Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 16.573
Filtrar
1.
Cells ; 10(6)2021 05 23.
Artigo em Inglês | MEDLINE | ID: covidwho-1243956

RESUMO

The recent SARS-CoV-2 pandemic has refocused attention to the betacoronaviruses, only eight years after the emergence of another zoonotic betacoronavirus, the Middle East respiratory syndrome coronavirus (MERS-CoV). While the wild source of SARS-CoV-2 may be disputed, for MERS-CoV, dromedaries are considered as source of zoonotic human infections. Testing 100 immune-response genes in 121 dromedaries from United Arab Emirates (UAE) for potential association with present MERS-CoV infection, we identified candidate genes with important functions in the adaptive, MHC-class I (HLA-A-24-like) and II (HLA-DPB1-like), and innate immune response (PTPN4, MAGOHB), and in cilia coating the respiratory tract (DNAH7). Some of these genes previously have been associated with viral replication in SARS-CoV-1/-2 in humans, others have an important role in the movement of bronchial cilia. These results suggest similar host genetic pathways associated with these betacoronaviruses, although further work is required to better understand the MERS-CoV disease dynamics in both dromedaries and humans.


Assuntos
Imunidade Adaptativa/genética , Camelus/virologia , Doenças Transmissíveis Emergentes/imunologia , Infecções por Coronavirus/imunologia , Imunidade Inata/genética , Zoonoses/imunologia , Animais , Anticorpos Antivirais , Brônquios/citologia , Brônquios/fisiologia , COVID-19/genética , COVID-19/imunologia , COVID-19/virologia , Camelus/genética , Camelus/imunologia , Cílios/fisiologia , Doenças Transmissíveis Emergentes/genética , Doenças Transmissíveis Emergentes/transmissão , Doenças Transmissíveis Emergentes/virologia , Infecções por Coronavirus/genética , Infecções por Coronavirus/transmissão , Infecções por Coronavirus/virologia , Reservatórios de Doenças/virologia , Feminino , Predisposição Genética para Doença , Interações entre Hospedeiro e Microrganismos/genética , Interações entre Hospedeiro e Microrganismos/imunologia , Humanos , Masculino , Coronavírus da Síndrome Respiratória do Oriente Médio/imunologia , Coronavírus da Síndrome Respiratória do Oriente Médio/isolamento & purificação , Coronavírus da Síndrome Respiratória do Oriente Médio/patogenicidade , Mucosa Respiratória/citologia , Mucosa Respiratória/fisiologia , SARS-CoV-2/imunologia , SARS-CoV-2/patogenicidade , Emirados Árabes Unidos , Replicação Viral/genética , Replicação Viral/imunologia , Zoonoses/genética , Zoonoses/transmissão , Zoonoses/virologia
2.
PLoS One ; 16(6): e0252534, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34133435

RESUMO

Many recent disease outbreaks in humans had a zoonotic virus etiology. Bats in particular have been recognized as reservoirs to a large variety of viruses with the potential to cross-species transmission. In order to assess the risk of bats in Switzerland for such transmissions, we determined the virome of tissue and fecal samples of 14 native and 4 migrating bat species. In total, sequences belonging to 39 different virus families, 16 of which are known to infect vertebrates, were detected. Contigs of coronaviruses, adenoviruses, hepeviruses, rotaviruses A and H, and parvoviruses with potential zoonotic risk were characterized in more detail. Most interestingly, in a ground stool sample of a Vespertilio murinus colony an almost complete genome of a Middle East respiratory syndrome-related coronavirus (MERS-CoV) was detected by Next generation sequencing and confirmed by PCR. In conclusion, bats in Switzerland naturally harbour many different viruses. Metagenomic analyses of non-invasive samples like ground stool may support effective surveillance and early detection of viral zoonoses.


Assuntos
Quirópteros/virologia , Fezes/virologia , Metagenômica/métodos , Viroma/genética , Vírus/genética , Zoonoses/virologia , Adenoviridae/classificação , Adenoviridae/genética , Animais , Quirópteros/classificação , Reservatórios de Doenças/virologia , Variação Genética , Genoma Viral/genética , Hepevirus/classificação , Hepevirus/genética , Humanos , Coronavírus da Síndrome Respiratória do Oriente Médio/classificação , Coronavírus da Síndrome Respiratória do Oriente Médio/genética , Filogenia , Rotavirus/classificação , Rotavirus/genética , Análise de Sequência de DNA/métodos , Suíça , Vírus/classificação
3.
Cells ; 10(6)2021 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-34070971

RESUMO

The recent SARS-CoV-2 pandemic has refocused attention to the betacoronaviruses, only eight years after the emergence of another zoonotic betacoronavirus, the Middle East respiratory syndrome coronavirus (MERS-CoV). While the wild source of SARS-CoV-2 may be disputed, for MERS-CoV, dromedaries are considered as source of zoonotic human infections. Testing 100 immune-response genes in 121 dromedaries from United Arab Emirates (UAE) for potential association with present MERS-CoV infection, we identified candidate genes with important functions in the adaptive, MHC-class I (HLA-A-24-like) and II (HLA-DPB1-like), and innate immune response (PTPN4, MAGOHB), and in cilia coating the respiratory tract (DNAH7). Some of these genes previously have been associated with viral replication in SARS-CoV-1/-2 in humans, others have an important role in the movement of bronchial cilia. These results suggest similar host genetic pathways associated with these betacoronaviruses, although further work is required to better understand the MERS-CoV disease dynamics in both dromedaries and humans.


Assuntos
Imunidade Adaptativa/genética , Camelus/virologia , Doenças Transmissíveis Emergentes/imunologia , Infecções por Coronavirus/imunologia , Imunidade Inata/genética , Zoonoses/imunologia , Animais , Anticorpos Antivirais , Brônquios/citologia , Brônquios/fisiologia , COVID-19/genética , COVID-19/imunologia , COVID-19/virologia , Camelus/genética , Camelus/imunologia , Cílios/fisiologia , Doenças Transmissíveis Emergentes/genética , Doenças Transmissíveis Emergentes/transmissão , Doenças Transmissíveis Emergentes/virologia , Infecções por Coronavirus/genética , Infecções por Coronavirus/transmissão , Infecções por Coronavirus/virologia , Reservatórios de Doenças/virologia , Feminino , Predisposição Genética para Doença , Interações entre Hospedeiro e Microrganismos/genética , Interações entre Hospedeiro e Microrganismos/imunologia , Humanos , Masculino , Coronavírus da Síndrome Respiratória do Oriente Médio/imunologia , Coronavírus da Síndrome Respiratória do Oriente Médio/isolamento & purificação , Coronavírus da Síndrome Respiratória do Oriente Médio/patogenicidade , Mucosa Respiratória/citologia , Mucosa Respiratória/fisiologia , SARS-CoV-2/imunologia , SARS-CoV-2/patogenicidade , Emirados Árabes Unidos , Replicação Viral/genética , Replicação Viral/imunologia , Zoonoses/genética , Zoonoses/transmissão , Zoonoses/virologia
4.
Nat Commun ; 12(1): 3954, 2021 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-34172731

RESUMO

Our knowledge of viral host ranges remains limited. Completing this picture by identifying unknown hosts of known viruses is an important research aim that can help identify and mitigate zoonotic and animal-disease risks, such as spill-over from animal reservoirs into human populations. To address this knowledge-gap we apply a divide-and-conquer approach which separates viral, mammalian and network features into three unique perspectives, each predicting associations independently to enhance predictive power. Our approach predicts over 20,000 unknown associations between known viruses and susceptible mammalian species, suggesting that current knowledge underestimates the number of associations in wild and semi-domesticated mammals by a factor of 4.3, and the average potential mammalian host-range of viruses by a factor of 3.2. In particular, our results highlight a significant knowledge gap in the wild reservoirs of important zoonotic and domesticated mammals' viruses: specifically, lyssaviruses, bornaviruses and rotaviruses.


Assuntos
Aprendizado de Máquina , Mamíferos/virologia , Fenômenos Fisiológicos Virais , Animais , Reservatórios de Doenças/virologia , Especificidade de Hospedeiro , Humanos , Mamíferos/classificação , Mamíferos/fisiologia , Reprodutibilidade dos Testes , Viroses/transmissão , Viroses/virologia , Vírus/classificação , Zoonoses/transmissão , Zoonoses/virologia
5.
Infez Med ; 29(2): 181-190, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-34061782

RESUMO

In recent years, and now especially with the arrival of the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), there has been increased interest in understanding the role of bats in the dynamics of transmission and origin of this pandemic agent. To date, no systematic reviews have been published on this topic. This systematic review aimed to summarize and highlight the frequency of bat infections reported in currently available observational studies for coronavirus. The purpose of this study was also to examine the differences between the pool prevalence by technique and country. We performed a systematic literature review with meta-analysis, using three databases to assess coronavirus (CoV) infection in bats and its diagnosis by serological and molecular tests. We carried out random-effects model meta-analysis to calculate the pooled prevalence and 95% confidence interval (95% CI). In all, 824 articles were retrieved (1960-2021). After screening by abstract/title, 43 articles were selected for full-text assessment. Of these, 33 were finally included for qualitative and quantitative analyses. From the total of studies, the pool prevalence by RT-PCR (n=14,295 bats) for CoV was 9.8% (95% CI 8.7-10.9%); Italy reported the highest pooled prevalence (44.9%, 95% CI 31.6-58.1%), followed by the Philippines (29.6%). Regarding the ELISA, the pool prevalence for coronavirus from 15 studies, including 359 bats, was 30.2% (95% CI 14.7-45.6%). The results for coronaviruses with the MIF were significantly lower, 2.6% (95% CI 1.5-3.7%). A considerable proportion of infected bats tested positive, particularly by molecular tests. This essential condition highlights the relevance of bats and the need for future studies to detail their role as potential reservoirs of SARS-CoV-2. In this meta-analysis, bats were positive in almost 10% by RT-PCR, suggesting their relevance and the need to understand their potential participation in maintaining wild zoonotic transmission.


Assuntos
COVID-19/veterinária , Quirópteros/virologia , Reservatórios de Doenças/virologia , SARS-CoV-2 , Animais , Viés , COVID-19/epidemiologia , COVID-19/virologia , Intervalos de Confiança , Estudos Observacionais como Assunto , Prevalência , Estudos Soroepidemiológicos
6.
PLoS Pathog ; 17(5): e1009585, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-34010360

RESUMO

Coronavirus disease-19 (COVID-19) emerged in late 2019 in China and rapidly became pandemic. As with other coronaviruses, a preponderance of evidence suggests the virus originated in horseshoe bats (Rhinolophus spp.) and may have infected an intermediate host prior to spillover into humans. A significant concern is that SARS-CoV-2 could become established in secondary reservoir hosts outside of Asia. To assess this potential, we challenged deer mice (Peromyscus maniculatus) with SARS-CoV-2 and found robust virus replication in the upper respiratory tract, lungs and intestines, with detectable viral RNA for up to 21 days in oral swabs and 6 days in lungs. Virus entry into the brain also occurred, likely via gustatory-olfactory-trigeminal pathway with eventual compromise to the blood-brain barrier. Despite this, no conspicuous signs of disease were observed, and no deer mice succumbed to infection. Expression of several innate immune response genes were elevated in the lungs, including IFNα, IFNß, Cxcl10, Oas2, Tbk1 and Pycard. Elevated CD4 and CD8ß expression in the lungs was concomitant with Tbx21, IFNγ and IL-21 expression, suggesting a type I inflammatory immune response. Contact transmission occurred from infected to naive deer mice through two passages, showing sustained natural transmission and localization into the olfactory bulb, recapitulating human neuropathology. In the second deer mouse passage, an insertion of 4 amino acids occurred to fixation in the N-terminal domain of the spike protein that is predicted to form a solvent-accessible loop. Subsequent examination of the source virus from BEI Resources determined the mutation was present at very low levels, demonstrating potent purifying selection for the insert during in vivo passage. Collectively, this work has determined that deer mice are a suitable animal model for the study of SARS-CoV-2 respiratory disease and neuropathogenesis, and that they have the potential to serve as secondary reservoir hosts in North America.


Assuntos
COVID-19/fisiopatologia , COVID-19/transmissão , Peromyscus/virologia , Doenças dos Roedores/transmissão , Animais , Encéfalo/patologia , Encéfalo/virologia , COVID-19/patologia , Modelos Animais de Doenças , Reservatórios de Doenças , Suscetibilidade a Doenças , Feminino , Masculino , Doenças dos Roedores/patologia , Doenças dos Roedores/virologia , Glicoproteína da Espícula de Coronavírus/genética , Replicação Viral
7.
PLoS Pathog ; 17(5): e1009585, 2021 05.
Artigo em Inglês | MEDLINE | ID: covidwho-1234597

RESUMO

Coronavirus disease-19 (COVID-19) emerged in late 2019 in China and rapidly became pandemic. As with other coronaviruses, a preponderance of evidence suggests the virus originated in horseshoe bats (Rhinolophus spp.) and may have infected an intermediate host prior to spillover into humans. A significant concern is that SARS-CoV-2 could become established in secondary reservoir hosts outside of Asia. To assess this potential, we challenged deer mice (Peromyscus maniculatus) with SARS-CoV-2 and found robust virus replication in the upper respiratory tract, lungs and intestines, with detectable viral RNA for up to 21 days in oral swabs and 6 days in lungs. Virus entry into the brain also occurred, likely via gustatory-olfactory-trigeminal pathway with eventual compromise to the blood-brain barrier. Despite this, no conspicuous signs of disease were observed, and no deer mice succumbed to infection. Expression of several innate immune response genes were elevated in the lungs, including IFNα, IFNß, Cxcl10, Oas2, Tbk1 and Pycard. Elevated CD4 and CD8ß expression in the lungs was concomitant with Tbx21, IFNγ and IL-21 expression, suggesting a type I inflammatory immune response. Contact transmission occurred from infected to naive deer mice through two passages, showing sustained natural transmission and localization into the olfactory bulb, recapitulating human neuropathology. In the second deer mouse passage, an insertion of 4 amino acids occurred to fixation in the N-terminal domain of the spike protein that is predicted to form a solvent-accessible loop. Subsequent examination of the source virus from BEI Resources determined the mutation was present at very low levels, demonstrating potent purifying selection for the insert during in vivo passage. Collectively, this work has determined that deer mice are a suitable animal model for the study of SARS-CoV-2 respiratory disease and neuropathogenesis, and that they have the potential to serve as secondary reservoir hosts in North America.


Assuntos
COVID-19/fisiopatologia , COVID-19/transmissão , Peromyscus/virologia , Doenças dos Roedores/transmissão , Animais , Encéfalo/patologia , Encéfalo/virologia , COVID-19/patologia , Modelos Animais de Doenças , Reservatórios de Doenças , Suscetibilidade a Doenças , Feminino , Masculino , Doenças dos Roedores/patologia , Doenças dos Roedores/virologia , Glicoproteína da Espícula de Coronavírus/genética , Replicação Viral
8.
Vopr Virusol ; 66(2): 112-122, 2021 05 15.
Artigo em Russo | MEDLINE | ID: covidwho-1229650

RESUMO

Emerging and reemerging infections pose a grave global health threat. The emergence of the SARS-CoV-2 virus and the resulting COVID-19 pandemic have demonstrated the importance of studying of zoonotic viruses directly in natural foci. For SARS-like coronaviruses, as well as for many other zoonotic pathogens (including hemorrhagic fevers and rabies agents), the main reservoir are horseshoe bats (Rhinolophus spp.), which are widely distributed in Eurasia and Africa. Their range also covers the southern regions of Russia, including the North Caucasus and Crimea. Large colonies of these animals are located on the territory of Sochi National Park (SNP; subtropical zone of Krasnodar Territory, Greater Sochi region, North Caucasus). In total, according to long-term observations, up to 23 species of bats were registered here, including the great (Rh. ferrumequinum), the lesser (Rh. hipposideros), and the Mediterranean (Rh. euryale) horseshoe bats.This review provides information on zoonotic viruses associated with species of bats distributed in the subtropical zone of Krasnodar Territory of Russia, and analyzes their possible role as a natural reservoir of emerging and reemerging infections. Studying the circulation of zoonotic viruses in bats is an important element of monitoring viral populations in natural foci.


Assuntos
Quirópteros/virologia , Reservatórios de Doenças , Pandemias , SARS-CoV-2 , Zoonoses Virais , Animais , COVID-19/epidemiologia , COVID-19/transmissão , Humanos , Zoonoses Virais/epidemiologia , Zoonoses Virais/transmissão
9.
PLoS Pathog ; 17(5): e1009229, 2021 05.
Artigo em Inglês | MEDLINE | ID: covidwho-1239922

RESUMO

While MERS-CoV (Middle East respiratory syndrome Coronavirus) provokes a lethal disease in humans, camelids, the main virus reservoir, are asymptomatic carriers, suggesting a crucial role for innate immune responses in controlling the infection. Experimentally infected camelids clear infectious virus within one week and mount an effective adaptive immune response. Here, transcription of immune response genes was monitored in the respiratory tract of MERS-CoV infected alpacas. Concomitant to the peak of infection, occurring at 2 days post inoculation (dpi), type I and III interferons (IFNs) were maximally transcribed only in the nasal mucosa of alpacas, while interferon stimulated genes (ISGs) were induced along the whole respiratory tract. Simultaneous to mild focal infiltration of leukocytes in nasal mucosa and submucosa, upregulation of the anti-inflammatory cytokine IL10 and dampened transcription of pro-inflammatory genes under NF-κB control were observed. In the lung, early (1 dpi) transcription of chemokines (CCL2 and CCL3) correlated with a transient accumulation of mainly mononuclear leukocytes. A tight regulation of IFNs in lungs with expression of ISGs and controlled inflammatory responses, might contribute to virus clearance without causing tissue damage. Thus, the nasal mucosa, the main target of MERS-CoV in camelids, seems central in driving an efficient innate immune response based on triggering ISGs as well as the dual anti-inflammatory effects of type III IFNs and IL10.


Assuntos
Camelídeos Americanos , Infecções por Coronavirus/imunologia , Interferon Tipo I/metabolismo , Interferons/metabolismo , Coronavírus da Síndrome Respiratória do Oriente Médio/imunologia , Animais , Antivirais/metabolismo , Antivirais/farmacologia , Camelídeos Americanos/imunologia , Camelídeos Americanos/metabolismo , Camelídeos Americanos/virologia , Chlorocebus aethiops , Infecções por Coronavirus/metabolismo , Infecções por Coronavirus/prevenção & controle , Infecções por Coronavirus/veterinária , Reservatórios de Doenças/veterinária , Resistência à Doença/efeitos dos fármacos , Resistência à Doença/genética , Resistência à Doença/imunologia , Regulação da Expressão Gênica , Imunidade Inata/fisiologia , Inflamação/imunologia , Inflamação/metabolismo , Inflamação/veterinária , Inflamação/virologia , Interferon Tipo I/genética , Interferon Tipo I/farmacologia , Interferons/genética , Interferons/farmacologia , Coronavírus da Síndrome Respiratória do Oriente Médio/efeitos dos fármacos , Coronavírus da Síndrome Respiratória do Oriente Médio/fisiologia , Mucosa Nasal/efeitos dos fármacos , Mucosa Nasal/imunologia , Mucosa Nasal/metabolismo , Mucosa Nasal/virologia , Sistema Respiratório/efeitos dos fármacos , Sistema Respiratório/imunologia , Sistema Respiratório/metabolismo , Sistema Respiratório/virologia , Células Vero , Carga Viral/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos
10.
Vopr Virusol ; 66(2): 112-122, 2021 05 15.
Artigo em Russo | MEDLINE | ID: mdl-33993681

RESUMO

Emerging and reemerging infections pose a grave global health threat. The emergence of the SARS-CoV-2 virus and the resulting COVID-19 pandemic have demonstrated the importance of studying of zoonotic viruses directly in natural foci. For SARS-like coronaviruses, as well as for many other zoonotic pathogens (including hemorrhagic fevers and rabies agents), the main reservoir are horseshoe bats (Rhinolophus spp.), which are widely distributed in Eurasia and Africa. Their range also covers the southern regions of Russia, including the North Caucasus and Crimea. Large colonies of these animals are located on the territory of Sochi National Park (SNP; subtropical zone of Krasnodar Territory, Greater Sochi region, North Caucasus). In total, according to long-term observations, up to 23 species of bats were registered here, including the great (Rh. ferrumequinum), the lesser (Rh. hipposideros), and the Mediterranean (Rh. euryale) horseshoe bats.This review provides information on zoonotic viruses associated with species of bats distributed in the subtropical zone of Krasnodar Territory of Russia, and analyzes their possible role as a natural reservoir of emerging and reemerging infections. Studying the circulation of zoonotic viruses in bats is an important element of monitoring viral populations in natural foci.


Assuntos
Quirópteros/virologia , Reservatórios de Doenças , Pandemias , SARS-CoV-2 , Zoonoses Virais , Animais , COVID-19/epidemiologia , COVID-19/transmissão , Humanos , Zoonoses Virais/epidemiologia , Zoonoses Virais/transmissão
11.
PLoS Pathog ; 17(5): e1009229, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-34029358

RESUMO

While MERS-CoV (Middle East respiratory syndrome Coronavirus) provokes a lethal disease in humans, camelids, the main virus reservoir, are asymptomatic carriers, suggesting a crucial role for innate immune responses in controlling the infection. Experimentally infected camelids clear infectious virus within one week and mount an effective adaptive immune response. Here, transcription of immune response genes was monitored in the respiratory tract of MERS-CoV infected alpacas. Concomitant to the peak of infection, occurring at 2 days post inoculation (dpi), type I and III interferons (IFNs) were maximally transcribed only in the nasal mucosa of alpacas, while interferon stimulated genes (ISGs) were induced along the whole respiratory tract. Simultaneous to mild focal infiltration of leukocytes in nasal mucosa and submucosa, upregulation of the anti-inflammatory cytokine IL10 and dampened transcription of pro-inflammatory genes under NF-κB control were observed. In the lung, early (1 dpi) transcription of chemokines (CCL2 and CCL3) correlated with a transient accumulation of mainly mononuclear leukocytes. A tight regulation of IFNs in lungs with expression of ISGs and controlled inflammatory responses, might contribute to virus clearance without causing tissue damage. Thus, the nasal mucosa, the main target of MERS-CoV in camelids, seems central in driving an efficient innate immune response based on triggering ISGs as well as the dual anti-inflammatory effects of type III IFNs and IL10.


Assuntos
Camelídeos Americanos , Infecções por Coronavirus/imunologia , Interferon Tipo I/metabolismo , Interferons/metabolismo , Coronavírus da Síndrome Respiratória do Oriente Médio/imunologia , Animais , Antivirais/metabolismo , Antivirais/farmacologia , Camelídeos Americanos/imunologia , Camelídeos Americanos/metabolismo , Camelídeos Americanos/virologia , Chlorocebus aethiops , Infecções por Coronavirus/metabolismo , Infecções por Coronavirus/prevenção & controle , Infecções por Coronavirus/veterinária , Reservatórios de Doenças/veterinária , Resistência à Doença/efeitos dos fármacos , Resistência à Doença/genética , Resistência à Doença/imunologia , Regulação da Expressão Gênica , Imunidade Inata/fisiologia , Inflamação/imunologia , Inflamação/metabolismo , Inflamação/veterinária , Inflamação/virologia , Interferon Tipo I/genética , Interferon Tipo I/farmacologia , Interferons/genética , Interferons/farmacologia , Coronavírus da Síndrome Respiratória do Oriente Médio/efeitos dos fármacos , Coronavírus da Síndrome Respiratória do Oriente Médio/fisiologia , Mucosa Nasal/efeitos dos fármacos , Mucosa Nasal/imunologia , Mucosa Nasal/metabolismo , Mucosa Nasal/virologia , Sistema Respiratório/efeitos dos fármacos , Sistema Respiratório/imunologia , Sistema Respiratório/metabolismo , Sistema Respiratório/virologia , Células Vero , Carga Viral/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos
12.
Viruses ; 13(4)2021 04 01.
Artigo em Inglês | MEDLINE | ID: covidwho-1162341

RESUMO

Coronavirus (CoV) spillover events from wildlife reservoirs can result in mild to severe human respiratory illness. These spillover events underlie the importance of detecting known and novel CoVs circulating in reservoir host species and determining CoV prevalence and distribution, allowing improved prediction of spillover events or where a human-reservoir interface should be closely monitored. To increase the likelihood of detecting all circulating genera and strains, we have modified primers published by Watanabe et al. in 2010 to generate a semi-nested pan-CoV PCR assay. Representatives from the four coronavirus genera (α-CoVs, ß-CoVs, γ-CoVs and δ-CoVs) were tested and all of the in-house CoVs were detected using this assay. After comparing both assays, we found that the updated assay reliably detected viruses in all genera of CoVs with high sensitivity, whereas the sensitivity of the original assay was lower. Our updated PCR assay is an important tool to detect, monitor and track CoVs to enhance viral surveillance in reservoir hosts.


Assuntos
Coronavirus/classificação , Coronavirus/genética , Coronavirus/isolamento & purificação , Reação em Cadeia da Polimerase/métodos , Animais , Animais Selvagens , Técnicas de Laboratório Clínico/métodos , Infecções por Coronavirus/virologia , Reservatórios de Doenças/virologia , Genoma Viral , Especificidade de Hospedeiro , Humanos , Limite de Detecção , Pandemias , Filogenia , RNA Viral
13.
Viruses ; 13(3)2021 03 17.
Artigo em Inglês | MEDLINE | ID: covidwho-1167754

RESUMO

The recent SARS-CoV-2 pandemic has brought many questions over the origin of the virus, the threat it poses to animals both in the wild and captivity, and the risks of a permanent viral reservoir developing in animals. Animal experiments have shown that a variety of animals can become infected with the virus. While coronaviruses have been known to infect animals for decades, the true intermediate host of the virus has not been identified, with no cases of SARS-CoV-2 in wild animals. The screening of wild, farmed, and domesticated animals is necessary to help us understand the virus and its origins and prevent future outbreaks of both COVID-19 and other diseases. There is intriguing evidence that farmed mink infections (acquired from humans) have led to infection of other farm workers in turn, with a recent outbreak of a mink variant in humans in Denmark. A thorough examination of the current knowledge and evidence of the ability of SARS-CoV-2 to infect different animal species is therefore vital to evaluate the threat of animal to human transmission and reverse zoonosis.


Assuntos
COVID-19/transmissão , COVID-19/veterinária , Reservatórios de Doenças/virologia , SARS-CoV-2/fisiologia , Zoonoses/virologia , Animais , Animais Selvagens/virologia , COVID-19/epidemiologia , COVID-19/virologia , Humanos , SARS-CoV-2/genética , SARS-CoV-2/isolamento & purificação , Zoonoses/epidemiologia , Zoonoses/transmissão
15.
Trends Microbiol ; 29(7): 593-605, 2021 07.
Artigo em Inglês | MEDLINE | ID: covidwho-1157752

RESUMO

Ecological and evolutionary processes govern the fitness, propagation, and interactions of organisms through space and time, and viruses are no exception. While coronavirus disease 2019 (COVID-19) research has primarily emphasized virological, clinical, and epidemiological perspectives, crucial aspects of the pandemic are fundamentally ecological or evolutionary. Here, we highlight five conceptual domains of ecology and evolution - invasion, consumer-resource interactions, spatial ecology, diversity, and adaptation - that illuminate (sometimes unexpectedly) the emergence and spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We describe the applications of these concepts across levels of biological organization and spatial scales, including within individual hosts, host populations, and multispecies communities. Together, these perspectives illustrate the integrative power of ecological and evolutionary ideas and highlight the benefits of interdisciplinary thinking for understanding emerging viruses.


Assuntos
COVID-19/virologia , Reservatórios de Doenças/veterinária , Ecologia , Evolução Molecular , SARS-CoV-2/genética , Animais , COVID-19/epidemiologia , Quirópteros/virologia , Reservatórios de Doenças/virologia , Humanos , Zoonoses/virologia
16.
Vet Q ; 41(1): 181-201, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: covidwho-1202174

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2, previously 2019-nCoV) is suspected of having originated in 2019 in China from a coronavirus infected bat of the genus Rhinolophus. Following the initial emergence, possibly facilitated by a mammalian bridge host, SARS-CoV-2 is currently transmitted across the globe via efficient human-to-human transmission. Results obtained from experimental studies indicate that animal species such as cats, ferrets, raccoon dogs, cynomolgus macaques, rhesus macaques, white-tailed deer, rabbits, Egyptian fruit bats, and Syrian hamsters are susceptible to SARS-CoV-2 infection, and that cat-to-cat and ferret-to-ferret transmission can take place via contact and air. However, natural infections of SARS-CoV-2 have been reported only in pet dogs and cats, tigers, lions, snow leopards, pumas, and gorillas at zoos, and farmed mink and ferrets. Even though human-to-animal spillover has been reported at several instances, SARS-CoV-2 transmission from animals-to-humans has only been reported from mink-to-humans in mink farms. Following the rapid transmission of SARS-CoV-2 within the mink population, a new mink-associated SARS-CoV-2 variant emerged that was identified in both humans and mink. The increasing reports of SARS-CoV-2 in carnivores indicate the higher susceptibility of animal species belonging to this order. The sporadic reports of SARS-CoV-2 infection in domestic and wild animal species require further investigation to determine if SARS-CoV-2 or related Betacoronaviruses can get established in kept, feral or wild animal populations, which may eventually act as viral reservoirs. This review analyzes the current evidence of SARS-CoV-2 natural infection in domestic and wild animal species and their possible implications on public health.


Assuntos
Animais Domésticos , Animais Selvagens , COVID-19/veterinária , Reservatórios de Doenças/veterinária , Saúde Pública , SARS-CoV-2 , Animais , Animais de Zoológico , COVID-19/epidemiologia , COVID-19/transmissão , Humanos
17.
Viruses ; 13(4)2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33915875

RESUMO

Coronavirus (CoV) spillover events from wildlife reservoirs can result in mild to severe human respiratory illness. These spillover events underlie the importance of detecting known and novel CoVs circulating in reservoir host species and determining CoV prevalence and distribution, allowing improved prediction of spillover events or where a human-reservoir interface should be closely monitored. To increase the likelihood of detecting all circulating genera and strains, we have modified primers published by Watanabe et al. in 2010 to generate a semi-nested pan-CoV PCR assay. Representatives from the four coronavirus genera (α-CoVs, ß-CoVs, γ-CoVs and δ-CoVs) were tested and all of the in-house CoVs were detected using this assay. After comparing both assays, we found that the updated assay reliably detected viruses in all genera of CoVs with high sensitivity, whereas the sensitivity of the original assay was lower. Our updated PCR assay is an important tool to detect, monitor and track CoVs to enhance viral surveillance in reservoir hosts.


Assuntos
Coronavirus/classificação , Coronavirus/genética , Coronavirus/isolamento & purificação , Reação em Cadeia da Polimerase/métodos , Animais , Animais Selvagens , Técnicas de Laboratório Clínico/métodos , Infecções por Coronavirus/virologia , Reservatórios de Doenças/virologia , Genoma Viral , Especificidade de Hospedeiro , Humanos , Limite de Detecção , Pandemias , Filogenia , RNA Viral
18.
Trends Microbiol ; 29(7): 593-605, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33893024

RESUMO

Ecological and evolutionary processes govern the fitness, propagation, and interactions of organisms through space and time, and viruses are no exception. While coronavirus disease 2019 (COVID-19) research has primarily emphasized virological, clinical, and epidemiological perspectives, crucial aspects of the pandemic are fundamentally ecological or evolutionary. Here, we highlight five conceptual domains of ecology and evolution - invasion, consumer-resource interactions, spatial ecology, diversity, and adaptation - that illuminate (sometimes unexpectedly) the emergence and spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We describe the applications of these concepts across levels of biological organization and spatial scales, including within individual hosts, host populations, and multispecies communities. Together, these perspectives illustrate the integrative power of ecological and evolutionary ideas and highlight the benefits of interdisciplinary thinking for understanding emerging viruses.


Assuntos
COVID-19/virologia , Reservatórios de Doenças/veterinária , Ecologia , Evolução Molecular , SARS-CoV-2/genética , Animais , COVID-19/epidemiologia , Quirópteros/virologia , Reservatórios de Doenças/virologia , Humanos , Zoonoses/virologia
19.
Vet Q ; 41(1): 181-201, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33892621

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2, previously 2019-nCoV) is suspected of having originated in 2019 in China from a coronavirus infected bat of the genus Rhinolophus. Following the initial emergence, possibly facilitated by a mammalian bridge host, SARS-CoV-2 is currently transmitted across the globe via efficient human-to-human transmission. Results obtained from experimental studies indicate that animal species such as cats, ferrets, raccoon dogs, cynomolgus macaques, rhesus macaques, white-tailed deer, rabbits, Egyptian fruit bats, and Syrian hamsters are susceptible to SARS-CoV-2 infection, and that cat-to-cat and ferret-to-ferret transmission can take place via contact and air. However, natural infections of SARS-CoV-2 have been reported only in pet dogs and cats, tigers, lions, snow leopards, pumas, and gorillas at zoos, and farmed mink and ferrets. Even though human-to-animal spillover has been reported at several instances, SARS-CoV-2 transmission from animals-to-humans has only been reported from mink-to-humans in mink farms. Following the rapid transmission of SARS-CoV-2 within the mink population, a new mink-associated SARS-CoV-2 variant emerged that was identified in both humans and mink. The increasing reports of SARS-CoV-2 in carnivores indicate the higher susceptibility of animal species belonging to this order. The sporadic reports of SARS-CoV-2 infection in domestic and wild animal species require further investigation to determine if SARS-CoV-2 or related Betacoronaviruses can get established in kept, feral or wild animal populations, which may eventually act as viral reservoirs. This review analyzes the current evidence of SARS-CoV-2 natural infection in domestic and wild animal species and their possible implications on public health.


Assuntos
Animais Domésticos , Animais Selvagens , COVID-19/veterinária , Reservatórios de Doenças/veterinária , Saúde Pública , SARS-CoV-2 , Animais , Animais de Zoológico , COVID-19/epidemiologia , COVID-19/transmissão , Humanos
20.
J Theor Biol ; 524: 110726, 2021 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-33895180

RESUMO

The life cycle of parasitic organisms that are the cause of much morbidity in humans often depend on reservoirs of infection for transmission into their hosts. Understanding the daily, monthly and yearly movement patterns of individuals between reservoirs is therefore of great importance to implementers of control policies seeking to eliminate various parasitic diseases as a public health problem. This is due to the fact that the underlying spatial extent of the reservoir of infection, which drives transmission, can be strongly affected by inputs from external sources, i.e., individuals who are not spatially attributed to the region defined by the reservoir itself can still migrate and contribute to it. In order to study the importance of these effects, we build and examine a novel theoretical model of human movement between spatially-distributed focal points for infection clustered into regions defined as 'reservoirs of infection'. Using our model, we vary the spatial scale of human moment defined around focal points and explicitly calculate how varying this definition can influence the temporal stability of the effective transmission dynamics - an effect which should strongly influence how control measures, e.g., mass drug administration (MDA), define evaluation units (EUs). Considering the helminth parasites as our main example, by varying the spatial scale of human movement, we demonstrate that a critical scale exists around infectious focal points at which the migration rate into their associated reservoir can be neglected for practical purposes. This scale varies by species and geographic region, but is generalisable as a concept to infectious reservoirs of varying spatial extents and shapes. Our model is designed to be applicable to a very general pattern of infectious disease transmission modified by the migration of infected individuals between clustered communities. In particular, it may be readily used to study the spatial structure of hosts for macroparasites with temporally stationary distributions of infectious focal point locations over the timescales of interest, which is viable for the soil-transmitted helminths and schistosomes. Additional developments will be necessary to consider diseases with moving reservoirs, such as vector-born filarial worm diseases.


Assuntos
Helmintos , Animais , Reservatórios de Doenças , Vetores de Doenças , Humanos , Administração Massiva de Medicamentos , Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...