metabolismo , Reguladores de Crescimento de Planta/metabolismo , Arabidopsis/enzimologia , Regulação da Expressão Gênica de Plantas , Reguladores de Crescimento de Planta/fisiologia , Reação em Cadeia da Polimerase em Tempo Real , Fatores de Transcrição/metabolismo
5.
Plant Sci ; 302: 110701, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33288014

RESUMO

The ABI5 transcription factor, which is a core component of the ABA signaling pathway, affects various plant processes, including seed development and germination and responses to environmental cues. The knotted1-like homeobox (KNOX) transcription factor has crucial functions related to plant development, including the regulation of various hormones. In this study, an ABA-responsive KNOX gene, MdKNOX19, was identified in apple (Malus domestica). The overexpression of MdKNOX19 increased the ABA sensitivity of apple calli, resulting in a dramatic up-regulation in the transcription of the Arabidopsis ABI5-like MdABI5 gene. Additionally, MdKNOX19 overexpression in Micro-Tom adversely affected fruit size and seed yield as well as enhanced ABA sensitivity and up-regulated SlABI5 transcription during seed germination and early seedling development. An examination of MdKNOX19-overexpressing Arabidopsis plants also revealed severe defects in seed development and up-regulated expression of ABA-responsive genes. Furthermore, we further confirmed that MdKNOX19 binds directly to the MdABI5 promoter to activate expression. Our findings suggest MdKNOX19 is a positive regulator of ABI5 expression, and the conserved module MdKNOX19-MdABI5-ABA may contribute to organ development.


Assuntos
Ácido Abscísico/metabolismo , Malus/crescimento & desenvolvimento , Reguladores de Crescimento de Planta/fisiologia , Proteínas de Plantas/fisiologia , Fatores de Transcrição/fisiologia , Frutas/crescimento & desenvolvimento , Frutas/metabolismo , Germinação , Malus/metabolismo , Reguladores de Crescimento de Planta/metabolismo , Proteínas de Plantas/metabolismo , Sementes/crescimento & desenvolvimento , Sementes/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo , Transcriptoma
6.
Plant Sci ; 302: 110717, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33288023

RESUMO

Amino acids serve as structural monomers for protein synthesis and are considered important biostimulants for plants. In this report, the effects of all 20-L amino acids in Arabidopsis primary root growth were evaluated. 15 amino acids inhibited growth, being l-leucine (l-Leu), l-lysine (l-Lys), l-tryptophan (l-Trp), and l-glutamate (l-Glu) the most active, which repressed both cell division and elongation in primary roots. Comparisons of DR5:GFP expression and growth of WT Arabidopsis seedlings and several auxin response mutants including slr, axr1 and axr2 single mutants, arf7/arf19 double mutant and tir1/afb2/afb3 triple mutant, treated with inhibitory concentrations of l-Glu, l-Leu, l-Lys and l-Trp revealed gene-dependent, specific changes in auxin response. In addition, l- isomers of Glu, Leu and Lys, but not l-Trp diminished the GFP fluorescence of pPIN1::PIN1:GFP, pPIN2::PIN2:GFP, pPIN3::PIN3:GFP and pPIN7::PIN7:GFP constructs in root tips. MPK6 activity in roots was enhanced by amino acid treatment, being greater in response to l-Trp while mpk6 mutants supported cell division and elongation at high doses of l-Glu, l-Leu, l-Lys and l-Trp. We conclude that independently of their auxin modulating properties, amino acids signals converge in MPK6 to alter the Arabidopsis primary root growth.


Assuntos
Aminoácidos/fisiologia , Proteínas de Arabidopsis/fisiologia , Arabidopsis/crescimento & desenvolvimento , Ácidos Indolacéticos/metabolismo , Proteínas Quinases Ativadas por Mitógeno/fisiologia , Reguladores de Crescimento de Planta/fisiologia , Raízes de Plantas/crescimento & desenvolvimento , Aminoácidos/metabolismo , Arabidopsis/enzimologia , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Ácido Glutâmico/metabolismo , Leucina/metabolismo , Lisina/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Reguladores de Crescimento de Planta/metabolismo , Coifa/metabolismo , Coifa/fisiologia , Raízes de Plantas/enzimologia , Raízes de Plantas/metabolismo , Plântula/enzimologia , Plântula/crescimento & desenvolvimento , Plântula/metabolismo , Triptofano/metabolismo
7.
Plant Sci ; 302: 110718, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33288024

RESUMO

Our previous study demonstrated that the expression of GhNAC4, a NAC transcription factor from cotton, was induced by abiotic stresses and abscisic acid (ABA). In the present study, we investigated the molecular mechanisms underlying ABA and stress response of GhNAC4. Overexpression of GhNAC4 in transgenic tobacco conferred tolerance to salinity and drought treatments with associated enhanced expression of several stress-responsive marker genes. GhNAC4 is a protein that is translocated to the nucleus where it exhibits transcriptional activation property and also forms homo-dimers. In this study, we also investigated the domains essential for the biochemical functions of GhNAC4. We developed transgenic tobacco plants overexpressing the GhNAC4 NAC-domain and the transcriptional regulatory (TR) domain separately. NAC-domain transgenics showed hypersensitivity to exogenous ABA while TR-domain transgenics exhibited reduced sensitivity. Abiotic stress assays indicated that transgenic plants expressing both the domains separately were more tolerant than wild type plants with the NAC-domain transgenics showing increased tolerance as compared to TR-domain transgenics. Expression analysis revealed that various stress-responsive genes were upregulated in both NAC-domain and TR-domain transgenics under salinity and drought treatments. These results suggest that the stress tolerance ability of GhNAC4 is associated with both the component domains while the ABA responsiveness is largely associated with N-terminal NAC-domain.


Assuntos
Ácido Abscísico/metabolismo , Gossypium/fisiologia , Reguladores de Crescimento de Planta/fisiologia , Proteínas de Plantas/fisiologia , Fatores de Transcrição/fisiologia , Clonagem Molecular , Dimerização , Gossypium/metabolismo , Peroxidação de Lipídeos , Mutagênese Sítio-Dirigida , Perfenazina/metabolismo , Reguladores de Crescimento de Planta/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Prolina/metabolismo , Estresse Fisiológico , Relação Estrutura-Atividade , Tabaco , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo , Técnicas do Sistema de Duplo-Híbrido
8.
Plant Sci ; 302: 110719, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33288025

RESUMO

Brassinosteroids (BRs) play critical roles in plant growth and development, as well as in responses to abiotic stresses. The BRASSINAZOLE RESISTANT 1 (BZR1) and BRI1-EMS-SUPPRESSOR 1 (BES1) families of transcription factors have been elucidated largely in Arabidopsis and rice but not in other plant species. Here, we studied the functional characterization of a tomato (Solanum lycopersicum) BZR homolog gene, SlBZR1, in BR-regulated plant growth and tolerance to salt stress. SlBZR1 was highly expressed in the flowers and developing fruits of tomato. Both SlBZR1 and SlBZR1D (proline to leucine mutation at the 239th amino acid of SlBZR1) were transcriptional repressors and localized in the nucleus. SlBZR1 or SlBZR1D could interact with SlMYB30, SlMYBL2, SlPIF4, SlHAT1, SlIWS1 and SlREF6 in tomato. Overexpression of SlBZR1D enhanced the BR response and improved tolerance to salt stress in Arabidopsis, consistent with the phenotype of the Arabidopsis bes1-D mutant. Moreover, SlBZR1D-overexpressing tomato lines showed a short plant height, smaller and curly leaves, and delayed flowering. Additionally, SlBZR1D positively regulated salt tolerance in tomato and upregulated the expression of multiple stress-related genes. Our study provides new insights for understanding the function and mechanism of BZR transcription factors in BR-regulated plant growth and abiotic stress responses.


Assuntos
Brassinosteroides/metabolismo , Lycopersicon esculentum/fisiologia , Reguladores de Crescimento de Planta/metabolismo , Proteínas de Plantas/fisiologia , Fatores de Transcrição/fisiologia , Arabidopsis , Regulação da Expressão Gênica de Plantas , Lycopersicon esculentum/genética , Lycopersicon esculentum/metabolismo , Reguladores de Crescimento de Planta/fisiologia , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Reação em Cadeia da Polimerase em Tempo Real , Estresse Salino , Fatores de Transcrição/metabolismo
9.
J Plant Res ; 133(6): 751-763, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33033876

RESUMO

The YABBY family is a class of plant-specific transcription factors comprising a typical N-terminal C2C2-type zinc finger domain and a C-terminal helix-loop-helix YABBY domain. YABBY transcription factors play important roles in multiple biological processes, including polarity establishment in plant leaves, the formation and development of reproductive organs, the response to plant hormone signals, resistance to stress, crop breeding and agricultural production. The aim of this review is to summarize our current understanding of the roles, functions and value of the YABBY family in plants, with particular emphasis on new insights into the molecular and physiological mechanisms involved in the YABBY-mediated modulation of polarity establishment, morphogenesis and development, and phytohormone and stress responses in plants. In addition, we propose that this transcription factor family presents great value and potential for research, application and development in crop breeding and agricultural production in the future.


Assuntos
Morfogênese , Reguladores de Crescimento de Planta/fisiologia , Fenômenos Fisiológicos Vegetais , Proteínas de Plantas , Fatores de Transcrição , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estresse Fisiológico , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
10.
PLoS Comput Biol ; 16(7): e1007523, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32687508

RESUMO

Coordination of fate transition and cell division is crucial to maintain the plant architecture and to achieve efficient production of plant organs. In this paper, we analysed the stem cell dynamics at the shoot apical meristem (SAM) that is one of the plant stem cells locations. We designed a mathematical model to elucidate the impact of hormonal signaling on the fate transition rates between different zones corresponding to slowly dividing stem cells and fast dividing transit amplifying cells. The model is based on a simplified two-dimensional disc geometry of the SAM and accounts for a continuous displacement towards the periphery of cells produced in the central zone. Coupling growth and hormonal signaling results in a nonlinear system of reaction-diffusion equations on a growing domain with the growth rate depending on the model components. The model is tested by simulating perturbations in the level of key transcription factors that maintain SAM homeostasis. The model provides new insights on how the transcription factor HECATE is integrated in the regulatory network that governs stem cell differentiation.


Assuntos
Diferenciação Celular/fisiologia , Modelos Biológicos , Células Vegetais , Reguladores de Crescimento de Planta/fisiologia , Transdução de Sinais/fisiologia , Biologia Computacional , Simulação por Computador , Meristema/citologia , Meristema/crescimento & desenvolvimento , Meristema/metabolismo , Meristema/fisiologia , Células Vegetais/metabolismo , Células Vegetais/fisiologia
11.
Plant Physiol Biochem ; 151: 103-112, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32208322

RESUMO

Endogenous signals in response to exogenous factors determine the senescence of flowers. Interactions among phytohormones especially abscisic acid (ABA) and ethylene are the major determinant of the senescence. In the present study, complex expression patterns of the genes related to ABA and ethylene as endogenous signals were investigated on cut carnations (Dianthus caryophyllus L.) that were exposed to different light spectra. Expression of ethylene biosynthetic (DcACS and DcACO), and signaling (DcETR and DcEin2) genes and also genes involved in ABA biosynthesis (DcZEP1 and DcNCED1), transport (DcABCG25 and DcABCG40) and catabolism (DcCYP707A1) were evaluated in petals of carnations exposed to three light spectra [white, blue and red]. Lowest relative membrane permeability (RMP) was detected in flowers that exposed to Blue light (BLFs), as a consequence, the longest vase life was found in BLFs. The Red and White lights markedly accelerated flower senescence and increased expression of DcACS and DcACO on day 6 and 10 of vase life assessment respectively; while Blue light inhibited the expression of ethylene biosynthetic genes. Expression of the genes involved in the production and transport of ABA and in signal transduction of ethylene was elevated during vase life of flowers irrespective of exposure to different light spectra. In conclusion, Blue light can be an effective environmental factor to extend the vase life of carnation flowers by delaying the petal senescence through down-regulation of ethylene biosynthetic genes and up-regulation of ABA biosynthetic genes.


Assuntos
Ácido Abscísico/metabolismo , Dianthus/fisiologia , Etilenos/biossíntese , Flores/fisiologia , Genes de Plantas , Reguladores de Crescimento de Planta/fisiologia , Dianthus/efeitos da radiação , Flores/efeitos da radiação , Transdução de Sinais
12.
Plant Physiol Biochem ; 151: 124-131, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32220785

RESUMO

Seed germination and early seedling development are two critical phases in plant lifecycle that largely determine crop yield. Phytohormones play an essential role in governing these developmental processes; of these, ethylene (ET; C2H4), the smallest gaseous hormone, plays a major role via crosstalk with other hormones. Typically, the mechanism of hormone (for instance, auxin, cytokinins, ET, and gibberellins) action is determined by cellular context, revealing either synergistic or antagonistic relations. Significant progress has been made, so far, on unveiling ET crosstalk with other hormones and environmental signals, such as light. In particular, stimulatory and inhibitory effects of ET on hypocotyl growth in light and dark, respectively, and its interaction with other hormones provide an ideal model to study the growth-regulatory pathways. In this review, we aim at exploring the mechanisms of multifarious phenomena that occur via ET crosstalk during the germination of seeds (overcoming dormancy), and all through the development of seedlings. Understanding the remarkably complex mechanism of ET crosstalk that emerges from the interaction between hormones and other molecular players to modulate plant growth, remains a challenge in plant developmental biology.


Assuntos
Etilenos/metabolismo , Germinação , Plântula/fisiologia , Sementes/fisiologia , Transdução de Sinais , Reguladores de Crescimento de Planta/fisiologia
13.
Plant Sci ; 293: 110413, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32081262

RESUMO

Protein N-glycosylation plays key roles in protein folding, stability, solubility, biogenesis, and enzyme activity. Tomato (Solanum lycopersicum L.) is an important vegetable crop with abundant nutritional value, and the formation of tomato fruit qualities primarily occurs in the fruit ripening process. However, a large number of N-glycosylation-mediated mechanisms in regulating tomato fruit ripening have not been elucidated to date. In this study, western blot assays showed that the extents of mature N-glycoproteins were differentially expressed in mature green fruits (fruit start ripening) and ripe fruits (fruit stop ripening). Next, through performing a comparative N-glycoproteome analysis strategy, a total of 553 N-glycosites from 363 N-glycoproteins were identified in mature green fruits compared with ripe fruits. Among them, 252 N-glycosites from 191 N-glycoproteins were differentially expressed in mature green fruits compared with ripe fruits. The differentially expressed N-glycoproteins were mainly located in the chloroplast (30 %) and cytoplasm (16 %). Gene Ontology (GO) analysis showed that these N-glycoproteins were involved in various biological processes, cellular components and molecular functions. These N-glycoproteins participate in biological processes, such as metabolic processes, cellular processes and single-organism processes. These N-glycoproteins are also cellular components in biological process cells, membranes and organelles and have different molecular functions, such as catalytic activity and binding. Notably, these N-glycoproteins were enriched in starch and sucrose metabolism and galactose metabolism by KEGG pathway analysis. This community resource regarding N-glycoproteins is the first large-scale N-glycoproteome during plant fruit ripening. This study will contribute to understanding the function of N-glycosylation in regulating plant fruit ripening.


Assuntos
Metabolismo dos Carboidratos/fisiologia , Frutas/metabolismo , Lycopersicon esculentum/metabolismo , Proteoma , Metabolismo dos Carboidratos/genética , Frutas/genética , Frutas/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Glicosilação , Lycopersicon esculentum/genética , Reguladores de Crescimento de Planta/genética , Reguladores de Crescimento de Planta/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Transcriptoma
14.
BMC Genomics ; 21(1): 62, 2020 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-31959122

RESUMO

BACKGROUND: The APETALA2/ethylene responsive factor (AP2/ERF) superfamily members are transcription factors that regulate diverse developmental processes and stress responses in plants. They have been identified in many plants. However, little is known about the AP2/ERF superfamily in longan (Dimocarpus longan Lour.), which is an important tropical/subtropical evergreen fruit tree that produces a variety of bioactive compounds with rich nutritional and medicinal value. We conducted a genome-wide analysis of the AP2/ERF superfamily and its roles in somatic embryogenesis (SE) and developmental processes in longan. RESULTS: A genome-wide survey of the AP2/ERF superfamily was carried out to discover its evolution and function in longan. We identified 125 longan AP2/ERF genes and classified them into the ERF (101 members), AP2 (19 members), RAV (four members) families, and one Soloist. The AP2 and Soloist genes contained one to ten introns, whereas 87 genes in the ERF and RAV families had no introns. Hormone signaling molecules such as methyl jasmonate (MeJA), abscisic acid (ABA), gibberellin, auxin, and salicylic acid (SA), and stress response cis-acting element low-temperature (55) and defense (49) boxes also were identified. We detected diverse single nucleotide polymorphisms (SNPs) between the 'Hong He Zi' (HHZ) and 'SI JI MI' (SJM) cultivars. The number of insertions and deletions (InDels) was far fewer than SNPs. The AP2 family members exhibited more alternative splicing (AS) events in different developmental processes of longan than members of the other families. Expression pattern analysis revealed that some AP2/ERF members regulated early SE and developmental processes in longan seed, root, and flower, and responded to exogenous hormones such as MeJA, SA, and ABA, and 2,4-D, a synthetic auxin. Protein interaction predictions indicated that the Baby Boom (BBM) transcription factor, which was up-regulated at the transcriptional level in early SE, may interact with the LALF/AGL15 network. CONCLUSIONS: The comprehensive analysis of molecular evolution and expression patterns suggested that the AP2/ERF superfamily may plays an important role in longan, especially in early SE, and in seed, root, flower, and young fruit. This systematic analysis provides a foundation for further functional characterization of the AP2/ERF superfamily with the aim of longan improvement.


Assuntos
Família Multigênica , Proteínas de Plantas/genética , Sapindaceae/genética , Fatores de Transcrição/genética , Processamento Alternativo , Evolução Molecular , Genoma de Planta , Mutação INDEL , Motivos de Nucleotídeos , Filogenia , Reguladores de Crescimento de Planta/fisiologia , Proteínas de Plantas/metabolismo , Polimorfismo de Nucleotídeo Único , RNA-Seq , Elementos Reguladores de Transcrição , Sapindaceae/embriologia , Sapindaceae/crescimento & desenvolvimento , Sapindaceae/metabolismo , Fatores de Transcrição/metabolismo
15.
Sci Rep ; 10(1): 679, 2020 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-31959762

RESUMO

While the effects of phytohormones on plant gene expression have been well characterized, comparatively little is known about how hormones influence metabolite profiles. This study examined the effects of elevated auxin and ethylene on the metabolome of Arabidopsis roots using a high-resolution 24 h time course, conducted in parallel to time-matched transcriptomic analyses. Mass spectrometry using orthogonal UPLC separation strategies (reversed phase and HILIC) in both positive and negative ionization modes was used to maximize identification of metabolites with altered levels. The findings show that the root metabolome responds rapidly to hormone stimulus and that compounds belonging to the same class of metabolites exhibit similar changes. The responses were dominated by changes in phenylpropanoid, glucosinolate, and fatty acid metabolism, although the nature and timing of the response was unique for each hormone. These alterations in the metabolome were not directly predicted by the corresponding transcriptome data, suggesting that post-transcriptional events such as changes in enzyme activity and/or transport processes drove the observed changes in the metabolome. These findings underscore the need to better understand the biochemical mechanisms underlying the temporal reconfiguration of plant metabolism, especially in relation to the hormone-metabolome interface and its subsequent physiological and morphological effects.


Assuntos
Arabidopsis/genética , Arabidopsis/metabolismo , Etilenos/metabolismo , Perfilação da Expressão Gênica/métodos , Genes de Plantas/genética , Ácidos Indolacéticos/metabolismo , Metaboloma , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Transcriptoma , Ácidos Graxos/metabolismo , Expressão Gênica , Glucosinolatos/metabolismo , Espectrometria de Massas/métodos , Reguladores de Crescimento de Planta/fisiologia , Fatores de Tempo
16.
Microbes Environ ; 35(1)2020.
Artigo em Inglês | MEDLINE | ID: mdl-31969531

RESUMO

The Vietnamese Mekong delta is one of the largest rice-producing areas globally. Methylobacterium spp. are persistent colonizers of the rice plant and exert beneficial effects on plant growth and health. Sixty-one Methylobacterium strains belonging to seven species were predominantly isolated from the phyllosphere of rice cultivated in six Mekong delta provinces. Inoculation tests revealed that some strains exhibited plant growth-promoting activity. Moreover, three strains possessed the novel characteristics of inducing leaf bleaching and killing rice seedlings. These results revealed the complex diversity of Methylobacterium in Mekong delta rice and that healthy and productive rice cultivation requires a proper balance of Methylobacterium.


Assuntos
Variação Genética , Methylobacterium/genética , Oryza/microbiologia , Alface/crescimento & desenvolvimento , Alface/microbiologia , Methylobacterium/classificação , Methylobacterium/fisiologia , Oryza/crescimento & desenvolvimento , Componentes Aéreos da Planta/microbiologia , Reguladores de Crescimento de Planta/fisiologia , Vietnã
17.
Int J Mol Sci ; 21(1)2020 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-31948086

RESUMO

Brassinosteroids (BRs) are a class of steroidal phytohormones which are key regulators of diverse processes during whole life cycle of plants. Studies conducted in the dicot model species Arabidopsis thaliana have allowed identification and characterization of various components of the BR signaling. It is currently known that the BR signaling is interconnected at various stages with other phytohormonal and stress signaling pathways. It enables a rapid and efficient adaptation of plant metabolism to constantly changing environmental conditions. However, our knowledge about mechanism of the BR signaling in the monocot species is rather limited. Thus, identification of new components of the BR signaling in monocots, including cereals, is an ongoing process and has already led to identification of some monocot-specific components of the BR signaling. It is of great importance as disturbances in the BR signaling influence architecture of mutant plants, and as a consequence, the reaction to environmental conditions. Currently, the modulation of the BR signaling is considered as a target to enhance yield and stress tolerance in cereals, which is of particular importance in the face of global climate change.


Assuntos
Arabidopsis/metabolismo , Brassinosteroides/metabolismo , Produtos Agrícolas/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Reguladores de Crescimento de Planta/metabolismo , Transdução de Sinais/genética , Aclimatação , Adaptação Fisiológica , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Produtos Agrícolas/genética , Melhoramento Vegetal , Reguladores de Crescimento de Planta/fisiologia , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo
18.
Plant Mol Biol ; 102(4-5): 537-551, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31916084

RESUMO

KEY MESSAGE: Silencing of SlCAND1 expression resulted in dwarfish, loss of apical dominance, early flowering, suppression of seed germination, and abnormal root architecture in tomato Cullin-RING E3 ligases (CRLs)-dependent ubiquitin proteasome system mediates degradation of numerous proteins that controls a wide range of developmental and physiological processes in eukaryotes. Cullin-associated Nedd8-dissociated protein 1 (CAND1) acts as an exchange factor allowing substrate recognition part exchange and plays a vital role in reactivating CRLs. The present study reports on the identification of SlCAND1, the only one CAND gene in tomato. SlCAND1 expression is ubiquitous and positively regulated by multiple plant hormones. Silencing of SlCAND1 expression using RNAi strategy resulted in a pleiotropic and gibberellin/auxin-associated phenotypes, including dwarf plant with reduced internode length, loss of apical dominance, early flowering, low seed germination percentage, delayed seed germination speed, short primary root, and increased lateral root proliferation and elongation. Moreover, application of exogenous GA3 or IAA could partly rescue some SlCAND1-silenced phenotypes, and the expression levels of gibberellin/auxin-related genes were altered in SlCAND1-RNAi lines. These facts revealed that SlCAND1 is required for gibberellin/auxin-associated regulatory network in tomato. Although SlCAND1 is crucial for multiple developmental processes during vegetative growth stage, SlCAND1-RNAi lines didn't exhibit visible effect on fruit development and ripening. Meanwhile, we discussed that multiple physiological functions of SlCAND1 in tomato are different to previous report of its ortholog in Arabidopsis. Our study adds a new perspective on the functional roles of CAND1 in plants, and strongly supports the hypothesis that CAND1 and its regulated ubiquitin proteasome system are pivotal for plant vegetative growth but possibly have different roles in diverse plant species.


Assuntos
Flores/fisiologia , Germinação , Lycopersicon esculentum/fisiologia , Proteínas de Plantas/fisiologia , Raízes de Plantas/fisiologia , Arabidopsis/genética , Proteínas Culina , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Giberelinas/metabolismo , Lycopersicon esculentum/genética , Fenótipo , Reguladores de Crescimento de Planta/fisiologia , Proteínas de Plantas/genética , Interferência de RNA , Sementes/fisiologia , Fatores de Transcrição/genética , Fatores de Transcrição/fisiologia
19.
Cell Mol Life Sci ; 77(12): 2343-2354, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31807816

RESUMO

Axillary meristems (AMs) are located in the leaf axil and can establish new growth axes. Whereas their neighboring cells are differentiated, the undifferentiated cells in the AM endow the AM with the same developmental potential as the shoot apical meristem. The AM is, therefore, an excellent system to study stem cell fate maintenance in plants. In this review, we summarize the current knowledge of AM initiation. Recent findings have shown that AMs derive from a stem cell lineage that is maintained in the leaf axil. This review covers AM progenitor cell fate maintenance, reactivation, and meristem establishment. We also highlight recent work that links transcription factors, phytohormones, and epigenetic regulation to AM initiation.


Assuntos
Meristema/fisiologia , Proteínas de Arabidopsis/genética , Diferenciação Celular/fisiologia , Linhagem da Célula/genética , Linhagem da Célula/fisiologia , Epigênese Genética/genética , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Meristema/genética , Reguladores de Crescimento de Planta/fisiologia , Folhas de Planta/genética , Folhas de Planta/fisiologia , Fatores de Transcrição/genética
20.
Physiol Plant ; 168(4): 921-933, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31724179

RESUMO

Salinity and drought are the two most important and frequently co-occurring abiotic factors. A greenhouse pot experiment was carried out on two contrasting wheat genotypes (Jimai22, salt tolerant; Yangmai20, salt sensitive) to analyze the effect of drought (4% soil moisture content, D) and salinity (100 mM NaCl, S) either individually or combined on secondary metabolism-related enzyme activities and osmolytes. Results showed that drought, salinity and their combination (D + S) caused increases in phenylalanine ammonialyase (PAL, EC 4.3.1.24) activities compared with controls with a greater enhancement in Jimai22 than Yangmai20. Polyphenol peroxidase (PPO, EC 1.14.18.1) and shikimate dehydrogenase (SKDH, EC 1.1.1.25) activities increased more in Jimai22 both under salinity alone and D + S stresses. The D + S combination increased cinnamyl alcohol dehydrogenase (CAD, EC 1.1.1.195) activity and glycine betaine (GB) under both 10 and 4% soil moisture contents (SMC), and elevated abscisic acid (ABA), indole-3-acetic acid (IAA) and flavonoid contents at 4% SMC in Jimai22, contents of the compounds remained unchanged in Yangmai20. The treatment with salinity alone at both SMCs significantly increased callose and flavonoid contents in Jimai22 more than in Yangmai20, as compared to controls. In addition, the total phenol content at 4% SMC increased in the salt-tolerant genotype more. Moreover, total tocopherol under salinity alone and D + S at 4% SMC and chitinase activity under salinity at both SMC remarkably increased in Jimai22 while non-significant change observed in Yangmai20. Also, the expression of genes related to secondary metabolism (PAL, PPO, CAD, SKDH, and GB) was more induced in Jimai22 than Yangmai20 under D + S, and lower accumulation of H2 O2 and O2 - also occurred. Our findings suggest that high tolerance to D + S stress in Jimai22 was closely related to enhanced secondary metabolism-related enzyme activities and osmolytes such as PAL, CAD, PPO, SKDH, GB, total tocopherol, callose, plant hormones and their transcript level, which may beneficial to lower the reactive oxygen species (ROS) accumulation.


Assuntos
Reguladores de Crescimento de Planta/fisiologia , Metabolismo Secundário , Triticum/enzimologia , Triticum/genética , Antioxidantes , Secas , Regulação da Expressão Gênica de Plantas , Genótipo , Salinidade , Estresse Fisiológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...