Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 589
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
J Agric Food Chem ; 67(49): 13509-13517, 2019 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-31725280

RESUMO

In this study, novel water-soluble quaternary ammonium salts of iminofullerenes (IFQA) were synthesized by nitrene chemistry in combination with quaternization and identified as [C60(NCH2CH2NH3+·CF3COO-)4·10H2O]n by various spectroscopies. Maize and Arabidopsis seeds were used to test the bioactivity of IFQA in seed germination. Compared with the control, maize seed exposure to 50 mg/L IFQA (normal: 73.1% vs 58.7%; drought: 66.7% vs 50.0% at the second day) and Arabidopsis seed exposure to 20 mg/L IFQA (normal: 77.5% vs 58.8%; drought: 63.3% vs 36.7% at the second day) had higher germination rates and quicker germination. The results of two-dimensional gel electrophoresis combined with mass spectroscopy showed that the abundance of 21 proteins in embryo proteome of maize seeds was significantly changed (>1.5 fold). The downregulated six storage proteins and upregulated four proteins induced by IFQA for energy production and sugar metabolism indicated a faster metabolic activity of maize seed germination. The upregulated eight stress-related proteins and antioxidant enzymes suggested that the role of IFQA was to activate the metabolic processes in seed germination and also increase seed stress response. The results provide important information to understand the mechanism of seed germination enhancement by carbon nanomaterials.


Assuntos
Compostos de Amônio/farmacologia , Arabidopsis/crescimento & desenvolvimento , Fulerenos/farmacologia , Reguladores de Crescimento de Planta/farmacologia , Sementes/efeitos dos fármacos , Triticum/crescimento & desenvolvimento , Compostos de Amônio/química , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Arabidopsis/metabolismo , Fulerenos/química , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Germinação/efeitos dos fármacos , Reguladores de Crescimento de Planta/síntese química , Reguladores de Crescimento de Planta/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Sementes/genética , Sementes/crescimento & desenvolvimento , Sementes/metabolismo , Triticum/efeitos dos fármacos , Triticum/genética , Triticum/metabolismo
2.
Int J Mol Sci ; 20(18)2019 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-31489905

RESUMO

Salicylic acid (SA) is a phytohormone that plays important roles in many aspects of plant life, notably in plant defenses against pathogens. Key mechanisms of SA signal transduction pathways have now been uncovered. Even though details are still missing, we understand how SA production is regulated and which molecular machinery is implicated in the control of downstream transcriptional responses. The NPR1 pathway has been described to play the main role in SA transduction. However, the mode of SA perception is unclear. NPR1 protein has been shown to bind SA. Nevertheless, NPR1 action requires upstream regulatory events (such as a change in cell redox status). Besides, a number of SA-induced responses are independent from NPR1. This shows that there is more than one way for plants to perceive SA. Indeed, multiple SA-binding proteins of contrasting structures and functions have now been identified. Yet, all of these proteins can be considered as candidate SA receptors and might have a role in multinodal (decentralized) SA input. This phenomenon is unprecedented for other plant hormones and is a point of discussion of this review.


Assuntos
Redes e Vias Metabólicas , Reguladores de Crescimento de Planta/metabolismo , Proteínas de Plantas/metabolismo , Ácido Salicílico/metabolismo , Transdução de Sinais , Doenças das Plantas , Reguladores de Crescimento de Planta/química , Proteínas de Plantas/química , Ácido Salicílico/química , Estresse Fisiológico , Relação Estrutura-Atividade
3.
Plant Physiol Biochem ; 142: 73-83, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31277044

RESUMO

In spite of extraordinary properties of zinc sulphide nanoparticle (nZnS), its role on plant system is not well understood, yet. Therefore, this study was aimed to assess the uptake, translocation and effects of nZnS in mung bean (Vigna radiata) plant at 0, 0.1, 0.5 and 1 mg L-1 concentrations. In this study, nZnS was synthesized by modified reflux method and physicochemical characterizations were conducted. The effects of nZnS on mung bean plant were determined by seed germination, growth parameters, membrane integrity and ROS-antioxidant defense assays. Our results showed that nZnS treatment has significantly increased seed germination, root-shoot length, pigment content and decreased lipid peroxidation. There were increased total antioxidant activity (TAA), DPPH and flavonoid contents found in treated plants. Also, nZnS treatment did not activate oxidative stress determined by SOD, CAT, CPX, APOX and GR activities. The uptake and translocation of nZnS in mung bean plants were determined by Transmission Electron Microscope (TEM) and Scanning Electron Microscope (SEM), revelling that nZnS localized primarily in the vacuoles and chloroplasts. Besides, electron micrographs showed no alteration in cell structures between treated and control plants, further confirming that nZnS treatment has no phytotoxic effects. In vitro and in vivo studies on Zn release from nZnS were also determined using Inductively Coupled Plasma Mass Spectroscopy (ICPMS) and Energy Dispersive X-ray (EDX), which showed that the Zn release and particles uptake were concentration dependent. Overall, results of this study demonstrated the positive role of nZnS on growth and antioxidant defense responses in V. radiata at the experimental concentrations.


Assuntos
Nanopartículas/química , Reguladores de Crescimento de Planta/farmacologia , Sulfetos/farmacologia , Vigna/efeitos dos fármacos , Vigna/crescimento & desenvolvimento , Compostos de Zinco/farmacologia , Antioxidantes/metabolismo , Carotenoides/metabolismo , Clorofila/metabolismo , Eletrólitos/metabolismo , Germinação/efeitos dos fármacos , Hidroponia , Peroxidação de Lipídeos/efeitos dos fármacos , Microscopia Eletrônica de Varredura , Reguladores de Crescimento de Planta/química , Reguladores de Crescimento de Planta/farmacocinética , Proteínas de Plantas/metabolismo , Prolina/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier , Sulfetos/química , Sulfetos/farmacocinética , Distribuição Tecidual , Vigna/metabolismo , Difração de Raios X , Zinco/farmacocinética , Compostos de Zinco/química , Compostos de Zinco/farmacocinética
4.
J Biotechnol ; 303: 8-15, 2019 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-31301312

RESUMO

The aim of this work was to investigate the use of zinc oxide nanoparticles (nZnO) as nanocarriers for plant auxins indole-3-acetic acid (IAA) and indole-3-butyric acid (IBA) and determine the effects on rhizogenesis in micro cuttings of different Pyrus species. Auxin loaded nanoparticles (IAA-nZnO and IBA-nZnO) were characterized for particle size, morphology, thermal behavior and chemical structure. A high loading capacity was observed for both auxins (˜90%). Bioactivity assays were performed by using micro cuttings of Pyrus genotypes (Pyrus elaeagrifolia Pall and Pyrus communis L.) under aseptic conditions by dilute solution soaking method. In vitro rooting efficiency was increased at least two folds for the difficult-to-root wild pear (Pyrus elaeagrifolia Pallas) with IAA or IBA loaded ZnO nanoparticles. In this genotype, the highest rooting percentage was achieved for IBA-nZnO and IAA-nZnO at 400 mgL-1 concentration as 50.0% and 41.7%, respectively. Thus, auxin loaded ZnO nanoparticles could be used as efficient nanocarriers in agricultural applications.


Assuntos
Reguladores de Crescimento de Planta/farmacologia , Pyrus/crescimento & desenvolvimento , Óxido de Zinco/síntese química , Portadores de Fármacos/síntese química , Portadores de Fármacos/química , Genótipo , Ácidos Indolacéticos/química , Ácidos Indolacéticos/farmacologia , Indóis/química , Indóis/farmacologia , Nanopartículas , Tamanho da Partícula , Reguladores de Crescimento de Planta/química , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Pyrus/efeitos dos fármacos , Pyrus/genética , Rizosfera , Termodinâmica , Óxido de Zinco/química
5.
J Chem Ecol ; 45(7): 638-648, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31227972

RESUMO

Although the production of phytohormones has been commonly associated with production of plant defence and stress-related traits, few studies have simultaneously investigated this phenomenon across several plant species that grow along large-scale ecological gradients. To address these knowledge gaps, we performed a common garden experiment with six Cardamine species, which collectively encompass an elevational gradient of 2000 m. We quantified constitutive and Pieris brassicae caterpillars-induced phytohormones and chemical defences in leaves. We found a correlated expression of phytohormone production and the subsequent induction of chemical defences, and this correlated expression reduced herbivore performance. Furthermore, we found that abiotic conditions associated with the optimal elevation range of each species influenced the production of phytohormones and chemical defences, as well as plant growth and productivity. In particular, we found that plant species adapted to milder abiotic conditions at low elevations grew faster, were more productive and produced greater levels of chemical defences. In contrast, plant species adapted to harsher abiotic conditions at high elevations tended to produce greater levels of defence-related oxylipins. Overall, these findings highlight the importance of disentangling the role of phytohormones in mediating plant adaptations to shifting biotic and abiotic conditions.


Assuntos
Cardamine/química , Glucosinolatos/química , Himenópteros/fisiologia , Reguladores de Crescimento de Planta/química , Animais , Cardamine/metabolismo , Cromatografia Líquida de Alta Pressão , Glucosinolatos/farmacologia , Herbivoria , Interações Hospedeiro-Parasita/efeitos dos fármacos , Himenópteros/crescimento & desenvolvimento , Larva/efeitos dos fármacos , Larva/fisiologia , Reguladores de Crescimento de Planta/farmacologia , Folhas de Planta/química , Folhas de Planta/metabolismo , Espectrometria de Massas em Tandem
6.
Phytochem Anal ; 30(5): 512-523, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31222865

RESUMO

INTRODUCTION: Mediterranean plants are characterised by a high content of bioactive secondary metabolites that play important roles in plant-plant interactions as plant growth regulators and could be useful for the development of new eco-friendly herbicides. OBJECTIVE: An NMR-based metabolomics approach was reported to seek selective phytotoxic plant extracts and putative plant-derived active molecules. METHODS: Plant extracts derived from five Mediterranean donor species (Pistacia lentiscus, Bellis sylvestris, Phleum subulatum, Petrohrhagia saxifraga and Melilotus neapolitana) were used to treat the hydroponic cultures of three receiving plants (Triticum durum, Triticum ovatum and Avena fatua). Morphological analyses of the treated receiving plants were carried out. NMR-based metabolomics was applied both to characterise the donor plant extracts and to study the effects of the treatments on the receiving plants. RESULTS: This study allowed the identification of Melilotus neapolitana and Bellis sylvestris as phytotoxic plant and good candidates for further studies. Specifically, the NMR-based metabolomics investigation showed that these species affect a specific set of metabolites (such as sugars, amino and organic acids) and therefore metabolic pathways [i.e. tricarboxylic acid (TCA) cycle, amino acid metabolism, etc.] that are crucial for the plant growth and development. Moreover, it was possible to identify the metabolite(s) probably responsible for the phytotoxicity of the active extracts. CONCLUSION: The NMR-based metabolomics approach employed in this study led to the identification of two phytotoxic plant extracts and their putative active principles. These new insights will be of paramount importance in the future to find plant derived molecules endowed with phytotoxic activities.


Assuntos
Bioensaio/métodos , Metabolômica/métodos , Extratos Vegetais/química , Plantas/química , Herbicidas/química , Herbicidas/farmacologia , Região do Mediterrâneo , Extratos Vegetais/farmacologia , Extratos Vegetais/toxicidade , Reguladores de Crescimento de Planta/química , Reguladores de Crescimento de Planta/farmacologia , Plantas/classificação , Plantas/metabolismo , Plantas Tóxicas/química , Plantas Tóxicas/metabolismo
7.
Plant Physiol Biochem ; 141: 142-153, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31163341

RESUMO

Plant growth promoting bacteria (PGPB) are agriculturally important soil bacteria that increase plant growth. We subjected peppermint to inoculation with three species of PGPB. After inoculation, the plants were sprayed with methyl jasmonate solution (MeJA) or SA (salicylic acid). Then, the plants were harvested and the plant growth parameters, trichome density, EO content and endogenous phytohormones were measured. Shoot fresh weight was reduced in plants inoculated and treated with MeJA whereas EO content varied depending on the MeJA concentration applied. Plants inoculated and treated with MeJA 2 mM showed the maximum increase in EO production, revealing a synergism between PGPB and MeJA. SA treatments also enhanced EO yield. The increased growth and EO production observed upon PGPB application were at least partly due to an increase in the JA and SA concentrations in the plant, as well as to an associated rise in the glandular trichome density.


Assuntos
Acetatos/farmacologia , Ciclopentanos/química , Ciclopentanos/farmacologia , Mentha piperita/química , Óleos Voláteis/química , Oxilipinas/química , Oxilipinas/farmacologia , Ácido Salicílico/química , Tricomas/química , Bacillus subtilis , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Mentha piperita/microbiologia , Óleos Voláteis/isolamento & purificação , Desenvolvimento Vegetal , Reguladores de Crescimento de Planta/química , Folhas de Planta/química , Brotos de Planta/química , Pseudomonas fluorescens , Pseudomonas putida
8.
Microbiology ; 165(10): 1025-1040, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31162023

RESUMO

Gram-positive Actinobacteria from the genus Streptomyces are best known for their morphological complexity and for their ability to produce numerous bioactive specialized metabolites with useful applications in human and veterinary medicine and in agriculture. In contrast, the ability to infect living plant tissues and to cause diseases of root and tuber crops such as potato common scab (CS) is a rare attribute among members of this genus. Research on the virulence mechanisms of plant-pathogenic Streptomyces spp. has revealed the importance of the thaxtomin phytotoxins as key pathogenicity determinants produced by several species. In addition, other phytotoxic specialized metabolites may contribute to the development or severity of disease caused by Streptomyces spp., along with the production of phytohormones and secreted proteins. A thorough understanding of the molecular mechanisms of plant pathogenicity will enable the development of better management procedures for controlling CS and other plant diseases caused by the Streptomyces.


Assuntos
Doenças das Plantas/microbiologia , Streptomyces/patogenicidade , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Toxinas Bacterianas/química , Toxinas Bacterianas/genética , Toxinas Bacterianas/metabolismo , Reguladores de Crescimento de Planta/química , Reguladores de Crescimento de Planta/genética , Reguladores de Crescimento de Planta/metabolismo , Tubérculos/microbiologia , Solanum tuberosum/microbiologia , Streptomyces/genética , Streptomyces/metabolismo , Virulência
9.
PLoS One ; 14(6): e0218352, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31194847

RESUMO

Switchgrass (Panicum virgatum L.) is a low input, high biomass perennial grass being developed for the bioenergy sector. Upland and lowland cultivars can differ in their responses to insect herbivory. Fall armyworm [FAW; Spodoptera frugiperda JE Smith (Lepidoptera: Noctuidae)] is a generalist pest of many plant species and can feed on switchgrass as well. Here, in two different trials, FAW larval mass were significantly reduced when fed on lowland cultivar Kanlow relative to larvae fed on upland cultivar Summer plants after 10 days. Hormone content of plants indicated elevated levels of the plant defense hormone jasmonic acid (JA) and its bioactive conjugate JA-Ile although significant differences were not observed. Conversely, the precursor to JA, 12-oxo-phytodienoic acid (OPDA) levels were significantly different between FAW fed Summer and Kanlow plants raising the possibility of differential signaling by OPDA in the two cultivars. Global transcriptome analysis revealed a stronger response in Kanlow plant relative to Summer plants. Among these changes were a preferential upregulation of several branches of terpenoid and phenylpropanoid biosynthesis in Kanlow plants suggesting that enhanced biosynthesis or accumulation of antifeedants could have negatively impacted FAW larval mass gain on Kanlow plants relative to Summer plants. A comparison of the switchgrass-FAW RNA-Seq dataset to those from maize-FAW and switchgrass-aphid interactions revealed that key components of plant responses to herbivory, including induction of JA biosynthesis, key transcription factors and JA-inducible genes were apparently conserved in switchgrass and maize. In addition, these data affirm earlier studies with FAW and aphids that the cultivar Kanlow can provide useful genetics for the breeding of switchgrass germplasm with improved insect resistance.


Assuntos
Comportamento Alimentar , Panicum/genética , Spodoptera , Animais , Biomassa , Regulação da Expressão Gênica de Plantas , Herbivoria , Larva , Panicum/química , Panicum/metabolismo , Reguladores de Crescimento de Planta/química , Reguladores de Crescimento de Planta/genética , Transcriptoma
10.
Int J Mol Sci ; 20(10)2019 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-31121967

RESUMO

The role of jasmonates in defense priming has been widely recognized. Priming is a physiological process by which a plant exposed to low doses of biotic or abiotic elicitors activates faster and/or stronger defense responses when subsequently challenged by a stress. In this work, we investigated the impact of MeJA-induced defense responses to mechanical wounding in rice (Oryza sativa). The proteome reprogramming of plants treated with MeJA, wounding or MeJA+wounding has been in-depth analyzed by using a combination of high throughput profiling techniques and bioinformatics tools. Gene Ontology analysis identified protein classes as defense/immunity proteins, hydrolases and oxidoreductases differentially enriched by the three treatments, although with different amplitude. Remarkably, proteins involved in photosynthesis or oxidative stress were significantly affected upon wounding in MeJA-primed plants. Although these identified proteins had been previously shown to play a role in defense responses, our study revealed that they are specifically associated with MeJA-priming. Additionally, we also showed that at the phenotypic level MeJA protects plants from oxidative stress and photosynthetic damage induced by wounding. Taken together, our results add novel insight into the molecular actors and physiological mechanisms orchestrated by MeJA in enhancing rice plants defenses after wounding.


Assuntos
Ciclopentanos/metabolismo , Oryza/fisiologia , Oxilipinas/metabolismo , Reguladores de Crescimento de Planta/metabolismo , Proteínas de Plantas/análise , Ciclopentanos/química , Resistência à Doença , Esterificação , Ontologia Genética , Oxilipinas/química , Reguladores de Crescimento de Planta/química , Proteínas de Plantas/metabolismo , Proteômica , Estresse Fisiológico
11.
J Agric Food Chem ; 67(24): 6716-6724, 2019 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-31135151

RESUMO

Insect attack is known to induce a high accumulation of volatile metabolites in tea ( Camellia sinensis). However, little information is available concerning the effect of insect attack on tea quality-related nonvolatile specialized metabolites. This study aimed to investigate the formation of characteristic nonvolatile specialized metabolites in tea leaves in response to attack by major tea insects, namely, tea green leafhoppers and tea geometrids, and determine the possible involvement of phytohormones in metabolite formation resulting from insect attack. Both tea green leafhopper and tea geometrid attacks increased the jasmonic acid and salicylic acid contents. The abscisic acid content was only increased under tea green leafhopper attack, perhaps due to special continuous piercing-sucking wounding. Tea green leafhopper attack induced the formation of theaflavins from catechins under the action of polyphenol oxidase, while tea geometrid attack increased the l-theanine content. Exogenous phytohormone treatments can affect the caffeine and catechin contents. These results will help to determine the influence of major tea pest insects on important tea quality-related metabolites and enhance understanding of the relationship of phytohormones and quality-related nonvolatile metabolite formation in tea exposed to tea pest insect attacks.


Assuntos
Camellia sinensis/metabolismo , Hemípteros/fisiologia , Folhas de Planta/química , Folhas de Planta/parasitologia , Animais , Biflavonoides/análise , Biflavonoides/metabolismo , Camellia sinensis/química , Camellia sinensis/parasitologia , Catequina/análise , Catequina/metabolismo , Ciclopentanos/análise , Ciclopentanos/metabolismo , Glutamatos/análise , Glutamatos/metabolismo , Oxilipinas/análise , Oxilipinas/metabolismo , Reguladores de Crescimento de Planta/química , Reguladores de Crescimento de Planta/metabolismo , Folhas de Planta/metabolismo , Ácido Salicílico/análise , Ácido Salicílico/metabolismo
12.
Plant Physiol Biochem ; 141: 51-59, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31128563

RESUMO

Brassinosteroids (BRs) play a crucial role in improving plant resistance to various environmental stresses. In this study, we aimed to explore the potential role of BRs in protecting plants from antimony (Sb) toxicity. In the in vitro agar-plate culture experiments, the level changes of BR in wide-type plants and BR biosynthesis mutant dwrf4-1 significantly affected the corresponding response of Arabidopsis to Sb stress. Increasing the BR content significantly enhanced Sb-induced root growth inhibition and lowering the BR level appeared to reduce the plant sensitivity to Sb stress. Foliar application of eBL, however, significantly decreased the Sb accumulation and peroxidation of membrane lipids, increased the contents of chlorophyll and proline, and further boosted and strengthened the antioxidant enzymes activities. These experiments demonstrated that BRs played an important role in regulating heavy metal stress responses in plants and exogenous foliar spray of eBL was an important method for alleviating toxicity of Sb.


Assuntos
Antimônio/química , Arabidopsis/efeitos dos fármacos , Arabidopsis/fisiologia , Brassinosteroides/química , Estresse Fisiológico/efeitos dos fármacos , Antioxidantes/química , Proteínas de Arabidopsis/genética , Biodegradação Ambiental , Brassinosteroides/farmacologia , Clorofila/química , Regulação da Expressão Gênica de Plantas , Peróxido de Hidrogênio/química , Hidroponia , Peroxidação de Lipídeos , Malondialdeído/metabolismo , Metais Pesados/química , Estresse Oxidativo , Reguladores de Crescimento de Planta/química , Reguladores de Crescimento de Planta/farmacologia , Prolina/química
13.
J Microbiol Biotechnol ; 29(7): 1096-1103, 2019 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-31091866

RESUMO

UCB-1 is the commercial rootstock of pistachio. Reproduction of this rootstock by tissue culture is limited by low levels of proliferation rate. Therefore, any compound that improves the proliferation rate and the quality of the shoots can be used in the process of commercial reproduction of this rootstock. Use of plant growth-promoting bacteria is one of the best ideas. Given the beneficial effects of nanoparticles in enhancement of the growth in plant tissue cultures, the aim of the present study was to investigate the effects of nanoencapsulation of plant growth-promoting rhizobacteria (using silica nanoparticles and carbon nanotubes) and their metabolites in improving UCB1 pistachio micropropagation. The experiment was conducted in a completely randomized design with three replications. Before planting, treatments on the DKW medium were added. The results showed that the use of Pseudomonas fluorescens VUPF5 and Bacillus subtilis VRU1 nanocapsules significantly enhanced the root length and proliferation. The nanoformulation of the VUPF5 metabolite led to the highest root length (6.26 cm) and the largest shoot (3.34 cm). Inoculation of explants with the formulation of the metabolites (both bacterial strains) significantly elevated the average shoot length and the fresh weight of plant compared to the control. The explants were dried completely using both bacterial strains directly and with capsule coating after the three days.


Assuntos
Alginatos/química , Nanopartículas/química , Nanotubos de Carbono/química , Pistacia , Reguladores de Crescimento de Planta/química , Raízes de Plantas/crescimento & desenvolvimento , Dióxido de Silício/química , Bacillus subtilis/química , Bacillus subtilis/metabolismo , Ácidos Indolacéticos/química , Ácidos Indolacéticos/metabolismo , Ácidos Indolacéticos/farmacologia , Reguladores de Crescimento de Planta/metabolismo , Reguladores de Crescimento de Planta/farmacologia , Raízes de Plantas/efeitos dos fármacos , Pseudomonas fluorescens/química , Pseudomonas fluorescens/metabolismo , Microbiologia do Solo
14.
Pak J Biol Sci ; 22(2): 73-82, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30972989

RESUMO

BACKGROUND AND OBJECTIVE: Commiphora gileadensis a medicinal plant rare species. A large amount of plant materials were needed to produce secondary metabolite under in vitro culture. Therefore, callus is used in the in vitro culture, since it can proliferate quickly and continuously provide an appropriate amount of plant which used for extracting the antimicrobial compounds from C. gileadensis. MATERIAL AND METHODS: Rapid protocol for optimum callus production has been assessed to overcome limitations of the conventional propagation methods. The effect of plant growth regulator (PGR) on the regeneration of C. gileadensis was investigated for callus induction experiment using a standard MS medium with various concentrations of 6-Benzyl adenine (BA), Kinetin (Kn), 2,4-dichlorophenoxy acetic acid (2,4-D) and naphthalene acetic acid (NAA) at 0.0, 0.5, 1.0,1.5, 2.0 and 2.5 mg L-1. RESULTS: The result showed that the maximum regeneration of callus induced the fresh and dry weight were obtained 5675±1321 and 376.7±56.9 mg, respectively on MS media containing 2 mg L-1 2,4D + 0.5 mg L-1 BA after 12 weeks. The anti-bacterial and anti-fungal activities of C. gileadensis were evaluated using the callus and ex vitro extracts, six bacterial species fungal genera were used the agar well diffusion method used of 25, 50, 75 and 100 µL methanolic or ethonlic extracts of ex vitro and callus had considerable inhibition effects on the tested bacteria and fungi. CONCLUSION: Callus culture technique may be an important tool to get the C. gileadensis quickly as compared to the natural growth phenomenon where it takes many years. Moreover, it's give us an opportunity to get the active constituent without destroying the plant available in nature. The results of the present study can improve our understanding of the economic importance of C. gileadensis as activity ingredient antimicrobial agent and provided methods for its preparation.


Assuntos
Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Commiphora/química , Plantas Medicinais/química , Antifúngicos/química , Antifúngicos/farmacologia , Bactérias/efeitos dos fármacos , Fungos/efeitos dos fármacos , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Reguladores de Crescimento de Planta/química , Reguladores de Crescimento de Planta/farmacologia
15.
Phytochemistry ; 163: 11-22, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30974397

RESUMO

Plant cells have a variety of defense mechanisms to alleviate the deleterious effects of oxidative stress. The present work elucidated a schematic diagram of the proposed pathway of peanut hairy root tissue treated with different elicitors; paraquat (PQ), methyl jasmonate (MeJA), and cyclodextrin (CD). The different elicitation approaches could provoke intrinsic stress in plant cells and might activate a distinct response pathway, allowing plants to overcome the deleterious effects of oxidative stress. Among all strategies, hairy root culture pretreated with PQ followed by application of MeJA plus CD showed an extensive induction of antioxidant defense mechanisms. The expression of the antioxidant enzyme genes and stilbene-synthesized enzyme genes were up-regulated in accordance with the dramatic increase in the production of stilbene compounds. The non-enzymatic antioxidant substances exhibited a highly enhanced capability. The pathogenesis-related protein (PR) genes were also highly up-regulated. In summary, we demonstrated that the interplay among MeJA plus CD and PQ may activate a complex signaling network to regulate plant defense mechanisms involving the up-regulation of detoxifying enzymes, induction of free-radical scavengers and overexpression of genes associated with plant defense pathways.


Assuntos
Acetatos/farmacologia , Antioxidantes/farmacologia , Ciclodextrinas/farmacologia , Ciclopentanos/farmacologia , Fabaceae/efeitos dos fármacos , Oxilipinas/farmacologia , Paraquat/antagonistas & inibidores , Reguladores de Crescimento de Planta/farmacologia , Acetatos/química , Antioxidantes/química , Ciclodextrinas/química , Ciclopentanos/química , Estresse Oxidativo/efeitos dos fármacos , Oxilipinas/química , Paraquat/farmacologia , Reguladores de Crescimento de Planta/química , Raízes de Plantas/efeitos dos fármacos
16.
Protein Pept Lett ; 26(9): 684-690, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30961476

RESUMO

BACKGROUND: Plant peptide hormones play a crucial role in plant growth and development. A group of these peptide hormones are signaling peptides with 5 - 23 amino acids. Flagellin peptide (flg22) also elicits an immune response in plants. The functions are expressed through recognition of the peptide hormones and flg22. This recognition relies on membrane localized receptor kinases with extracellular leucine rich repeats (LRR-RKs). The structures of plant peptide hormones - AtPep1, IDA, IDL1, RGFs 1- 3, TDIF/CLE41 - and of flg22 complexed with LRR domains of corresponding LRR-RKs and co-receptors SERKs have been determined. However, their structures are well not analyzed and characterized in detail. The structures of PIP, CEP, CIF, and HypSys are still unknown. OBJECTIVE: Our motivation is to clarify structural features of these plant, small peptides and Flg22 in their bound states. METHODS: In this article, we performed secondary structure assignments and HELFIT analyses (calculating helix axis, pitch, radius, residues per turn, and handedness) based on the atomic coordinates from the crystal structures of AtPep1, IDA, IDL1, RGFs 1- 3, TDIF/CLE41 - and of flg22. We also performed sequence analysis of the families of PIP, CEP, CIF, and HypSys in order to predict their secondary structures. RESULTS: Following AtPep1 with 23 residues adopts two left handed polyproline helices (PPIIs) with six and four residues. IDA, IDL1, RGFs 1 - 2, and TDIF/CLE41 with 12 or 13 residues adopt a four residue PPII; RGF3 adopts two PPIIs with four residues. Flg22 with 22 residues also adopts a six residue PPII. The other peptide hormones - PIP, CEP, CIF, and HypSys - that are rich in proline or hydroxyproline presumably prefer PPII. CONCLUSION: The present analysis indicates that PPII helix in the plant small peptide hormones and in flg22 is crucial for recognition of the LRR domains in receptors.


Assuntos
Flagelina/química , Hormônios Peptídicos/química , Peptídeos/química , Reguladores de Crescimento de Planta/química , Sequência de Aminoácidos , Sítios de Ligação , Hidroxiprolina/química , Modelos Moleculares , Ligação Proteica , Domínios Proteicos , Estrutura Secundária de Proteína
17.
J Sci Food Agric ; 99(9): 4331-4337, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30828813

RESUMO

BACKGROUND: Increasing numbers of fruit swelling agents have been used to improve the fruit rate and production yield of strawberries in recent years. The abuse of fruit swelling agents could lead to an increase in the deformation rate and abnormal coloration of strawberry and a decrease in quality at harvest. Therefore, understanding the harmful effects of fruit swelling agents on strawberry will provide guidance for their reasonable use. RESULTS: The residual determination method for measuring thidiazuron (TDZ) in strawberry was developed and validated by liquid chromatography and tandem mass spectrometry (LC-MS/MS). The recoveries of TDZ in strawberry were 97.9-108.5% with relative standard deviations of 0.9% to 5.3%. The dissipation rates of TDZ were different in strawberries cultivated under field and indoor conditions due to the differences in temperature and humidity. The ascorbic acid content increased when TDZ was applied at 2 mg kg-1 . The SOD (superoxide dismutase), POD (peroxidase) and CAT (catalase) activities of strawberry tended to decrease and subsequently increase following the application of TDZ, and the opposite changes occurred on the malondialdehyde (MDA) content of TDZ-treated strawberry. CONCLUSIONS: The analytical method for measuring TDZ in strawberry that was developed was suitable for dissipation studies on this compound. Antioxidant enzyme activities and the MDA content of strawberry were altered, and some reverse effects, such as membrane damage, were inhibited when TDZ was applied. The data obtained in this study might provide suggestions to reduce the adverse effects of TDZ on strawberry and may help to guide the safe and proper use of TDZ in strawberry. © 2019 Society of Chemical Industry.


Assuntos
Antioxidantes/análise , Fragaria/efeitos dos fármacos , Malondialdeído/análise , Compostos de Fenilureia/química , Compostos de Fenilureia/farmacologia , Reguladores de Crescimento de Planta/química , Reguladores de Crescimento de Planta/farmacologia , Tiadiazóis/química , Tiadiazóis/farmacologia , Antioxidantes/metabolismo , Catalase/análise , Catalase/metabolismo , Cromatografia Líquida , Citocininas/química , Citocininas/farmacologia , Fragaria/química , Fragaria/enzimologia , Frutas/química , Frutas/efeitos dos fármacos , Frutas/enzimologia , Malondialdeído/metabolismo , Peroxidases/análise , Peroxidases/metabolismo , Proteínas de Plantas/análise , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Superóxido Dismutase/análise , Superóxido Dismutase/metabolismo , Espectrometria de Massas em Tandem
18.
J Agric Food Chem ; 67(19): 5560-5570, 2019 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-30901205

RESUMO

The phytohormone 6-benzylaminopurine (6-BAP) significantly improves lipid synthesis of oleaginous microorganisms with the great potential applied in lipid production. In the current study, the lipid and DHA productions in oleaginous Aurantiochytrium sp. were found to be improved by 48.7% and 55.3%, respectively, induced by 6-BAP treatments. Then, using high-throughput RNA-seq technology, the overall de novo assembly of the cDNA sequence data generated 53871 unigenes, and 15902 of these were annotated in at least one database. The comparative transcriptomic profiles of cells with and without 6-BAP treatments revealed that a total of 717 were differently expressed genes (DE), with 472 upregulated and 245 downregulated. Further annotation and categorization indicated that some DE genes were involved in pathways crucial to lipid and DHA productions, such as fatty acid synthesis, central carbon metabolism, transcriptional factor, signal transduction, and mevalonate pathway. A regulation mode of 6-BAP, in turn, perception and transduction of 6-BAP signal, transcription factor, expression regulations of the downstream genes, and metabolic changes, respectively, was put forward for the first time in the present study. This research illuminates the transcriptomic mechanism of phytohormone stimulation of lipid and DHA production in an oleaginous microorganism and provides the potential targets modified using genetic engineering for improving lipid and DHA productivity.


Assuntos
Compostos de Benzil/farmacologia , Ácidos Docosa-Hexaenoicos/biossíntese , Metabolismo dos Lipídeos/efeitos dos fármacos , Reguladores de Crescimento de Planta/farmacologia , Purinas/farmacologia , Estramenópilas/efeitos dos fármacos , Estramenópilas/genética , Compostos de Benzil/química , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Reguladores de Crescimento de Planta/química , Purinas/química , Estramenópilas/metabolismo
19.
Molecules ; 24(6)2019 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-30909457

RESUMO

Ethylene is a classical plant hormone and has appeared as a strong molecule managing many physiological and morphological reactions during the life of a plant. With laser-based photoacoustic spectroscopy, ethylene can be identified with high sensitivity, at a high rate and with very good selectivity. This research presents the dynamics of trace gases molecules for ethylene released by cherry flowers, apple flowers and strawberry flowers. The responses of distinctive organs to ethylene may fluctuate, depending on tissue sensitivity and the phase of plant development. From the determinations of this study, the ethylene molecules at the flowers in the nitrogen flow were established in lower concentrations when the value is correlated to the ethylene molecules at the flowers in synthetic air flow.


Assuntos
Etilenos/química , Flores/química , Frutas/química , Respiração Celular , Etilenos/análise , Flores/metabolismo , Frutas/metabolismo , Reguladores de Crescimento de Planta/análise , Reguladores de Crescimento de Planta/química , Análise Espectral
20.
Artif Cells Nanomed Biotechnol ; 47(1): 715-724, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30856344

RESUMO

Elicited plant in vitro cultures are gaining more interest worldwide for their potential in the uniform production of industrially important secondary metabolites. In the present study, different ratios of silver nanoparticles (AgNPs) and plant growth regulators (PGRs) were supplemented to in vitro cultures for the sustainable production of biomass and antioxidant secondary metabolites through callus cultures of Caralluma tuberculata. Results indicated that various concentrations of AgNPs significantly affected the callus proliferation and substantially increased the callus biomass, when combined with PGRs in the MS (Murashige and Skoog) media. The highest fresh (0.78 g/l) and dry (0.051 g/l) biomass accumulation of callus was observed in the cultures raised in vitro at 60 µg/l AgNPs in combination with 0.5 mg/l 2,4-D plus 3.0 mg/l BA. Phytochemical analysis of the callus cultures showed higher production of phenolics (TPC:3.0 mg), flavonoids (TFC:1.8 mg), phenylalanine ammonialyase activity (PAL: 5.8 U/mg) and antioxidant activity (90%), respectively, in the callus cultures established on MS media in the presence of 90 ug/l AgNPs. Moreover, enhanced activities of antioxidant enzymes such as superoxide dismutase (SOD: 4.8 U/mg), peroxidase (POD: 3.3 U/mg), catalase (CAT: 2.5 U/mg) and ascorbate peroxidase (APX: 1.9 U/mg) were detected at higher level (90 ug/l) of AgNPs tested alone for callus proliferation in the MS media. It may be concluded that the AgNPs can be effectively utilized for the enhancement of bioactive antioxidants in the callus cultures of C. tuberculata, a highly medicinal and threatened plant. This protocol can be scaled up for the industrial production of plant biomass and pharmacologically potent metabolites in C. tuberculata.


Assuntos
Apocynaceae/metabolismo , Biomassa , Nanopartículas Metálicas/química , Metabolismo Secundário , Prata/química , Antioxidantes/metabolismo , Apocynaceae/citologia , Apocynaceae/crescimento & desenvolvimento , Flavonoides/metabolismo , Fenóis/metabolismo , Fenilalanina Amônia-Liase/metabolismo , Reguladores de Crescimento de Planta/química , Técnicas de Cultura de Tecidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA