Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.757
Filtrar
1.
Nat Commun ; 11(1): 4826, 2020 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-32958757

RESUMO

DNA replication initiates from multiple genomic locations called replication origins. In metazoa, DNA sequence elements involved in origin specification remain elusive. Here, we examine pluripotent, primary, differentiating, and immortalized human cells, and demonstrate that a class of origins, termed core origins, is shared by different cell types and host ~80% of all DNA replication initiation events in any cell population. We detect a shared G-rich DNA sequence signature that coincides with most core origins in both human and mouse genomes. Transcription and G-rich elements can independently associate with replication origin activity. Computational algorithms show that core origins can be predicted, based solely on DNA sequence patterns but not on consensus motifs. Our results demonstrate that, despite an attributed stochasticity, core origins are chosen from a limited pool of genomic regions. Immortalization through oncogenic gene expression, but not normal cellular differentiation, results in increased stochastic firing from heterochromatin and decreased origin density at TAD borders.


Assuntos
DNA/biossíntese , DNA/química , Origem de Replicação/genética , Animais , Composição de Bases , Sequência de Bases , Carcinogênese , Diferenciação Celular , Células Cultivadas , Replicação do DNA/genética , Genoma Humano/genética , Heterocromatina/genética , Humanos , Camundongos , Motivos de Nucleotídeos , Transcrição Genética
2.
Mol Cell ; 79(6): 1037-1050.e5, 2020 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-32882183

RESUMO

DNA double-stranded breaks (DSBs) are dangerous lesions threatening genomic stability. Fidelity of DSB repair is best achieved by recombination with a homologous template sequence. In yeast, transcript RNA was shown to template DSB repair of DNA. However, molecular pathways of RNA-driven repair processes remain obscure. Utilizing assays of RNA-DNA recombination with and without an induced DSB in yeast DNA, we characterize three forms of RNA-mediated genomic modifications: RNA- and cDNA-templated DSB repair (R-TDR and c-TDR) using an RNA transcript or a DNA copy of the RNA transcript for DSB repair, respectively, and a new mechanism of RNA-templated DNA modification (R-TDM) induced by spontaneous or mutagen-induced breaks. While c-TDR requires reverse transcriptase, translesion DNA polymerase ζ (Pol ζ) plays a major role in R-TDR, and it is essential for R-TDM. This study characterizes mechanisms of RNA-DNA recombination, uncovering a role of Pol ζ in transferring genetic information from transcript RNA to DNA.


Assuntos
DNA/genética , RNA/genética , Saccharomyces cerevisiae/genética , Adolescente , Adulto , DNA/ultraestrutura , Quebras de DNA de Cadeia Dupla , Reparo do DNA/genética , Replicação do DNA/genética , DNA Complementar/genética , DNA Polimerase Dirigida por DNA/genética , DNA Polimerase Dirigida por DNA/ultraestrutura , Instabilidade Genômica/genética , Humanos , Pessoa de Meia-Idade , RNA/ultraestrutura , Proteína Rad52 de Recombinação e Reparo de DNA/genética , Adulto Jovem
3.
Mol Cell ; 79(6): 881-901, 2020 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-32768408

RESUMO

Nucleosomes package genomic DNA into chromatin. By regulating DNA access for transcription, replication, DNA repair, and epigenetic modification, chromatin forms the nexus of most nuclear processes. In addition, dynamic organization of chromatin underlies both regulation of gene expression and evolution of chromosomes into individualized sister objects, which can segregate cleanly to different daughter cells at anaphase. This collaborative review shines a spotlight on technologies that will be crucial to interrogate key questions in chromatin and chromosome biology including state-of-the-art microscopy techniques, tools to physically manipulate chromatin, single-cell methods to measure chromatin accessibility, computational imaging with neural networks and analytical tools to interpret chromatin structure and dynamics. In addition, this review provides perspectives on how these tools can be applied to specific research fields such as genome stability and developmental biology and to test concepts such as phase separation of chromatin.


Assuntos
Cromatina/genética , Cromossomos/genética , DNA/genética , Nucleossomos/genética , Reparo do DNA/genética , Replicação do DNA/genética , Epigênese Genética/genética , Humanos
4.
Nat Commun ; 11(1): 3796, 2020 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-32732900

RESUMO

The ter region of the bacterial chromosome, where replication terminates, is the last to be segregated before cell division in Escherichia coli. Delayed segregation is controlled by the MatP protein, which binds to specific sites (matS) within ter, and interacts with other proteins such as ZapB. Here, we investigate the role of MatP by combining short-time mobility analyses of the ter locus with biochemical approaches. We find that ter mobility is similar to that of a non ter locus, except when sister ter loci are paired after replication. This effect depends on MatP, the persistence of catenanes, and ZapB. We characterise MatP/DNA complexes and conclude that MatP binds DNA as a tetramer, but bridging matS sites in a DNA-rich environment remains infrequent. We propose that tetramerisation of MatP links matS sites with ZapB and/or with non-specific DNA to promote optimal pairing of sister ter regions until cell division.


Assuntos
Proteínas de Ciclo Celular/genética , Proteínas Cromossômicas não Histona/genética , Cromossomos Bacterianos/genética , Proteínas de Escherichia coli/genética , Escherichia coli/genética , Divisão Celular/genética , Proteínas Cromossômicas não Histona/metabolismo , Replicação do DNA/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo
5.
Nat Commun ; 11(1): 3813, 2020 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-32732913

RESUMO

Spatial organization of biological processes allows for variability in molecular outcomes and coordinated development. Here, we investigate how organization underpins phage lambda development and decision-making by characterizing viral components and processes in subcellular space. We use live-cell and in situ fluorescence imaging at the single-molecule level to examine lambda DNA replication, transcription, virion assembly, and resource recruitment in single-cell infections, uniting key processes of the infection cycle into a coherent model of phage development encompassing space and time. We find that different viral DNAs establish separate subcellular compartments within cells, which sustains heterogeneous viral development in single cells. These individual phage compartments are physically separated by the E. coli nucleoid. Our results provide mechanistic details describing how separate viruses develop heterogeneously to resemble single-cell phenotypes.


Assuntos
Bacteriófago lambda/genética , Replicação do DNA/genética , Escherichia coli/virologia , Montagem de Vírus/genética , Bacteriófago lambda/crescimento & desenvolvimento , DNA Viral/biossíntese , DNA Viral/genética , Escherichia coli/genética , Lisogenia/genética , Transcrição Genética/genética
6.
PLoS Genet ; 16(8): e1008988, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32841231

RESUMO

Achieving complete and precise genome duplication requires that each genomic segment be replicated only once per cell division cycle. Protecting large eukaryotic genomes from re-replication requires an overlapping set of molecular mechanisms that prevent the first DNA replication step, the DNA loading of MCM helicase complexes to license replication origins, after S phase begins. Previous reports have defined many such origin licensing inhibition mechanisms, but the temporal relationships among them are not clear, particularly with respect to preventing re-replication in G2 and M phases. Using a combination of mutagenesis, biochemistry, and single cell analyses in human cells, we define a new mechanism that prevents re-replication through hyperphosphorylation of the essential MCM loading protein, Cdt1. We demonstrate that Cyclin A/CDK1 can hyperphosphorylate Cdt1 to inhibit MCM re-loading in G2 phase. The mechanism of inhibition is to block Cdt1 binding to MCM independently of other known Cdt1 inactivation mechanisms such as Cdt1 degradation during S phase or Geminin binding. Moreover, our findings suggest that Cdt1 dephosphorylation at the mitosis-to-G1 phase transition re-activates Cdt1. We propose that multiple distinct, non-redundant licensing inhibition mechanisms act in a series of sequential relays through each cell cycle phase to ensure precise genome duplication.


Assuntos
Replicação do DNA/genética , Genoma Humano/genética , Origem de Replicação/genética , Duplicações Segmentares Genômicas/genética , Proteína Quinase CDC2/genética , Proteínas de Ciclo Celular/genética , Ciclina A/genética , Fase G2/genética , Geminina/genética , Genes Duplicados/genética , Células HEK293 , Humanos , Proteínas de Manutenção de Minicromossomo/genética , Fosforilação/genética , Fase S/genética
7.
PLoS Genet ; 16(8): e1008987, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32853297

RESUMO

Replication-transcription conflicts promote mutagenesis and give rise to evolutionary signatures, with fundamental importance to genome stability ranging from bacteria to metastatic cancer cells. This review focuses on the interplay between replication-transcription conflicts and the evolution of gene directionality. In most bacteria, the majority of genes are encoded on the leading strand of replication such that their transcription is co-directional with the direction of DNA replication fork movement. This gene strand bias arises primarily due to negative selection against deleterious consequences of head-on replication-transcription conflict. However, many genes remain head-on. Can head-on orientation provide some benefit? We combine insights from both mechanistic and evolutionary studies, review published work, and analyze gene expression data to evaluate an emerging model that head-on genes are temporal targets for adaptive mutagenesis during stress. We highlight the alternative explanation that genes in the head-on orientation may simply be the result of genomic inversions and relaxed selection acting on nonessential genes. We seek to clarify how the mechanisms of replication-transcription conflict, in concert with other mutagenic mechanisms, balanced by natural selection, have shaped bacterial genome evolution.


Assuntos
Replicação do DNA/genética , Evolução Molecular , Seleção Genética/genética , Transcrição Genética , Bactérias/genética , Genoma Bacteriano/genética
8.
PLoS One ; 15(7): e0234795, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32645018

RESUMO

Forkhead box L2 (FOXL2) is a single-exon gene encoding a forkhead transcription factor, which is mainly expressed in the ovary, eyelids and the pituitary gland. FOXL2 plays an essential role in ovarian development. To reveal the effects of FOXL2 on the biological process and gene expression of ovarian granulosa cells (GCs), we established stable FOXL2-knockdown GCs and then analysed them using transcriptome sequencing. It was observed that knocking down FOXL2 affected the biological processes of cell proliferation, DNA replication, and apoptosis and affected cell cycle progression. FOXL2 knockdown promoted cell proliferation and DNA replication, decreased cell apoptosis, and promoted mitosis. In addition, by comparing the transcriptome after FOXL2 knockdown, we found a series of DEGs (differentially expressed genes) and related pathways. These results indicated that, through mediating these genes and pathways, the FOXL2 might induce the cell proliferation, cycle, and DNA replication, and play a key role during ovarian development and maintenance.


Assuntos
Proteína Forkhead Box L2/genética , Proteína Forkhead Box L2/metabolismo , Ovário/metabolismo , Animais , Ciclo Celular/genética , Divisão Celular/genética , Proliferação de Células/genética , Galinhas/genética , Replicação do DNA/genética , Feminino , Fatores de Transcrição Forkhead/metabolismo , Regulação da Expressão Gênica/genética , Células da Granulosa/metabolismo , Folículo Ovariano/metabolismo , RNA Mensageiro/genética , Transcriptoma , Sequenciamento Completo do Exoma
9.
Nat Commun ; 11(1): 3503, 2020 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-32665547

RESUMO

DNA replication timing is tightly regulated during S-phase. S-phase length is determined by DNA synthesis rate, which depends on the number of active replication forks and their velocity. Here, we show that E2F-dependent transcription, through E2F6, determines the replication capacity of a cell, defined as the maximal amount of DNA a cell can synthesise per unit time during S-phase. Increasing or decreasing E2F-dependent transcription during S-phase increases or decreases replication capacity, and thereby replication rates, thus shortening or lengthening S-phase, respectively. The changes in replication rate occur mainly through changes in fork speed without affecting the number of active forks. An increase in fork speed does not induce replication stress directly, but increases DNA damage over time causing cell cycle arrest. Thus, E2F-dependent transcription determines the DNA replication capacity of a cell, which affects the replication rate, controlling the time it takes to duplicate the genome and complete S-phase.


Assuntos
Cromatina/metabolismo , Replicação do DNA/fisiologia , Western Blotting , Cromatina/genética , Dano ao DNA/genética , Dano ao DNA/fisiologia , Replicação do DNA/genética , Fatores de Transcrição E2F/genética , Fatores de Transcrição E2F/metabolismo , Citometria de Fluxo , Imunofluorescência , Humanos , Fase S/genética , Fase S/fisiologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
10.
PLoS Genet ; 16(7): e1008828, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32609721

RESUMO

Homologous recombination (HR) has an intimate relationship with genome replication, both during repair of DNA lesions that might prevent DNA synthesis and in tackling stalls to the replication fork. Recent studies led us to ask if HR might have a more central role in replicating the genome of Leishmania, a eukaryotic parasite. Conflicting evidence has emerged regarding whether or not HR genes are essential, and genome-wide mapping has provided evidence for an unorthodox organisation of DNA replication initiation sites, termed origins. To answer this question, we have employed a combined CRISPR/Cas9 and DiCre approach to rapidly generate and assess the effect of conditional ablation of RAD51 and three RAD51-related proteins in Leishmania major. Using this approach, we demonstrate that loss of any of these HR factors is not immediately lethal but in each case growth slows with time and leads to DNA damage and accumulation of cells with aberrant DNA content. Despite these similarities, we show that only loss of RAD51 or RAD51-3 impairs DNA synthesis and causes elevated levels of genome-wide mutation. Furthermore, we show that these two HR factors act in distinct ways, since ablation of RAD51, but not RAD51-3, has a profound effect on DNA replication, causing loss of initiation at the major origins and increased DNA synthesis at subtelomeres. Our work clarifies questions regarding the importance of HR to survival of Leishmania and reveals an unanticipated, central role for RAD51 in the programme of genome replication in a microbial eukaryote.


Assuntos
Recombinação Homóloga/genética , Leishmania major/genética , Leishmaniose Cutânea/genética , Rad51 Recombinase/genética , Sistemas CRISPR-Cas/genética , Dano ao DNA/genética , Reparo do DNA/genética , Replicação do DNA/genética , Técnicas de Inativação de Genes , Genoma/genética , Humanos , Leishmania major/patogenicidade , Leishmaniose Cutânea/parasitologia
11.
PLoS Genet ; 16(7): e1008933, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32692737

RESUMO

Structure-specific endonucleases (SSEs) play key roles in DNA replication, recombination, and repair. SSEs must be tightly regulated to ensure genome stability but their regulatory mechanisms remain incompletely understood. Here, we show that in the fission yeast Schizosaccharomyces pombe, the activities of two SSEs, Dna2 and Rad16 (ortholog of human XPF), are temporally controlled during the cell cycle by the CRL4Cdt2 ubiquitin ligase. CRL4Cdt2 targets Pxd1, an inhibitor of Dna2 and an activator of Rad16, for degradation in S phase. The ubiquitination and degradation of Pxd1 is dependent on CRL4Cdt2, PCNA, and a PCNA-binding degron motif on Pxd1. CRL4Cdt2-mediated Pxd1 degradation prevents Pxd1 from interfering with the normal S-phase functions of Dna2. Moreover, Pxd1 degradation leads to a reduction of Rad16 nuclease activity in S phase, and restrains Rad16-mediated single-strand annealing, a hazardous pathway of repairing double-strand breaks. These results demonstrate a new role of the CRL4Cdt2 ubiquitin ligase in genome stability maintenance and shed new light on how SSE activities are regulated during the cell cycle.


Assuntos
Proteínas de Ligação a DNA/genética , Endonucleases Flap/genética , Proteínas Nucleares/genética , Proteínas de Schizosaccharomyces pombe/genética , Reparo do DNA/genética , Replicação do DNA/genética , Instabilidade Genômica/genética , Humanos , Fase S/genética , Schizosaccharomyces/genética , Ubiquitina/genética , Ubiquitina-Proteína Ligases/genética , Ubiquitinação/genética
12.
Hum Genet ; 139(11): 1417-1427, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32488466

RESUMO

An inverted duplication with a terminal deletion (inv-dup-del) is one of the complex constitutional structural rearrangements that can occur in a chromosome. Although breakages of dicentric chromosome have been suggested, the precise mechanism of this is yet to be fully understood. In our present study, we investigated the genomic structure of 10 inv-dup-del cases to elucidate this mechanism. Two recurrent 8p inv-dup-del cases harbored a large copy-number-neutral region between the duplication and deletion in common. Although the other non-recurrent cases did not appear to have this copy-number-neutral region, refined sequencing analysis identified that they contained a small intervening region at the junction between the inverted and non-inverted segment. The size of this small intervening region ranged from 1741 to 3728 bp. Combined with a presence of microhomology at the junction, a resolution of the replication fork stalling through template switching within the same replication fork is suggested. We further observed two cases with mosaicism of the dicentric chromosome and various structural rearrangements related to the dicentric chromosome. Refined analysis allowed us to identify different breakpoints on the same chromosome in the same case, implicating multiple rounds of U-type formation and its breakage. From these results, we propose that a replication-based mechanism generates unstable dicentric chromosomes and that their breakage leads to the formation of inv-dup-dels and other related derivative chromosomes.


Assuntos
Transtornos Cromossômicos/genética , Inversão Cromossômica/genética , Cromossomos/genética , Duplicação Gênica/genética , Deleção de Sequência/genética , Deleção Cromossômica , Replicação do DNA/genética , Humanos , Mosaicismo
13.
DNA Cell Biol ; 39(8): 1458-1466, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32513025

RESUMO

Polycystic ovary syndrome (PCOS) is a multifactorial disorder characterized by irregular menstrual problems, hyperandrogenism, and presence of polycystic ovaries. Till date, molecular mechanism underlying PCOS remains elusive. Recently mitochondrial displacement loop (D-loop) variants have been identified to be novel players in the pathogenesis of PCOS. At present, rare variants, besides common variants, are also the focus of research as it is believed to make essential contribution to the risk of complex diseases. However, rare and low hetroplasmic variants in mitochondrial D-loop are still not investigated in PCOS women. Furthermore, variants in light-strand origin of DNA replication (OriL) of mitochondrial DNA (mtDNA) have not been explored in PCOS. Hence, in this study, we investigated rare to common mitochondrial D-loop and OriL region variants obtained using mtDNA next-generation sequencing in women with PCOS. Furthermore, we also assessed mtDNA copy number, a biomarker of mitochondrial dysfunction (MD) in women with PCOS, as the variants in mtDNA are known to be associated with low mtDNA copy number in PCOS women. A total of 67 D-loop variants including 6 novel variants were identified in 30 PCOS women. Among 67 variants, 29 variants were reported in PCOS women. A single variant, 5746A was found in OriL region in two PCOS women. Both transition and transversion variants were found but transition variants occur at very high frequency compared with transversions (82.35% vs. 17.64%, respectively). As transition variants in mtDNA are known to arise because of polymerase γ errors, occurrence of high transition rates indicates that most mutation arises because of defect in replication errors that causes mtDNA damage leading to MD. Furthermore, mtDNA copy number was found to be low in women with PCOS compared with healthy control women suggesting that MD may be the contributing factor in the pathogenesis of PCOS.


Assuntos
Variações do Número de Cópias de DNA/genética , DNA Mitocondrial/genética , Mitocôndrias/genética , Síndrome do Ovário Policístico/genética , Adolescente , Adulto , Replicação do DNA/genética , DNA Mitocondrial/sangue , Feminino , Hormônio Foliculoestimulante/sangue , Humanos , Hormônio Luteinizante/sangue , Mitocôndrias/patologia , Síndrome do Ovário Policístico/sangue , Síndrome do Ovário Policístico/patologia , Testosterona/sangue , Tireotropina/sangue , Adulto Jovem
14.
Mol Cell ; 78(6): 1237-1251.e7, 2020 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-32442397

RESUMO

DNA replication stress can stall replication forks, leading to genome instability. DNA damage tolerance pathways assist fork progression, promoting replication fork reversal, translesion DNA synthesis (TLS), and repriming. In the absence of the fork remodeler HLTF, forks fail to slow following replication stress, but underlying mechanisms and cellular consequences remain elusive. Here, we demonstrate that HLTF-deficient cells fail to undergo fork reversal in vivo and rely on the primase-polymerase PRIMPOL for repriming, unrestrained replication, and S phase progression upon limiting nucleotide levels. By contrast, in an HLTF-HIRAN mutant, unrestrained replication relies on the TLS protein REV1. Importantly, HLTF-deficient cells also exhibit reduced double-strand break (DSB) formation and increased survival upon replication stress. Our findings suggest that HLTF promotes fork remodeling, preventing other mechanisms of replication stress tolerance in cancer cells. This remarkable plasticity of the replication fork may determine the outcome of replication stress in terms of genome integrity, tumorigenesis, and response to chemotherapy.


Assuntos
Replicação do DNA/fisiologia , Proteínas de Ligação a DNA/metabolismo , DNA/biossíntese , Fatores de Transcrição/metabolismo , Linhagem Celular Tumoral , DNA/genética , Dano ao DNA/genética , DNA Primase/metabolismo , DNA Primase/fisiologia , Reparo do DNA/genética , Replicação do DNA/genética , Proteínas de Ligação a DNA/genética , DNA Polimerase Dirigida por DNA/metabolismo , DNA Polimerase Dirigida por DNA/fisiologia , Células HEK293 , Humanos , Células K562 , Enzimas Multifuncionais/metabolismo , Enzimas Multifuncionais/fisiologia , Nucleotidiltransferases/metabolismo , Nucleotidiltransferases/fisiologia , Fatores de Transcrição/genética
15.
Mol Cell ; 78(5): 926-940.e13, 2020 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-32369734

RESUMO

The eukaryotic replisome, organized around the Cdc45-MCM-GINS (CMG) helicase, orchestrates chromosome replication. Multiple factors associate directly with CMG, including Ctf4 and the heterotrimeric fork protection complex (Csm3/Tof1 and Mrc1), which has important roles including aiding normal replication rates and stabilizing stalled forks. How these proteins interface with CMG to execute these functions is poorly understood. Here we present 3 to 3.5 Å resolution electron cryomicroscopy (cryo-EM) structures comprising CMG, Ctf4, and the fork protection complex at a replication fork. The structures provide high-resolution views of CMG-DNA interactions, revealing a mechanism for strand separation, and show Csm3/Tof1 "grip" duplex DNA ahead of CMG via a network of interactions important for efficient replication fork pausing. Although Mrc1 was not resolved in our structures, we determine its topology in the replisome by cross-linking mass spectrometry. Collectively, our work reveals how four highly conserved replisome components collaborate with CMG to facilitate replisome progression and maintain genome stability.


Assuntos
Proteínas de Ligação a DNA/ultraestrutura , Proteínas de Manutenção de Minicromossomo/ultraestrutura , Proteínas Nucleares/ultraestrutura , Proteínas de Saccharomyces cerevisiae/ultraestrutura , Proteínas de Ciclo Celular/metabolismo , Microscopia Crioeletrônica/métodos , DNA Helicases/genética , Replicação do DNA/genética , Replicação do DNA/fisiologia , DNA Fúngico/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Manutenção de Minicromossomo/metabolismo , Proteínas Nucleares/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
16.
RNA ; 26(9): 1104-1117, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32393525

RESUMO

Noncoding RNA has a proven ability to direct and regulate chromatin modifications by acting as scaffolds between DNA and histone-modifying complexes. However, it is unknown if ncRNA plays any role in DNA replication and epigenome maintenance, including histone eviction and reinstallment of histone modifications after genome duplication. Isolation of nascent chromatin has identified a large number of RNA-binding proteins in addition to unknown components of the replication and epigenetic maintenance machinery. Here, we isolated and characterized long and short RNAs associated with nascent chromatin at active replication forks and track RNA composition during chromatin maturation across the cell cycle. Shortly after fork passage, GA-rich-, alpha- and TElomeric Repeat-containing RNAs (TERRA) are associated with replicated DNA. These repeat containing RNAs arise from loci undergoing replication, suggesting an interaction in cis. Post-replication during chromatin maturation, and even after mitosis in G1, the repeats remain enriched on DNA. This suggests that specific types of repeat RNAs are transcribed shortly after DNA replication and stably associate with their loci of origin throughout the cell cycle. The presented method and data enable studies of RNA interactions with replication forks and post-replicative chromatin and provide insights into how repeat RNAs and their engagement with chromatin are regulated with respect to DNA replication and across the cell cycle.


Assuntos
Replicação do DNA/genética , DNA/genética , Processamento de Proteína Pós-Traducional/genética , RNA/genética , Ciclo Celular/genética , Linhagem Celular Tumoral , Cromatina/genética , Células HeLa , Histonas/genética , Humanos
17.
PLoS Genet ; 16(5): e1008755, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32379761

RESUMO

During eukaryotic DNA replication, DNA polymerase alpha/primase (Pol α) initiates synthesis on both the leading and lagging strands. It is unknown whether leading- and lagging-strand priming are mechanistically identical, and whether Pol α associates processively or distributively with the replisome. Here, we titrate cellular levels of Pol α in S. cerevisiae and analyze Okazaki fragments to study both replication initiation and ongoing lagging-strand synthesis in vivo. We observe that both Okazaki fragment initiation and the productive firing of replication origins are sensitive to Pol α abundance, and that both processes are disrupted at similar Pol α concentrations. When the replisome adaptor protein Ctf4 is absent or cannot interact with Pol α, lagging-strand initiation is impaired at Pol α concentrations that still support normal origin firing. Additionally, we observe that activation of the checkpoint becomes essential for viability upon severe depletion of Pol α. Using strains in which the Pol α-Ctf4 interaction is disrupted, we demonstrate that this checkpoint requirement is not solely caused by reduced lagging-strand priming. Our results suggest that Pol α recruitment for replication initiation and ongoing lagging-strand priming are distinctly sensitive to the presence of Ctf4. We propose that the global changes we observe in Okazaki fragment length and origin firing efficiency are consistent with distributive association of Pol α at the replication fork, at least when Pol α is limiting.


Assuntos
DNA Polimerase I/metabolismo , DNA Primase/metabolismo , Replicação do DNA , DNA Fúngico/biossíntese , Proteínas de Ligação a DNA/fisiologia , Origem de Replicação , Proteínas de Saccharomyces cerevisiae/fisiologia , DNA , Replicação do DNA/genética , DNA Fúngico/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Organismos Geneticamente Modificados , Ligação Proteica , Origem de Replicação/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Elongação da Transcrição Genética/fisiologia
18.
Nucleic Acids Res ; 48(12): 6640-6653, 2020 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-32449930

RESUMO

G-quadruplex (G4) DNA structures can form physical barriers within the genome that must be unwound to ensure cellular genomic integrity. Here, we report unanticipated roles for the Escherichia coli Rep helicase and RecA recombinase in tolerating toxicity induced by G4-stabilizing ligands in vivo. We demonstrate that Rep and Rep-X (an enhanced version of Rep) display G4 unwinding activities in vitro that are significantly higher than the closely related UvrD helicase. G4 unwinding mediated by Rep involves repetitive cycles of G4 unfolding and refolding fueled by ATP hydrolysis. Rep-X and Rep also dislodge G4-stabilizing ligands, in agreement with our in vivo G4-ligand sensitivity result. We further demonstrate that RecA filaments disrupt G4 structures and remove G4 ligands in vitro, consistent with its role in countering cellular toxicity of G4-stabilizing ligands. Together, our study reveals novel genome caretaking functions for Rep and RecA in resolving deleterious G4 structures.


Assuntos
DNA Helicases/química , Replicação do DNA/genética , Proteínas de Ligação a DNA/química , Proteínas de Escherichia coli/química , Quadruplex G , Recombinases Rec A/química , Trifosfato de Adenosina/química , DNA Helicases/genética , Proteínas de Ligação a DNA/genética , Escherichia coli/química , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Ligantes , Conformação de Ácido Nucleico , Recombinases Rec A/genética
19.
Nucleic Acids Res ; 48(12): 6980-6995, 2020 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-32453425

RESUMO

DNA unwinding in eukaryotic replication is performed by the Cdc45-MCM-GINS (CMG) helicase. Although the CMG architecture has been elucidated, its mechanism of DNA unwinding and replisome interactions remain poorly understood. Here we report the cryoEM structure at 3.3 Å of human CMG bound to fork DNA and the ATP-analogue ATPγS. Eleven nucleotides of single-stranded (ss) DNA are bound within the C-tier of MCM2-7 AAA+ ATPase domains. All MCM subunits contact DNA, from MCM2 at the 5'-end to MCM5 at the 3'-end of the DNA spiral, but only MCM6, 4, 7 and 3 make a full set of interactions. DNA binding correlates with nucleotide occupancy: five MCM subunits are bound to either ATPγS or ADP, whereas the apo MCM2-5 interface remains open. We further report the cryoEM structure of human CMG bound to the replisome hub AND-1 (CMGA). The AND-1 trimer uses one ß-propeller domain of its trimerisation region to dock onto the side of the helicase assembly formed by Cdc45 and GINS. In the resulting CMGA architecture, the AND-1 trimer is closely positioned to the fork DNA while its CIP (Ctf4-interacting peptide)-binding helical domains remain available to recruit partner proteins.


Assuntos
Proteínas de Ciclo Celular/ultraestrutura , DNA/ultraestrutura , Proteínas de Manutenção de Minicromossomo/ultraestrutura , Complexos Multiproteicos/ultraestrutura , Adenosina Trifosfatases/química , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/ultraestrutura , Trifosfato de Adenosina/análogos & derivados , Trifosfato de Adenosina/química , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Microscopia Crioeletrônica , Cristalografia por Raios X , DNA Helicases/química , DNA Helicases/genética , DNA Helicases/ultraestrutura , Replicação do DNA/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/ultraestrutura , Humanos , Proteínas de Manutenção de Minicromossomo/química , Proteínas de Manutenção de Minicromossomo/genética , Modelos Moleculares , Complexos Multiproteicos/química , Complexos Multiproteicos/genética , Conformação de Ácido Nucleico , Conformação Proteica
20.
Nucleic Acids Res ; 48(12): 6996-7004, 2020 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-32469068

RESUMO

The Tof1-Csm3 fork protection complex has a central role in the replisome-it promotes the progression of DNA replication forks and protects them when they stall, while also enabling cohesion establishment and checkpoint responses. Here, I present the crystal structure of the Tof1-Csm3 complex from Chaetomium thermophilum at 3.1 Å resolution. The structure reveals that both proteins together form an extended alpha helical repeat structure, which suggests a mechanical or scaffolding role for the complex. Expanding on this idea, I characterize a DNA interacting region and a cancer-associated Mrc1 binding site. This study provides the molecular basis for understanding the functions of the Tof1-Csm3 complex, its human orthologue the Timeless-Tipin complex and additionally the Drosophila circadian rhythm protein Timeless.


Assuntos
Proteínas de Ciclo Celular/ultraestrutura , Replicação do DNA/genética , Proteínas de Ligação a DNA/ultraestrutura , Complexos Multiproteicos/ultraestrutura , Proteínas de Ciclo Celular/genética , Chaetomium/ultraestrutura , Cristalografia por Raios X , Proteínas de Ligação a DNA/genética , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Complexos Multiproteicos/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA