Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.969
Filtrar
1.
Gan To Kagaku Ryoho ; 47(10): 1407-1410, 2020 Oct.
Artigo em Japonês | MEDLINE | ID: mdl-33130730

RESUMO

Seminal studies by Dr. Shinya Yamanaka revealed that reprogramming technology was able to convert differentiated somatic cells to self-renewing and pluripotent stem cells. Although reprogramming process does not require changes in the genome information, cellular reprogramming elicits dynamic changes of epigenetic regulation. Therefore, reprogramming technology is a powerful tool for the modifying epigenetic regulation. Previous studies have reported that epigenetic regulation plays a critical role on both the development and maintenance of cancer cells. Taking advantage of reprogramming technology, previous studies have actively modified the epigenome of cancer cells and revealed the importance of the coordinated interactions between genetic abnormalities and epigenetic regulation in cancer cells. In this review, we describe advances and challenges in the use of reprogramming technology for studying cancer biology.


Assuntos
Células-Tronco Pluripotentes Induzidas , Neoplasias , Diferenciação Celular , Reprogramação Celular , Epigênese Genética , Humanos , Neoplasias/genética
2.
Nat Commun ; 11(1): 5292, 2020 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-33087715

RESUMO

Recent advances have enabled the direct induction of human tissue-specific stem and progenitor cells from differentiated somatic cells. However, it is not known whether human hepatic progenitor cells (hHepPCs) can be generated from other cell types by direct lineage reprogramming with defined transcription factors. Here, we show that a set of three transcription factors, FOXA3, HNF1A, and HNF6, can induce human umbilical vein endothelial cells to directly acquire the properties of hHepPCs. These induced hHepPCs (hiHepPCs) propagate in long-term monolayer culture and differentiate into functional hepatocytes and cholangiocytes by forming cell aggregates and cystic epithelial spheroids, respectively, under three-dimensional culture conditions. After transplantation, hiHepPC-derived hepatocytes and cholangiocytes reconstitute damaged liver tissues and support hepatic function. The defined transcription factors also induce hiHepPCs from endothelial cells circulating in adult human peripheral blood. These expandable and bipotential hiHepPCs may be useful in the study and treatment of human liver diseases.


Assuntos
Técnicas de Reprogramação Celular/métodos , Células Endoteliais/citologia , Hepatócitos/citologia , Células-Tronco/citologia , Animais , Ductos Biliares/citologia , Ductos Biliares/fisiologia , Agregação Celular , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Células Cultivadas , Reprogramação Celular/genética , Reprogramação Celular/fisiologia , Células Endoteliais/fisiologia , Feminino , Fator 1-alfa Nuclear de Hepatócito/genética , Fator 1-alfa Nuclear de Hepatócito/fisiologia , Fator 3-gama Nuclear de Hepatócito/genética , Fator 3-gama Nuclear de Hepatócito/fisiologia , Fator 6 Nuclear de Hepatócito/genética , Fator 6 Nuclear de Hepatócito/fisiologia , Hepatócitos/fisiologia , Hepatócitos/transplante , Xenoenxertos , Células Endoteliais da Veia Umbilical Humana , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos SCID , Esferoides Celulares/citologia , Esferoides Celulares/fisiologia , Células-Tronco/fisiologia
3.
Nat Commun ; 11(1): 4989, 2020 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-33020476

RESUMO

We postulate that exit from pluripotency involves intermediates that retain pluripotency while simultaneously exhibiting lineage-bias. Using a MIXL1 reporter, we explore mesoderm lineage-bias within the human pluripotent stem cell compartment. We identify a substate, which at the single cell level coexpresses pluripotent and mesodermal gene expression programmes. Functionally these cells initiate stem cell cultures and exhibit mesodermal bias in differentiation assays. By promoting mesodermal identity through manipulation of WNT signalling while preventing exit from pluripotency using lysophosphatidic acid, we 'trap' and maintain cells in a lineage-biased stem cell state through multiple passages. These cells correspond to a normal state on the differentiation trajectory, the plasticity of which is evidenced by their reacquisition of an unbiased state upon removal of differentiation cues. The use of 'cross-antagonistic' signalling to trap pluripotent stem cell intermediates with different lineage-bias may have general applicability in the efficient production of cells for regenerative medicine.


Assuntos
Reprogramação Celular , Mesoderma/metabolismo , Células-Tronco Pluripotentes/citologia , Animais , Diferenciação Celular/genética , Linhagem Celular , Linhagem da Célula , Plasticidade Celular/genética , Autorrenovação Celular , Meios de Cultura , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Humanos , Camundongos , Células-Tronco Pluripotentes/metabolismo , Transdução de Sinais/genética
4.
Nat Commun ; 11(1): 5005, 2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-33024109

RESUMO

Hypoxia-inducible factor 1α (HIF-1α) and HIF-2α are master transcription factors that regulate cellular responses to hypoxia, but the exact function in regulatory T (Treg) cells is controversial. Here, we show that Treg cell development is normal in mice with Foxp3-specific knockout (KO) of HIF-1α or HIF-2α. However, HIF-2α-KO (but not HIF-1α-KO) Treg cells are functionally defective in suppressing effector T cell-induced colitis and inhibiting airway hypersensitivity. HIF-2α-KO Treg cells have enhanced reprogramming into IL-17-secreting cells. We show crosstalk between HIF-2α and HIF-1α, and that HIF-2α represses HIF-1α expression. HIF-1α is upregulated in HIF-2α-KO Treg cells and further deletion of HIF-1α restores the inhibitory function of HIF-2α-KO Treg cells. Mice with Foxp3-conditional KO of HIF-2α are resistant to growth of MC38 colon adenocarcinoma and metastases of B16F10 melanoma. Together, these results indicate that targeting HIF-2α to destabilize Treg cells might be an approach for regulating the functional activity of Treg cells.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Linfócitos T Reguladores/fisiologia , Adenocarcinoma/genética , Adenocarcinoma/patologia , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Hiper-Reatividade Brônquica/genética , Linfócitos T CD4-Positivos/citologia , Diferenciação Celular , Reprogramação Celular , Colite/etiologia , Colite/patologia , Neoplasias do Colo/genética , Neoplasias do Colo/patologia , Feminino , Fatores de Transcrição Forkhead/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Interleucina-17/metabolismo , Masculino , Melanoma/genética , Melanoma/patologia , Camundongos Knockout , Linfócitos T Reguladores/metabolismo
5.
Nat Commun ; 11(1): 5061, 2020 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-33033262

RESUMO

The interplay between the Yamanaka factors (OCT4, SOX2, KLF4 and c-MYC) and transcriptional/epigenetic co-regulators in somatic cell reprogramming is incompletely understood. Here, we demonstrate that the histone H3 lysine 27 trimethylation (H3K27me3) demethylase JMJD3 plays conflicting roles in mouse reprogramming. On one side, JMJD3 induces the pro-senescence factor Ink4a and degrades the pluripotency regulator PHF20 in a reprogramming factor-independent manner. On the other side, JMJD3 is specifically recruited by KLF4 to reduce H3K27me3 at both enhancers and promoters of epithelial and pluripotency genes. JMJD3 also promotes enhancer-promoter looping through the cohesin loading factor NIPBL and ultimately transcriptional elongation. This competition of forces can be shifted towards improved reprogramming by using early passage fibroblasts or boosting JMJD3's catalytic activity with vitamin C. Our work, thus, establishes a multifaceted role for JMJD3, placing it as a key partner of KLF4 and a scaffold that assists chromatin interactions and activates gene transcription.


Assuntos
Reprogramação Celular , Histona Desmetilases com o Domínio Jumonji/metabolismo , Fatores de Transcrição Kruppel-Like/metabolismo , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , Animais , Catálise , Proliferação de Células , Senescência Celular , Desmetilação , Elementos Facilitadores Genéticos/genética , Células Epiteliais/metabolismo , Fibroblastos/citologia , Fibroblastos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Genoma , Histonas/metabolismo , Lisina/metabolismo , Camundongos , Modelos Biológicos , Regiões Promotoras Genéticas , Ativação Transcricional/genética
8.
Life Sci ; 260: 118309, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-32841664

RESUMO

AIMS: Oral cavity pathogens play an important systemic role, modulating the development of several diseases. Periodontitis is a very common oral disease associated with dental biofilm. It is characterized by gum inflammation, periodontal ligament degeneration, dental cementum and alveolar bone loss. Studies point to the association between maternal periodontitis and adverse outcomes during pregnancy. However, they did not evaluate the impact of maternal periodontitis in the offspring. Thus, our objective was to investigate the effects of maternal periodontitis in the immune system of offspring. MATERIAL AND METHODS: For this evaluation we induced acute lung injury in rat pups. Pregnant rats were submitted or not to periodontitis by ligature technique. Thirty days after the birth, offspring was submitted to acute lung inflammation by administration of lipopolysaccharide (LPS, Salmonella abortus equi, 5 mg/kg, ip). KEY FINDINGS: Our results showed that maternal periodontitis increased myeloperoxidase activity, the levels of TNF-alpha and IL-17A in the bronchoalveolar fluid, the gene expression of TNF-alpha, IL-17A, and cyclooxygenases 1 and 2. In addition, maternal periodontitis did not alter the number of leukocytes migrated into the lung, tracheal responsiveness, expression of TLR4 and NF-KB translocation. SIGNIFICANCE: This study showed prenatal programming of the immune response induced by maternal periodontitis, and reinforces the importance of oral health care during pregnancy.


Assuntos
Lesão Pulmonar Aguda/imunologia , Reprogramação Celular , Periodontite/fisiopatologia , Efeitos Tardios da Exposição Pré-Natal/imunologia , Lesão Pulmonar Aguda/etiologia , Lesão Pulmonar Aguda/patologia , Animais , Animais Recém-Nascidos , Feminino , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Lipopolissacarídeos/toxicidade , Masculino , NF-kappa B/metabolismo , Gravidez , Efeitos Tardios da Exposição Pré-Natal/etiologia , Efeitos Tardios da Exposição Pré-Natal/patologia , Ratos , Fator de Necrose Tumoral alfa/metabolismo
9.
Nat Commun ; 11(1): 4055, 2020 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-32792504

RESUMO

Although metastasis is the most common cause of cancer deaths, metastasis-intrinsic dependencies remain largely uncharacterized. We previously reported that metastatic pancreatic cancers were dependent on the glucose-metabolizing enzyme phosphogluconate dehydrogenase (PGD). Surprisingly, PGD catalysis was constitutively elevated without activating mutations, suggesting a non-genetic basis for enhanced activity. Here we report a metabolic adaptation that stably activates PGD to reprogram metastatic chromatin. High PGD catalysis prevents transcriptional up-regulation of thioredoxin-interacting protein (TXNIP), a gene that negatively regulates glucose import. This allows glucose consumption rates to rise in support of PGD, while simultaneously facilitating epigenetic reprogramming through a glucose-fueled histone hyperacetylation pathway. Restoring TXNIP normalizes glucose consumption, lowers PGD catalysis, reverses hyperacetylation, represses malignant transcripts, and impairs metastatic tumorigenesis. We propose that PGD-driven suppression of TXNIP allows pancreatic cancers to avidly consume glucose. This renders PGD constitutively activated and enables metaboloepigenetic selection of additional traits that increase fitness along glucose-replete metastatic routes.


Assuntos
Cromatina/metabolismo , Glucose/metabolismo , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Animais , Transporte Biológico/genética , Transporte Biológico/fisiologia , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Reprogramação Celular/genética , Reprogramação Celular/fisiologia , Imunoprecipitação da Cromatina , Epigênese Genética/genética , Camundongos , Camundongos Nus , Neoplasias Pancreáticas/genética , Fosfogluconato Desidrogenase/genética , Fosfogluconato Desidrogenase/metabolismo , Tiorredoxinas/genética , Tiorredoxinas/metabolismo
10.
Nat Commun ; 11(1): 4337, 2020 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-32859897

RESUMO

Intracellular Na elevation in the heart is a hallmark of pathologies where both acute and chronic metabolic remodelling occurs. Here, we assess whether acute (75 µM ouabain 100 nM blebbistatin) or chronic myocardial Nai load (PLM3SA mouse) are causally linked to metabolic remodelling and whether the failing heart shares a common Na-mediated metabolic 'fingerprint'. Control (PLMWT), transgenic (PLM3SA), ouabain-treated and hypertrophied Langendorff-perfused mouse hearts are studied by 23Na, 31P, 13C NMR followed by 1H-NMR metabolomic profiling. Elevated Nai leads to common adaptive metabolic alterations preceding energetic impairment: a switch from fatty acid to carbohydrate metabolism and changes in steady-state metabolite concentrations (glycolytic, anaplerotic, Krebs cycle intermediates). Inhibition of mitochondrial Na/Ca exchanger by CGP37157 ameliorates the metabolic changes. In silico modelling indicates altered metabolic fluxes (Krebs cycle, fatty acid, carbohydrate, amino acid metabolism). Prevention of Nai overload or inhibition of Na/Camito may be a new approach to ameliorate metabolic dysregulation in heart failure.


Assuntos
Reprogramação Celular/fisiologia , Citoplasma/metabolismo , Insuficiência Cardíaca/metabolismo , Miocárdio/metabolismo , Sódio/metabolismo , Animais , Modelos Animais de Doenças , Metabolismo Energético , Técnicas de Introdução de Genes , Coração , Hipertrofia , Preparação de Coração Isolado , Masculino , Doenças Metabólicas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Ratos , Ratos Wistar , Sódio/sangue , Trocador de Sódio e Cálcio/efeitos dos fármacos , Tiazepinas/farmacologia
11.
Am J Med Sci ; 360(3): 279-286, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32829780

RESUMO

BACKGROUND: The essential role of 6-phosphogluconate dehydrogenase (6PGD), the enzyme catalyzing the oxidative pentose phosphate pathway, in tumor growth and metabolism has garnered attention in recent years. In this work, we are the first to demonstrate that aberrant activation of 6PGD is a feature in renal cell carcinoma (RCC) and is critically involved in renal carcinogenesis and chemo- and immuno-resistance. MATERIALS AND METHODS: 6PGD expression and activity were systematically analyzed in normal and malignant renal cells and tissues. The roles of 6PGD and its downstream mechanism were investigated using gain-of-function and loss-of-function approaches. RESULTS: 6PGD expression and enzyme activity were increased in RCC cells and patients' samples. Activation of 6PGD via gain-of-function approach promoted growth of normal kidney but not RCC cells, and alleviated the efficacy of chemotherapeutic (e.g., 5-FU) and immunotherapeutic (e.g., IFN-α) agents. In contrast, 6PGD inhibition using siRNA knockdown and pharmacological inhibitor physcion augmented the inhibitory effects of 5-FU and IFN-α in RCC. Mechanistic studies demonstrated that 6PGD inhibition activated AMPK signaling, leading to ACC1 enzyme inhibition and reduction of lipid synthesis. In addition, 6PGD inhibition disrupted NADPH and NADH homeostasis in RCC cells as shown by the decreased level of NADPH and NADH, and suppressed SIRT-1 activity. AMPK inhibition by siRNA knockdown reversed the inhibitory effects of physcion, demonstrating that the effect of 6PGD inhibition is AMPK activation dependent. CONCLUSIONS: Our work provides preclinical evidence that 6PGD inhibition may represent a potential therapeutic strategy to augment the efficacy of RCC standard of care drugs.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Carcinoma de Células Renais/terapia , Reprogramação Celular/fisiologia , Neoplasias Renais/terapia , Fosfogluconato Desidrogenase/metabolismo , Transdução de Sinais/fisiologia , Proteínas Quinases Ativadas por AMP/genética , Carcinoma de Células Renais/tratamento farmacológico , Carcinoma de Células Renais/patologia , Linhagem Celular , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/fisiologia , Ativação Enzimática/efeitos dos fármacos , Ativação Enzimática/fisiologia , Fluoruracila/uso terapêutico , Técnicas de Silenciamento de Genes , Humanos , Imunoterapia , Interferon-alfa/uso terapêutico , Rim/patologia , Neoplasias Renais/tratamento farmacológico , Neoplasias Renais/patologia , NADP/fisiologia , Fosfogluconato Desidrogenase/antagonistas & inibidores , Fosfogluconato Desidrogenase/genética , RNA Interferente Pequeno , Regulação para Cima
12.
Nucleic Acids Res ; 48(16): 9037-9052, 2020 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-32735658

RESUMO

Epigenetic regulation is important for establishing lineage-specific gene expression during early development. Although signaling pathways have been well-studied for regulation of trophectoderm reprogramming, epigenetic regulation of trophectodermal genes with histone modification dynamics have been poorly understood. Here, we identify that plant homeodomain finger protein 6 (PHF6) is a key epigenetic regulator for activation of trophectodermal genes using RNA-sequencing and ChIP assays. PHF6 acts as an E3 ubiquitin ligase for ubiquitination of H2BK120 (H2BK120ub) via its extended plant homeodomain 1 (PHD1), while the extended PHD2 of PHF6 recognizes acetylation of H2BK12 (H2BK12Ac). Intriguingly, the recognition of H2BK12Ac by PHF6 is important for exerting its E3 ubiquitin ligase activity for H2BK120ub. Together, our data provide evidence that PHF6 is crucial for epigenetic regulation of trophectodermal gene expression by linking H2BK12Ac to H2BK120ub modification.


Assuntos
Cromatina/genética , Proteínas Repressoras/genética , Ubiquitina-Proteína Ligases/genética , Acetilação , Animais , Reprogramação Celular/genética , Histonas/genética , Proteínas de Homeodomínio/genética , Humanos , Camundongos , Células-Tronco Embrionárias Murinas/metabolismo , Ligação Proteica/genética , Processamento de Proteína Pós-Traducional/genética , Ubiquitinação/genética
13.
Mol Cell ; 79(4): 660-676.e8, 2020 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-32755593

RESUMO

Specific combinations of two transcription factors (Hnf4α plus Foxa1, Foxa2, or Foxa3) can induce direct conversion of mouse fibroblasts into hepatocyte-like cells. However, the molecular mechanisms underlying hepatic reprogramming are largely unknown. Here, we show that the Foxa protein family members and Hnf4α sequentially and cooperatively bind to chromatin to activate liver-specific gene expression. Although all Foxa proteins bind to and open regions of closed chromatin as pioneer factors, Foxa3 has the unique potential of transferring from the distal to proximal regions of the transcription start site of target genes, binding RNA polymerase II, and co-traversing target genes. These distinctive characteristics of Foxa3 are essential for inducing the hepatic fate in fibroblasts. Similar functional coupling of transcription factors to RNA polymerase II may occur in other contexts whereby transcriptional activation can induce cell differentiation.


Assuntos
Fator 3-gama Nuclear de Hepatócito/metabolismo , Fator 4 Nuclear de Hepatócito/metabolismo , Fígado/citologia , Fígado/fisiologia , Ativação Transcricional , Animais , Sítios de Ligação , Células Cultivadas , Reprogramação Celular/fisiologia , Cromatina/metabolismo , DNA Polimerase II/genética , DNA Polimerase II/metabolismo , Fibroblastos/citologia , Fibroblastos/fisiologia , Regulação da Expressão Gênica , Fator 3-gama Nuclear de Hepatócito/genética , Fator 4 Nuclear de Hepatócito/genética , Camundongos Endogâmicos C57BL , Domínios Proteicos , Sítio de Iniciação de Transcrição
14.
PLoS One ; 15(8): e0226235, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32797046

RESUMO

Plant-derived fuels and chemicals from renewable biomass have significant potential to replace reliance on petroleum and improve global carbon balance. However, plant biomass contains significant fractions of oligosaccharides that are not usable natively by many industrial microorganisms, including Escherichia coli, Saccharomyces cerevisiae, and Zymomonas mobilis. Even after chemical or enzymatic hydrolysis, some carbohydrate remains as non-metabolizable oligosaccharides (e.g., cellobiose or longer cellulose-derived oligomers), thus reducing the efficiency of conversion to useful products. To begin to address this problem for Z. mobilis, we engineered a strain (Z. mobilis GH3) that expresses a glycosyl hydrolase (GH) with ß-glucosidase activity from a related α-proteobacterial species, Caulobacter crescentus, and subjected it to an adaptation in cellobiose medium. Growth on cellobiose was achieved after a prolonged lag phase in cellobiose medium that induced changes in gene expression and cell composition, including increased expression and extracellular release of GH. These changes were reversible upon growth in glucose-containing medium, meaning they did not result from genetic mutation but could be retained upon transfer of cells to fresh cellobiose medium. After adaptation to cellobiose, our GH-expressing strain was able to convert about 50% of cellobiose to glucose within 24 h and use it for growth and ethanol production. Alternatively, pre-growth of Z. mobilis GH3 in sucrose medium enabled immediate growth on cellobiose. Proteomic analysis of cellobiose- and sucrose-adapted strains revealed upregulation of secretion-, transport-, and outer membrane-related proteins, which may aid release or surface display of GHs, entry of cellobiose into the periplasm, or both. Our two key findings are that Z. mobilis can be reprogrammed to grow on cellobiose as a sole carbon source and that this reprogramming is related to a natural response of Z. mobilis to sucrose that promotes sucrase production.


Assuntos
Celobiose/metabolismo , Zymomonas/crescimento & desenvolvimento , Zymomonas/metabolismo , Adaptação Fisiológica/fisiologia , Biomassa , Reprogramação Celular/genética , Reprogramação Celular/fisiologia , Celulose/metabolismo , Expressão Gênica/genética , Glucose/metabolismo , Hidrolases/metabolismo , Proteômica , Sacarase/metabolismo , Sacarose/metabolismo , Zymomonas/genética , beta-Glucosidase/metabolismo
15.
Cancer Treat Rev ; 88: 102060, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32619863

RESUMO

Phenotypic plasticity of malignant melanoma is a well-known phenomenon. Several translational studies and small case series have reported this clinical and biological entity, particularly in metastatic melanoma, showing frequent aberrant expression of non-melanocytic differentiation markers of different lineages, posing remarkable challenges due to several alternative differential diagnoses including undifferentiated carcinoma and sarcomas. When melanoma loses its typical morpho-phenotype by routinely used diagnostic immunohistochemical markers, it is defined as "dedifferentiated melanoma". Historically, this process was closely related to diagnostic interpretative difficulties. In recent years, however, dedifferentiation has been increasingly recognized as an important biological phenomenon that demonstrates the phenotypic and genetic plasticity of melanoma, and specifically the non-irreversibility of the multistep cancerogenesis. Furthermore, dedifferentiation emerged as a general hallmark of cancer evolution and a common denominator of cross-resistance to both targeted and immunotherapy. In this review, we summarize the histopathological features, the genetic and epigenetic bases underlying the dedifferentiated phenotype in melanomas and provide additional support that dedifferentiation is a mechanism of resistance to immunotherapy and targeted therapy.


Assuntos
Melanoma/genética , Melanoma/terapia , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/terapia , Animais , Desdiferenciação Celular/fisiologia , Reprogramação Celular/fisiologia , Epigênese Genética , Humanos , Melanoma/patologia , Neoplasias Cutâneas/patologia
16.
Nat Commun ; 11(1): 3671, 2020 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-32699299

RESUMO

Epigenetic reprogramming is a cancer hallmark, but how it unfolds during early neoplastic events and its role in carcinogenesis and cancer progression is not fully understood. Here we show that resetting from primed to naïve human pluripotency results in acquisition of a DNA methylation landscape mirroring the cancer DNA methylome, with gradual hypermethylation of bivalent developmental genes. We identify a dichotomy between bivalent genes that do and do not become hypermethylated, which is also mirrored in cancer. We find that loss of H3K4me3 at bivalent regions is associated with gain of methylation. Additionally, we observe that promoter CpG island hypermethylation is not restricted solely to emerging naïve cells, suggesting that it is a feature of a heterogeneous intermediate population during resetting. These results indicate that transition to naïve pluripotency and oncogenic transformation share common epigenetic trajectories, which implicates reprogramming and the pluripotency network as a central hub in cancer formation.


Assuntos
Transformação Celular Neoplásica/genética , Reprogramação Celular , Metilação de DNA , Epigênese Genética , Neoplasias/genética , Animais , Linhagem Celular , Técnicas de Cocultura , Ilhas de CpG/genética , DNA (Citosina-5-)-Metiltransferases/genética , DNA (Citosina-5-)-Metiltransferases/metabolismo , Fibroblastos , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Células HEK293 , Histonas/genética , Histonas/metabolismo , Células-Tronco Embrionárias Humanas , Humanos , Camundongos , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo , Regiões Promotoras Genéticas/genética , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , RNA Interferente Pequeno/metabolismo
17.
Scand J Immunol ; 92(3): e12929, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32640079

RESUMO

After prolonged extracorporeal multiplication in physiological culture media, there can be curative infusions of a cancer patient's own cytotoxic T cells (adoptive T cell transfer; ACT), which must achieve efficient activation in potentially adverse tumour microenvironments. With spectacular, yet irregular, success, improvements are needed. Developing lymphoid cells are biologically selected, not only for 'near-self' reactivity (positive selection), but also to avoid self-reactivity (negative selection). Thus, success requires harnessing near-self cells while avoiding extreme autoimmune phenomena. Abrupt metabolic changes accompanying T cell activation to leave the G0 stage and enter the G1 stage of the cell cycle (eg enhanced glycolysis) are accompanied by increased transcription of the G0S9 gene that mediates salvage synthesis of NAD+ from nicotinamide; the latter has recently been shown to increase the efficiency of ACT. Despite theoretical and experimental advances, there has not been parallel progress in simulating in vivo conditions with culture media that were initially formulated for their positive benefits for tumour cell lines (cell survival and proliferation). Yet for lymphoid cells, inhibition or death (ie immunological tolerance) is as important as their activation and proliferation (immunological response). Thus, use of media optimized for the latter may mask the former. The resilience of established culture protocols may have been partly politically driven. However, unphysiological conditions have sometimes yielded fortuitous insights. Optimization of culture media for specific tissues must consider the nature of problems addressed in research settings and the need to avoid mishaps in clinical settings.


Assuntos
Metabolismo Energético , Imunoterapia Adotiva , Neoplasias/imunologia , Neoplasias/terapia , Linfócitos T/imunologia , Linfócitos T/metabolismo , Animais , Biomarcadores , Reprogramação Celular , Meios de Cultura , Regulação da Expressão Gênica , Humanos , Imunoterapia Adotiva/efeitos adversos , Imunoterapia Adotiva/métodos , Ativação Linfocitária/genética , Ativação Linfocitária/imunologia , Neoplasias/genética , Neoplasias/metabolismo , Cultura Primária de Células , Resultado do Tratamento
18.
Prostate ; 80(13): 1145-1156, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32659025

RESUMO

BACKGROUND: Epithelial stem cells (ESCs) demonstrate a capacity to maintain normal tissues homeostasis and ESCs with a deregulated behavior can contribute to cancer development. The ability to reprogram normal tissue epithelial cells into prostate or mammary stem-like cells holds great promise to help understand cell of origin and lineage plasticity in prostate and breast cancers in addition to understanding normal gland development. We previously showed that an intracellular chemokine, CXCL12γ induced cancer stem cells and neuroendocrine characteristics in both prostate and breast adenocarcinoma cell lines. However, its role in normal prostate or mammary epithelial cell fate and development remains unknown. Therefore, we sought to elucidate the functional role of CXCL12γ in the regulation of ESCs and tissue development. METHODS: Prostate epithelial cells (PNT2) or mammary epithelial cells (MCF10A) with overexpressed CXCL12γ was characterized by quantitative real-time polymerase chain reaction, Western blots, and immunofluorescence for lineage marker expression, and fluorescence activated cell sorting analyses and sphere formation assays to examine stem cell surface phenotype and function. Xenotransplantation animal models were used to evaluate gland or acini formation in vivo. RESULTS: Overexpression of CXCL12γ promotes the reprogramming of cells with a differentiated luminal phenotype to a nonluminal phenotype in both prostate (PNT2) and mammary (MCF10A) epithelial cells. The CXCL12γ-mediated nonluminal type cells results in an increase of epithelial stem-like phenotype including the subpopulation of EPCAMLo /CD49fHi /CD24Lo /CD44Hi cells capable of sphere formation. Critically, overexpression of CXCL12γ promotes the generation of robust gland-like structures from both prostate and mammary epithelial cells in in vivo xenograft animal models. CONCLUSIONS: CXCL12γ supports the reprogramming of epithelial cells into nonluminal cell-derived stem cells, which facilitates gland development.


Assuntos
Quimiocina CXCL12/biossíntese , Glândulas Mamárias Humanas/crescimento & desenvolvimento , Próstata/crescimento & desenvolvimento , Animais , Reprogramação Celular/fisiologia , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Feminino , Xenoenxertos , Humanos , Masculino , Glândulas Mamárias Humanas/citologia , Glândulas Mamárias Humanas/metabolismo , Camundongos , Próstata/citologia , Próstata/metabolismo , Isoformas de Proteínas
19.
Arterioscler Thromb Vasc Biol ; 40(9): 1990-2001, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32698683

RESUMO

Innate and adaptive immunity participate in and regulate numerous human diseases. Increasing evidence implies that metabolic reprogramming mediates immune cell functional changes during immune responses. In this review, we present and discuss our current understanding of metabolic regulation in different immune cells and their subsets in response to pathological stimuli. An interactive biochemical and molecular model was established to characterize metabolic reprogramming and their functional implication in anti-inflammatory, immune resolution, and proinflammatory responses. We summarize 2 major features of metabolic reprogramming in inflammatory stages in innate and adaptive immune cells: (1) energy production and biosynthesis reprogramming, including increased glycolysis and decreased oxidative phosphorylation, to secure faster ATP production and biosynthesis for defense response and damage repair and (2) epigenetic reprogramming, including enhanced histone acetylation and suppressed DNA methylation, due to altered accessibility of acetyl/methyl group donor and metabolite-modulated enzymatic activity. Finally, we discuss current strategies of metabolic and epigenetic therapy in cardiovascular disease and recommend cell-specific metabolic and gene-targeted site-specific epigenetic alterations for future therapies.


Assuntos
Imunidade Adaptativa , Reprogramação Celular , Metabolismo Energético , Sistema Imunitário/metabolismo , Imunidade Inata , Mediadores da Inflamação/metabolismo , Inflamação/metabolismo , Animais , Epigênese Genética , Humanos , Sistema Imunitário/imunologia , Inflamação/genética , Inflamação/imunologia , Transdução de Sinais
20.
Mol Genet Genomics ; 295(6): 1401-1414, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32661592

RESUMO

Plants respond to the environmental perturbations by triggering the dynamic changes within the transcriptome. The assessment of these oscillations within the transcriptome would offer insights into the ecological adaptation of the plants. We evaluated how the transcriptome of Taxus contorta swings under natural conditions to elucidate its adaptive response. Thus, our study provides new insights into the performance of T. contorta under a changing environment during different seasons. The abundance estimation using the RNAseq approach revealed 6727 differentially expressed genes. Comprehensive reprogramming was observed in Taxol biosynthesis, maintenance of redox homeostasis, and generation of effective shield to UV-B, high light intensity, and temperature. Besides differential expression, the alternative splicing (AS) and single nucleotide variations (SNVs) also confer flexibility to the transcriptome of T. contorta. 1936 differentially expressing transcripts were also found to exhibit Differential Exon Usage (DEU) as well as differential SNVs. LC-MS-based untargeted metabolic analysis revealed 7774 ion features, among which around 334 putatively identified metabolites were differentially regulated. Our results showed that the swing and the oscillations of the transcriptome and metabolome of T. contorta ensure adaptability and better survival under changing environment. In addition, varying patterns of AS and SNVs compliment the adaptation provided by differential expression.


Assuntos
Adaptação Fisiológica/genética , Reprogramação Celular , Proteínas de Plantas/metabolismo , Polimorfismo de Nucleotídeo Único , Taxus/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Taxus/classificação , Taxus/genética , Taxus/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA