Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.440
Filtrar
1.
Sci Data ; 9(1): 669, 2022 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-36329059

RESUMO

Rose is one of the most important ornamental plants, accounting for one-third of the world's fresh cut flower market. The vase life refers to the period of a cut flower retaining its appearance in a vase. During this period, the rose was subjected to a variety of abiotic and biotic stresses, resulting in a reduction in the life of cut flowers. Numerous studies have been carried out on cut rose, which proves the effects of various plant hormones on post-harvest dehydration, petal senescence and abscission, disease and vase life of cut rose flowers. In addition, the natural or synthetic hormones or its inhibitor have been successfully used in cut flower preservatives to extend the vase life of rose. However, there is still a lack of systematic and in-depth research on the expression of rose genes related to plant hormone response. Here we analyzed the gene expression changes of the rose flower under treatment of 11 different plant hormones or its inhibitors in order to provide reference for rose studies.


Assuntos
Reguladores de Crescimento de Plantas , Rosa , Flores/genética , Regulação da Expressão Gênica de Plantas , Reguladores de Crescimento de Plantas/farmacologia , Reguladores de Crescimento de Plantas/metabolismo , Rosa/genética , Estresse Fisiológico , Transcriptoma
2.
BMC Biotechnol ; 22(1): 34, 2022 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-36335321

RESUMO

BACKGROUND: Callus induction is the first step in optimizing plant regeneration. Fit embryogenesis and shooting rely on callus induction. In addition, using artificial intelligence models in combination with an algorithm can be helpful in the optimization of in vitro culture. The present study aimed to evaluate the percentage and speed of callus induction optimization in carrot with a Multilayer Perceptron-Single point discrete genetic algorithm (GA). MATERIALS AND METHODS: In this study, the outputs included callus induction percentage and speed, while inputs were different types and concentrations of plant growth regulator (0. 5, 0.2 mg/l 2,4-D, 0.3, 0.2, 0.5 mg/l BAP, 1, 0.2 mg/l Kin, and 2 mg/l NAA), different explants (shoot, root, leaf, and nodal), a different concentration compound of MS medium (1 × MS, 4× MS, and 8× MS) and time of sampling. The data were obtained in the laboratory, and multilayer perceptron (MLP) and radial basis function (RBF), two well-known ANNs, were employed to model. Then, GA was used for optimization, and sensitivity analysis was performed to indicate the inputs' importance. RESULTS: The results showed that MLP had better prediction efficiency than RBF. Based on the results, R2 in training and testing data was 95 and 95% for the percentage of callus induction, while it was 94 and 95% for the speed of callus induction, respectively. In addition, a concentration compound of MS had high sensitivity, while times of sampling had low sensitivity. Based on the MLP-Single point discrete GA, the best results were obtained for shoot explants, 1× MS media, and 0.5 mg/l 2, 4-D + 0.5 mg/l BAP. Further, a non-significant difference was observed between the test result and predicted MLP. CONCLUSIONS: Generally, MLP-Single point discrete GA is considered a potent tool for predicting treatment and fit model results used in plant tissue culture and selecting the best medium for callus induction.


Assuntos
Daucus carota , Inteligência Artificial , Reguladores de Crescimento de Plantas/farmacologia , Redes Neurais de Computação , Folhas de Planta
3.
BMC Plant Biol ; 22(1): 523, 2022 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-36357840

RESUMO

BACKGROUND: The mechanisms of abscisic acid (ABA) and auxin (IAA) in inducing adventitious root (AR) formation, biomass accumulation, and plant development under long-term waterlogging (LT-WL) conditions are largely unexplored. This study aimed to determine the roles of exogenous application of ABA and IAA in two woody plants (Cleistocalyx operculatus and Syzygium jambos) under LT-WL conditions. A pot experiment was conducted using a complete randomized design with two factors: (i) LT-WL and (ii) application of exogenous phytohormones (ABA and IAA) for 120 d. RESULTS: Results revealed that exogenous ABA and IAA promoted LT-WL tolerance in both species. In C. operculatus and S. jambos, plant height, the number of blades, leaf area, and fresh shoot weight were increased by exogenous IAA under LT-WL. However, exogenous ABA affected more the adventitious and primary root in C. operculatus compared to S. jambos. LT-WL decreased drastically the photosynthetic activities in both species, but adding moderate amounts of exogenous ABA or IAA protected the photosynthesis apparatus under LT-WL. Exogenous phytohormones at certain levels decreased the superoxide anion level and malondialdehyde accumulation in plants under LT-WL. Also, the increase of the peroxidases and superoxide dismutase activities by exogenous phytohormones was more marked in C. operculatus compared to S. jambos. Meanwhile, the catalase activity was down-regulated in both species by exogenous phytohormones. Exogenous ABA or IAA positively regulated the jasmonic acid content in ARs under LT-WL. Moderate application of exogenous ABA or IAA in plants under LT-WL decreased the ABA content in the leaves. Lower accumulation of IAA and ABA in the leaves of C. operculatus under LT-WL was positively correlated with a decrease in antioxidant activity. CONCLUSIONS: Lastly, C. operculatus which has greater morphology indexes was more tolerant to waterlogging than S. jambos. Moreover, the adaptive strategies via exogenous ABA were more built around the below-ground biomass indexes particularly in C. operculatus, while exogenous IAA backed the above-ground biomass in both species. Overall, the exogenous hormones applied (spraying or watering) influenced differentially the plant's responses to LT-WL. The phytohormonal profile of plants exposed to waterlogging stress varied depending on the species' tolerance level.


Assuntos
Ácido Abscísico , Syzygium , Ácidos Indolacéticos , Reguladores de Crescimento de Plantas/farmacologia , Folhas de Planta , Raízes de Plantas/fisiologia
4.
Int J Mol Sci ; 23(21)2022 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-36362292

RESUMO

Warm temperatures induce plant bolting accompanied by flower initiation, where endogenous auxin is dynamically associated with accelerated growth. Auxin signaling is primarily regulated by a family of plant-specific transcription factors, AUXIN RESPONSE FACTORS (ARFs), which either activate or repress the expression of downstream genes in response to developmental and environmental cues. However, the relationship between ARFs and bolting has not been completely understood in lettuce yet. Here, we identified 24 LsARFs (Lactuca sativa ARFs) in the lettuce genome. The phylogenetic tree indicated that LsARFs could be classified into three clusters, which was well supported by the analysis of exon-intron structure, consensus motifs, and domain compositions. RNA-Seq analysis revealed that more than half of the LsARFs were ubiquitously expressed in all tissues examined, whereas a small number of LsARFs responded to UV or cadmium stresses. qRT-PCR analysis indicated that the expression of most LsARFs could be activated by more than one phytohormone, underling their key roles as integrative hubs of different phytohormone signaling pathways. Importantly, the majority of LsARFs displayed altered expression profiles under warm temperatures, implying that their functions were tightly associated with thermally accelerated bolting in lettuce. Importantly, we demonstrated that silencing of LsARF8a, expression of which was significantly increased by elevated temperatures, resulted in delayed bolting under warm temperatures, suggesting that LsARF8a might conduce to the thermally induced bolting. Together, our results provide molecular insights into the LsARF gene family in lettuce, which will facilitate the genetic improvement of the lettuce in an era of global warming.


Assuntos
Ácidos Indolacéticos , Alface , Alface/metabolismo , Ácidos Indolacéticos/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Filogenia , Regulação da Expressão Gênica de Plantas
5.
BMC Plant Biol ; 22(1): 533, 2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36380296

RESUMO

BACKGROUND: 2-methyl-4-chlorophenoxy acetic acid-Na (MPCA-Na) is a phenoxy carboxylic acid selective hormone herbicide that is widely used in the crop fields. However, drift of MPCA-Na during application is highly damaging to cotton (Gossypium hirsutum) and other crop plants. This study was carried out from 2019 to 2020 to determine the effects of different concentrations of MPCA-Na on physiological and metabolic activities besides growth and yield of cotton plants at seedling, budding, flowering and boll stages. Moreover, we evaluated the different combinations of 24-epibrassinolide, gibberellin (GA3), phthalanilic acid and seaweed fertilizer to ameliorate herbicide damage. RESULTS: 2-methyl-4-chlorophenoxy acetic acid-Na (MPCA-Na) exposure caused a decrease in the chlorophyll content, and an increase in the soluble protein content, Malondialdehyde (MDA) content and protective enzyme activity. It also caused significant reductions in plant height, boll number and the single boll weight at the seedling and budding stages, but had little effects on plant height and the single boll weight at flowering and boll stage. Under the maximum recommended dose of MPCA-Na (130 g/L), the number of cotton bolls at seedling and budding stages decreased by 75.33 and 79.50%, respectively, and the single boll weight decreased by 46.42 and 36.31%, respectively. Nevertheless, the number of G. hirsutum bolls and single boll weight at flowering and boll stage decreased by 48.15 and 5.38%, respectively. Application of plant growth regulators decreased the MDA content, and increased chlorophyll, soluble protein content and protective enzyme activity, and alleviated MCPA-Na toxicity. Positive effects in case of growth regulators treated plants were also observed in terms of G. hirsutum yield. Phthalanilic acid + seaweed fertilizer, 24-epibrassinolide + seaweed fertilizer, and GA3 + seaweed fertilizer should be used at the seedling, budding, and flowering and boll stages, respectively. CONCLUSIONS: The results of current study suggest that certain plant growth regulators could be used to alleviate MPCA-Na damage and maintain G. hirsutum yield. When the cotton exposed to MCPA-Na at the seedling stage, it should be treated with phthalanilic acid + seaweed fertilizer, while plants exposed at the budding stage should be treated with 24-epibrassinolide + seaweed fertilizer, and those exposed at the flowering and boll stages should be treated with GA3 + seaweed fertilizer to mitigate stress.


Assuntos
Ácido 2-Metil-4-clorofenoxiacético , Herbicidas , Gossypium/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Fertilizantes , Clorofila/metabolismo
6.
J Agric Food Chem ; 70(45): 14352-14366, 2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36326728

RESUMO

Diuron [DU; 3-(3,4-dichlorophenyl)-1,1-dimethylurea], a widely used herbicide for weed control, arouses ecological and health risks due to its environment persistence. Our findings revealed that DU at 0.125-2.0 mg L-1 caused oxidative damage to rice. RNA-sequencing profiles disclosed a globally genetic expression landscape of rice under DU treatment. DU mediated downregulated gene encoding photosynthesis and biosynthesis of protein, fatty acid, and carbohydrate. Conversely, it induced the upregulation of numerous genes involved in xenobiotic metabolism, detoxification, and anti-oxidation. Furthermore, 15 DU metabolites produced by metabolic genes were identified, 7 of which include two Phase I-based and 5 Phase II-based derivatives, were reported for the first time. The changes of resistance-related phytohormones, like JA, ABA, and SA, in terms of their contents and molecular-regulated signaling pathways positively responded to DU stress. Our work provides a molecular-scale perspective on the response of rice to DU toxicity and clarifies the biotransformation and degradation fate of DU in rice crops.


Assuntos
Herbicidas , Oryza , Diurona/metabolismo , Oryza/genética , Oryza/metabolismo , Herbicidas/farmacologia , Herbicidas/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Reguladores de Crescimento de Plantas/metabolismo , Estresse Oxidativo , Produtos Agrícolas/genética , Produtos Agrícolas/metabolismo , Regulação da Expressão Gênica de Plantas
7.
J Agric Food Chem ; 70(40): 12830-12840, 2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-36183268

RESUMO

Phytohormone abscisic acid (ABA) influences the shelf life of fruit, vegetables, and tubers after harvest. However, little is known about the core signaling module involved in ABA's control of the postharvest physiological process. Exogenous ABA alleviated postharvest physiological deterioration (PPD) symptoms of sliced cassava tuberous roots, increased endogenous ABA levels, and reduced endogenous H2O2 content. The specific ABA signaling module during the PPD process was identified as MePYL6-MePP2C16-MeSnRK2.1-MebZIP5/34. MebZIP5/MebZIP34 directly binds to and activates the promoters of MeGRX6/MeMDAR1 through ABRE elements. Exogenous ABA significantly induced the expression of genes involved in this module, glutaredoxin content, and monodehydroascorbate reductase activity. We presented a hypothesis suggesting that MePYL6-MePP2C16-MeSnRK2.1-MebZIP5/34-MeGRX6/MeMDAR1 is involved in ABA-induced antioxidative capacity, thus alleviating PPD symptoms in cassava tuberous roots. The identification of the specific signaling module involved in ABA's control of PPD provides a basis and potential targets for extending the shelf life of cassava tuberous roots.


Assuntos
Ácido Abscísico , Manihot , Ácido Abscísico/metabolismo , Regulação da Expressão Gênica de Plantas , Glutarredoxinas/genética , Peróxido de Hidrogênio/metabolismo , Manihot/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Raízes de Plantas/metabolismo
8.
Sci Rep ; 12(1): 17093, 2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-36224205

RESUMO

Alkannin/shikonin and their derivatives are specialised metabolites of high pharmaceutical and ecological importance exclusively produced in the periderm of members of the plant family Boraginaceae. Previous studies have shown that their biosynthesis is induced in response to methyl jasmonate but not salicylic acid, two phytohormones that play important roles in plant defence. However, mechanistic understanding of induction and non-induction remains largely unknown. In the present study, we generated the first comprehensive transcriptomic dataset and metabolite profiles of Lithospermum officinale plants treated with methyl jasmonate and salicylic acid to shed light on the underlying mechanisms. Our results highlight the diverse biological processes activated by both phytohormones and reveal the important regulatory role of the mevalonate pathway in alkannin/shikonin biosynthesis in L. officinale. Furthermore, by modelling a coexpression network, we uncovered structural and novel regulatory candidate genes connected to alkannin/shikonin biosynthesis. Besides providing new mechanistic insights into alkannin/shikonin biosynthesis, the generated methyl jasmonate and salicylic acid elicited expression profiles together with the coexpression networks serve as important functional genomic resources for the scientific community aiming at deepening the understanding of alkannin/shikonin biosynthesis.


Assuntos
Lithospermum , Naftoquinonas , Acetatos , Ciclopentanos , Lithospermum/genética , Ácido Mevalônico/metabolismo , Naftoquinonas/metabolismo , Oxilipinas , Preparações Farmacêuticas/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Ácido Salicílico/metabolismo , Ácido Salicílico/farmacologia
9.
Artigo em Inglês | MEDLINE | ID: mdl-36231984

RESUMO

Cadmium toxicity is one of the deleterious abiotic factors that reduce wheat production. Two different cultivars (Akbar and Dilkash) were compared for their cadmium (0, 40 and 80 mg/kg) tolerance and responses towards Bacillus subtilis NA2, Aspergillus niger PMI-118 and L-proline. Both microbes were tested for heavy metal tolerance and production of various plant hormones and biological active enzyme characteristics under normal and cadmium stress. A completely randomized design (two cultivars × four treatments × three cadmium levels × three replicates) was adopted using distilled water as a control. The growth promotion potential of these strains under cadmium stress was determined by N-fixation, IAA synthesis, P-solubilization, amylase and proteases production. A pot experiment under controlled conditions was conducted to evaluate the effect of bacteria, fungi, and L-proline under cadmium stress. It was indicated from the result that plant biomass (46.43%), shoot length (22.40%), root length (25.06%), chlorophyll (17.17%), total sugars (27.07%), total proteins (86.01%) and ascorbic acid (83.27%) were improved with inoculation under control and cadmium stress. The accumulation of total flavonoids (48.64%), total phenolics (24.88%), hydrogen peroxide (53.96%) and activities of antioxidant enzymes CAT (26.37%) and APX (43.71%) were reduced in the plants treated with bacteria, fungi and L-proline than those under control. With parallel aids, Bacillus subtilis NA2 showed a higher cadmium tolerance and plant growth stability as compared to Aspergillus niger PMI-118 and L-proline and may be adopted in the future.


Assuntos
Metais Pesados , Poluentes do Solo , Amilases , Antioxidantes/metabolismo , Ácido Ascórbico/farmacologia , Aspergillus niger , Bacillus subtilis , Biodegradação Ambiental , Cádmio/metabolismo , Clorofila/metabolismo , Flavonoides/farmacologia , Peróxido de Hidrogênio/metabolismo , Metais Pesados/metabolismo , Peptídeo Hidrolases/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Plantas/metabolismo , Prolina/metabolismo , Prolina/farmacologia , Poluentes do Solo/análise , Açúcares/metabolismo , Triticum/metabolismo , Água/metabolismo
10.
Int J Mol Sci ; 23(19)2022 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-36233144

RESUMO

(1) The phytohormones gibberellins (GAs) play a crucial role in plant growth and development, such as seed germination, flowering, fruiting, and stem elongation. Although many biological roles of GAs have been studied intensively, the molecular mechanisms of GAs in woody plants are still unclear. (2) In this study, we investigated the effects of exogenous application of GAs on Neolamarckia cadamba. (3) The height and biomass of N. cadamba increased after 7 days of GA treatment, especially on the second internode. Transcriptome analysis showed that although the majority of genes involved in the GA signaling pathway were up-regulated, the expression of GA20 oxidase (GA20ox) and GA3 oxidase (GA3ox) was down-regulated in the 3 days GA-treated group compared to the CK group. The expression of the cell elongation-related basic helix-loop-helix genes bHLH74 and bHLH49 was up-regulated in the GA-treated group compared with the CK group. Transcriptional expression levels of transcription factors involved in hormone signaling were changed, mainly including bHLH, ethylene response factor (ERF), and WRKY families. In addition, the transcriptional expression level of the key enzymes engaged in the phenylalanine pathway was downregulated after GA treatment. (4) In brief, our findings reveal the physiological and molecular mechanisms of exogenous GA treatment stimulation in N. cadamba.


Assuntos
Giberelinas , Reguladores de Crescimento de Plantas , Rubiaceae , Etilenos , Regulação da Expressão Gênica de Plantas , Giberelinas/metabolismo , Giberelinas/farmacologia , Hormônios , Oxirredutases/metabolismo , Fenilalanina/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Rubiaceae/genética , Rubiaceae/crescimento & desenvolvimento , Fatores de Transcrição/metabolismo , Transcriptoma
11.
Int J Mol Sci ; 23(19)2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-36233324

RESUMO

Feeding ramie cultivars (Boehmaria nivea L.) are an important feedstock for livestock. Increasing their biomass and improving their nutritional values are essential for animal feeding. Gibberellin (GA3) and ethylene (ETH) are two plant hormones that regulate the growth, development, and metabolism of plants. Herein, we report effects of the GA3 and ETH application on the growth and plant metabolism of feeding ramie in the field. A combination of GA3 and ETH was designed to spray new plants. The two hormones enhanced the growth of plants to produce more biomass. Meanwhile, the two hormones reduced the contents of lignin in leaves and stems, while increased the content of flavonoids in leaves. To understand the potential mechanisms behind these results, we used RNA-seq-based transcriptomics and UPLC-MS/MS-based metabolomics to characterize gene expression and metabolite profiles associated with the treatment of GA3 and ETH. 1562 and 2364 differentially expressed genes (DEGs) were obtained from leaves and stems (treated versus control), respectively. Meanwhile, 99 and 88 differentially accumulated metabolites (DAMs) were annotated from treated versus control leaves and treated versus control stems, respectively. Data mining revealed that both DEGs and DAMs were associated with multiple plant metabolisms, especially plant secondary metabolism. A specific focus on the plant phenylpropanoid pathway identified candidates of DEGs and DEMs that were associated with lignin and flavonoid biosynthesis. Shikimate hydroxycinnamoyl transferase (HCT) is a key enzyme that is involved in the lignin biosynthesis. The gene encoding B. nivea HCT was downregulated in the treated leaves and stems. In addition, genes encoding 4-coumaryl CoA ligase (4CL) and trans-cinnamate 4-monooxygenase (CYP73A), two lignin pathway enzymes, were downregulated in the treated stems. Meanwhile, the reduction in lignin in the treated leaves led to an increase in cinnamic acid and p-coumaryl CoA, two shared substrates of flavonoids that are enhanced in contents. Taken together, these findings indicated that an appropriate combination of GA3 and ETH is an effective strategy to enhance plant growth via altering gene expression and plant secondary metabolism for biomass-enhanced and value-improved feeding ramie.


Assuntos
Boehmeria , Giberelinas , Boehmeria/metabolismo , Cromatografia Líquida , Coenzima A/metabolismo , Etilenos , Flavonoides , Regulação da Expressão Gênica de Plantas , Giberelinas/farmacologia , Hormônios , Ligases/metabolismo , Lignina/metabolismo , Compostos Organofosforados , Reguladores de Crescimento de Plantas/farmacologia , Plantas/metabolismo , Espectrometria de Massas em Tandem , Transcinamato 4-Mono-Oxigenase/genética , Transcinamato 4-Mono-Oxigenase/metabolismo , Transferases/metabolismo
12.
Int J Mol Sci ; 23(19)2022 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-36232348

RESUMO

The physiology of Prunus fruit ripening is a complex and not completely understood process. To improve this knowledge, postharvest behavior during the shelf-life period at the transcriptomic level has been studied using high-throughput sequencing analysis (RNA-Seq). Monitoring of fruits has been analyzed after different ethylene regulator treatments, including 1-MCP (ethylene-inhibitor) and Ethrel (ethylene-precursor) in two contrasting selected apricot (Prunus armeniaca L.) and Japanese plum (P. salicina L.) cultivars, 'Goldrich' and 'Santa Rosa'. KEEG and protein-protein interaction network analysis unveiled that the most significant metabolic pathways involved in the ripening process were photosynthesis and plant hormone signal transduction. In addition, previously discovered genes linked to fruit ripening, such as pectinesterase or auxin-responsive protein, have been confirmed as the main genes involved in this process. Genes encoding pectinesterase in the pentose and glucuronate interconversions pathway were the most overexpressed in both species, being upregulated by Ethrel. On the other hand, auxin-responsive protein IAA and aquaporin PIP were both upregulated by 1-MCP in 'Goldrich' and 'Santa Rosa', respectively. Results also showed the upregulation of chitinase and glutaredoxin 3 after Ethrel treatment in 'Goldrich' and 'Santa Rosa', respectively, while photosystem I subunit V psaG (photosynthesis) was upregulated after 1-MCP in both species. Furthermore, the overexpression of genes encoding GDP-L-galactose and ferredoxin in the ascorbate and aldarate metabolism and photosynthesis pathways caused by 1-MCP favored antioxidant activity and therefore slowed down the fruit senescence process.


Assuntos
Quitinases , Prunus armeniaca , Prunus domestica , Antioxidantes/metabolismo , Quitinases/metabolismo , Ciclopropanos , Etilenos , Ferredoxinas/metabolismo , Frutas/genética , Frutas/metabolismo , Galactose/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Glucuronatos/metabolismo , Glutarredoxinas/genética , Ácidos Indolacéticos/metabolismo , Compostos Organofosforados , Pentoses/metabolismo , Complexo de Proteína do Fotossistema I/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Prunus armeniaca/genética , Prunus domestica/genética
13.
Nature ; 611(7934): 133-138, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36289340

RESUMO

The phytohormone auxin is the major coordinative signal in plant development1, mediating transcriptional reprogramming by a well-established canonical signalling pathway. TRANSPORT INHIBITOR RESPONSE 1 (TIR1)/AUXIN-SIGNALING F-BOX (AFB) auxin receptors are F-box subunits of ubiquitin ligase complexes. In response to auxin, they associate with Aux/IAA transcriptional repressors and target them for degradation via ubiquitination2,3. Here we identify adenylate cyclase (AC) activity as an additional function of TIR1/AFB receptors across land plants. Auxin, together with Aux/IAAs, stimulates cAMP production. Three separate mutations in the AC motif of the TIR1 C-terminal region, all of which abolish the AC activity, each render TIR1 ineffective in mediating gravitropism and sustained auxin-induced root growth inhibition, and also affect auxin-induced transcriptional regulation. These results highlight the importance of TIR1/AFB AC activity in canonical auxin signalling. They also identify a unique phytohormone receptor cassette combining F-box and AC motifs, and the role of cAMP as a second messenger in plants.


Assuntos
Adenilil Ciclases , Proteínas de Arabidopsis , Arabidopsis , Proteínas F-Box , Ácidos Indolacéticos , Receptores de Superfície Celular , Adenilil Ciclases/genética , Adenilil Ciclases/metabolismo , Arabidopsis/enzimologia , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas F-Box/genética , Proteínas F-Box/metabolismo , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos/metabolismo , Ácidos Indolacéticos/farmacologia , Reguladores de Crescimento de Plantas/farmacologia , Reguladores de Crescimento de Plantas/metabolismo , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Mutação , Gravitropismo , Raízes de Plantas/crescimento & desenvolvimento , AMP Cíclico/metabolismo , Sistemas do Segundo Mensageiro
14.
Genes (Basel) ; 13(10)2022 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-36292584

RESUMO

Melatonin was discovered in plants in the late nineties, but its role, signaling, and crosstalk with other phytohormones remain unknown. Research on melatonin in plants has risen dramatically in recent years and the role of this putative plant hormone under biotic and abiotic stress conditions has been reported. In the present review, we discuss the main functions of melatonin in the growth and development of plants, its role under abiotic stresses, such as water stress (waterlogging and drought), extreme temperature (low and high), salinity, heavy metal, and light-induced stress. Similarly, we also discuss the role of melatonin under biotic stresses (antiviral, antibacterial, and antifungal effects). Moreover, the present review meticulously discusses the crosstalk of melatonin with other phytohormones such as auxins, gibberellic acids, cytokinins, ethylene, and salicylic acid under normal and stressful conditions and reports melatonin receptors and signaling in plants. All these aspects of melatonin suggest that phytomelatonin is a key player in crop improvement and biotic and abiotic stress regulation.


Assuntos
Melatonina , Reguladores de Crescimento de Plantas , Reguladores de Crescimento de Plantas/farmacologia , Receptores de Melatonina , Antifúngicos/farmacologia , Plantas , Citocininas , Etilenos/farmacologia , Ácidos Indolacéticos , Antibacterianos/farmacologia , Antivirais/farmacologia , Salicilatos/farmacologia
15.
Molecules ; 27(20)2022 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-36296498

RESUMO

Platycodon root, a medicinal food homology species which has been used in Asian countries for hundreds of years, is now widely cultivated in China. Treatment with paclobutrazol, a typical plant growth retardant, has raised uncertainties regarding the quality of Platycodon root, which have been rarely investigated. In the present study, metabolomic and lipidomic differences were revealed by ultra-high performance liquid chromatography coupled to ion mobility-quadrupole time of flight mass spectrometry (UPLC-IM-QTOF-MS). A significant decrease of platycodigenin-type saponins was observed in the paclobutrazol-treated sample. Carrying out a comprehensive quantitative analysis, the contents of total saponins and saccharides were determined to illustrate the mode of action of paclobutrazol on Platycodon root. This study demonstrated an exemplary research model in explaining how the exogenous matter influences the chemical properties of medicinal plants, and therefore might provide insights into the reasonable application of plant growth regulators.


Assuntos
Platycodon , Saponinas , Platycodon/química , Lipidômica , Reguladores de Crescimento de Plantas/farmacologia , Cromatografia Líquida de Alta Pressão/métodos , Saponinas/farmacologia , Saponinas/análise , Metaboloma
16.
Genes (Basel) ; 13(10)2022 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-36292715

RESUMO

In acidic soils, high concentrations of aluminum ions (Al3+) in dissolved form reduce root growth and development of most crops. In addition, Al3+ is also a beneficial element in some plant species in low concentrations. However, the regulatory mechanism of the growth and development of peanut (Arachis hypogaea L.) treated with different concentrations of Al3+ has been rarely studied. In this study, peanut seedlings were treated with AlCl3.18H2O in Hoagland nutrient solution at four different concentrations of Al3+, i.e., 0 (pH 6.85), 1.25 (pH 4.03), 2.5 (pH 3.85), and 5 (pH 3.69) mmol/L, which are regarded as Al0, Al1, Al2, and Al3. The results showed that low concentrations of Al treatment (Al1) promoted peanut growth, while high concentrations of Al treatments (Al2 and Al3) significantly inhibited peanut growth. Compared with the control (Al0), transcriptome analysis showed that the differentially expressed genes (DEGs) of starch and sucrose metabolic pathways were significantly enriched at low concentrations, i.e., Al1 treatment, whereas the expression of AhERD6 (sugar transporter) was significantly up-regulated, and the soluble sugar content was significantly increased. The DEGs of the plant hormone signaling transduction pathway were significantly enriched at high concentrations of Al2 and Al3 treatments, whereas the expression of AhNCED1 (9-cis-epoxycarotenoid dioxygenase) was significantly up-regulated, and the content of ABA was significantly increased. Moreover, the expression of transcription factors (TFs) in peanut was affected by different concentrations of Al. Overall, low concentrations of Al1 promoted peanut growth by increasing soluble sugar content, while high concentrations of Al2 and Al3 inhibited the growth of peanut, induced AhNCED1 gene expression, and increased endogenous ABA content. For peanut, the exposure of Al at low concentrations not only derived an adaptive mechanism to cope with Al stress, but also acted as a stimulator to promote its growth and development.


Assuntos
Alumínio , Arachis , Alumínio/toxicidade , Regulação da Expressão Gênica de Plantas , Reguladores de Crescimento de Plantas/farmacologia , Reguladores de Crescimento de Plantas/metabolismo , Transcriptoma , Perfilação da Expressão Gênica , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Açúcares/metabolismo , Amido/metabolismo , Sacarose/metabolismo , Solo
17.
Genes (Basel) ; 13(10)2022 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-36292777

RESUMO

WRKY transcription factors (TFs) play key roles in plant defense responses through phytohormone signaling pathways. However, their functions in tropical fruit crops, especially in banana, remain largely unknown. Several WRKY genes from the model plants rice (OsWRKY45) and Arabidopsis (AtWRKY18, AtWRKY60, AtWRKY70) have shown to be attractive TFs for engineering disease resistance. In this study, we isolated four banana cDNAs (MaWRKY18, MaWRKY45, MaWRKY60, and MaWRKY70) with homology to these rice and ArabidopsisWRKY genes. The MaWRKY cDNAs were isolated from the wild banana Musa acuminata ssp. malaccensis, which is resistant to several diseases of this crop and is a progenitor of most banana cultivars. The deduced amino acid sequences of the four MaWRKY cDNAs revealed the presence of the conserved WRKY domain of ~60 amino acids and a zinc-finger motif at the N-terminus. Based on the number of WRKY repeats and the structure of the zinc-finger motif, MaWRKY18 and MaWRKY60 belong to group II of WRKY TFs, while MaWRKY45 and MaWRKY70 are members of group III. Their corresponding proteins were located in the nuclei of onion epidermal cells and were shown to be functional TFs in yeast cells. Moreover, expression analyses revealed that the majority of these MaWRKY genes were upregulated by salicylic acid (SA) or methyl jasmonate (MeJA) phytohormones, although the expression levels were relatively higher with MeJA treatment. The fact that most of these banana WRKY genes were upregulated by SA or MeJA, which are involved in systemic acquired resistance (SAR) or induced systemic resistance (ISR), respectively, make them interesting candidates for bioengineering broad-spectrum resistance in this crop.


Assuntos
Arabidopsis , Musa , Musa/genética , Reguladores de Crescimento de Plantas/farmacologia , Reguladores de Crescimento de Plantas/metabolismo , Fatores de Transcrição/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/metabolismo , Ácido Salicílico/farmacologia , Arabidopsis/genética , Aminoácidos/genética , Zinco/metabolismo
18.
Genes (Basel) ; 13(10)2022 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-36292689

RESUMO

Abiotic stresses such as salt stress seriously affect the growth and yield of plants. Tamarix ramosissima Lcdcb (T. ramosissima) is a widely cultivated halophyte in saline-alkali areas of the world. As an essential element for plant growth and development, K+ plays an irreplaceable role in improving the tolerance of plants to salt stress. However, there are few reports on the mechanism of K+ in promoting plant hormones to reduce the damage of NaCl stress to T. ramosissima. In this study, we sequenced the transcriptome of the roots of T. ramosissima which were treated with exogenous potassium (K+) for 0 h, 48 h and 168 h under NaCl stress, according to the changes in the expression levels of differentially expressed genes (DEGs) in T. ramosissima roots. Key candidate genes and metabolic pathways related to plant hormones were mined for analysis and further verified by quantitative real-time PCR (qRT-PCR). The results showed that under NaCl stress for 48 h and 168 h, there were a large number of DEGs in the roots of T. ramosissima, and the expression levels changed over time. In particular, we found that 56 plant hormone-related genes were annotated to the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway, and with the increase of time, their expression levels were mainly up-regulated and involved in the related metabolic pathways to resist NaCl stress. It is worth noting that 7 DEGs related to abscisic acid (ABA), 28 DEGs related to auxin, 1 DEG related to ethylene (ET), and 1 DEG related to cytokinin (CK) were added within 168 h of exogenous potassium, and they were involved in alleviating the root damage of T. ramosissima under NaCl stress and played an important role. In addition, we found the plant hormone signal transduction pathway, which plays an important role in resistance to NaCl stress. As a result of this study, the molecular mechanism of plant hormones involved in applying exogenous potassium under NaCl stress is further understood, resulting in a better understanding of how exogenous potassium can alleviate the damage caused by NaCl under stress in T. ramosissima.


Assuntos
Tamaricaceae , Tamaricaceae/genética , Tamaricaceae/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Reguladores de Crescimento de Plantas/metabolismo , Ácido Abscísico/farmacologia , Ácido Abscísico/metabolismo , Cloreto de Sódio/metabolismo , Raízes de Plantas/metabolismo , Etilenos/metabolismo , Potássio/metabolismo , Ácidos Indolacéticos/metabolismo , Álcalis/metabolismo , Citocininas/metabolismo
19.
Genes (Basel) ; 13(10)2022 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-36292700

RESUMO

Cnidium officinale is a valuable medicinal plant cultivated in Asia for its rhizomes. This study reports the in vitro regeneration of Cnidium officinale plants and the induction of rhizomes from microshoots. The rhizomatous buds of Cnidium officinale induced multiple shoots on Murashige and Skoog (MS) medium supplemented with 0.5 mg L-1 BA, which led to the regeneration of plants within four weeks of culture. After four weeks of culture, the plants were assessed for fresh weight, the number of leaves, the number of roots, and the length of roots to compare the performance of the different clones. The clones with good growth characteristics were selected with the aid of a flow cytometric analysis of 2C nuclear DNA content. The plants bearing high DNA values showed better growth characteristics. Various factors, namely, sucrose concentration (30, 50, 70, and 90 g L-1), ABA (0, 0.5, 1.0, and 2.0 mg L-1), the synergistic effects of BA (1.0 mg L-1) + NAA (0.5 mg L-1) and BA (1.0 mg L-1) + NAA (0.5 mg L-1) + ABA (1.0 mg L-1) with or without activated charcoal (1 g L-1), and light and dark incubation were tested on rhizome formation from microshoots. The results of the above experiments suggest that MS medium supplemented with 50 g L-1 sucrose, 1.0 mg L-1 ABA, and 1 g L-1 AC is good for the induction of rhizomes from the shoots of Cnidium officinale. Plantlets with rhizomes were successfully transferred to pots, and they showed 100% survival.


Assuntos
Cnidium , Reguladores de Crescimento de Plantas , Brotos de Planta/genética , Reguladores de Crescimento de Plantas/farmacologia , Carvão Vegetal/farmacologia , Células Clonais , Sacarose/farmacologia
20.
Cells ; 11(20)2022 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-36291118

RESUMO

Plant growth and development exhibit plasticity, and plants can adapt to environmental changes and stress. Various phytohormones interact synergistically or antagonistically to regulate these responses. Melatonin and indole-3-acetic acid (IAA) are widespread across plant kingdom. Melatonin, an important member of the neuroendocrine immune regulatory network, can confer autoimmunity and protect against viral invasion. Melatonin functions as a plant growth regulator and biostimulant, with an important role in enhancing plant stress tolerance. IAA has a highly complex stress response mechanism, which participates in a series of stress induced physiological changes. This article reviews studies on the signaling pathways of melatonin and IAA, focusing on specific regulatory mechanisms. We discuss how these hormones coordinate plant growth and development and stress responses. Furthermore, the interactions between melatonin and IAA and their upstream and downstream transcriptional regulation are discussed from the perspective of modulating plant development and stress adaptation. The reviewed studies suggest that, at low concentrations, melatonin promotes IAA synthesis, whereas at high levels it reduces IAA levels. Similarly to IAA, melatonin promotes plant growth and development. IAA suppresses the melatonin induced inhibition of germination. IAA signaling plays an important role in plant growth and development, whereas melatonin signaling plays an important role in stress responses.


Assuntos
Melatonina , Reguladores de Crescimento de Plantas , Reguladores de Crescimento de Plantas/farmacologia , Reguladores de Crescimento de Plantas/metabolismo , Melatonina/farmacologia , Melatonina/metabolismo , Ácidos Indolacéticos/farmacologia , Ácidos Indolacéticos/metabolismo , Desenvolvimento Vegetal , Plantas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...