Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.148
Filtrar
1.
Vet Clin North Am Food Anim Pract ; 35(3): 405-429, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31590895

RESUMO

Infectious diseases are the outcome of complex interactions between the host, pathogen, and environment. After exposure to a pathogen, the host immune system uses various mechanisms to remove the pathogen. However, environmental factors and characteristics of pathogens can compromise the host immune responses and subsequently alter the outcome of infection. In this article, genetic and epigenetic factors that shape the individual variation in mounting protective responses are reviewed. Different approaches that have been used by researchers to investigate the genetic regulation of immunity in ruminants and various sources of genetic information are discussed.


Assuntos
Infecção/veterinária , Ruminantes/genética , Ruminantes/imunologia , Animais , Animais Domésticos , Bovinos , Doenças dos Bovinos/genética , Doenças dos Bovinos/imunologia , Resistência à Doença , Epigênese Genética , Infecção/genética , Infecção/imunologia
2.
Phytopathology ; 109(10): 1732-1740, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31479403

RESUMO

Plant polygalacturonase-inhibiting protein (PGIP) is a structural protein that can specifically recognize and bind to fungal polygalacturonase (PG). PGIP plays an important role in plant antifungal activity. In this study, a maize PGIP gene, namely ZmPGIP3, was cloned and characterized. Agarose diffusion assay suggested that ZmPGIP3 could inhibit the activity of PG. ZmPGIP3 expression was significantly induced by wounding, Rhizoctonia solani infection, jasmonate, and salicylic acid. ZmPGIP3 might be related to disease resistance. The gene encoding ZmPGIP3 was posed under the control of the ubiquitin promoter and constitutively expressed in transgenic rice. In an R. solani infection assay, ZmPGIP3 transgenic rice was more resistant to sheath blight than the wild-type rice regardless of the inoculated plant part (leaves or sheaths). Digital gene expression analysis indicated that the expression of some rice PGIP genes significantly increased in ZmPGIP3 transgenic rice, suggesting that ZmPGIP3 might activate the expression of some rice PGIP genes to resist sheath blight. Our investigation of the agronomic traits of ZmPGIP3 transgenic rice showed that ZmPGIP3 overexpression in rice did not show any detrimental phenotypic or agronomic effect. ZmPGIP3 is a promising candidate gene in the transgenic breeding for sheath blight resistance and crop improvement.


Assuntos
Resistência à Doença/genética , Oryza , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Rhizoctonia , Regulação da Expressão Gênica de Plantas , Oryza/microbiologia , Plantas Geneticamente Modificadas/microbiologia , Rhizoctonia/fisiologia
3.
Plant Dis ; 103(11): 2884-2892, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31486740

RESUMO

Sclerotinia sclerotiorum and Leptosphaeria maculans are two of the most important pathogens of many cruciferous crops. The reaction of 30 genotypes of Camelina sativa (false flax) was determined against both pathogens. C. sativa genotypes were inoculated at seedling and adult stages with two pathotypes of S. sclerotiorum, highly virulent MBRS-1 and less virulent WW-1. There were significant differences (P < 0.001) among genotypes, between pathotypes, and a significant interaction between genotypes and pathotypes in relation to percent cotyledon disease index (% CDI) and stem lesion length. Genotypes 370 (% CDI 20.5, stem lesion length 1.8 cm) and 253 (% CDI 24.8, stem lesion length 1.4 cm) not only consistently exhibited cotyledon and stem resistance, in contrast to susceptible genotype 2305 (% CDI 37.7, stem lesion length 7.2 cm), but their resistance was independent to S. sclerotiorum pathotype. A F5-recombinant inbred line population was developed from genotypes 370 × 2305 and responses characterized. Low broad-sense heritability indicated a complex pattern of inheritance of resistance to S. sclerotiorum. Six isolates of L. maculans, covering combinations of five different avirulent loci (i.e., five different races), were tested on C. sativa cotyledons across two experiments. There was a high level of resistance, with % CDI < 17, and including development of a hypersensitive reaction. This is the first report of variable reaction of C. sativa to different races of L. maculans and the first demonstrating comparative reactions of C. sativa to S. sclerotiorum and L. maculans. This study not only provides new understanding of these comparative resistances in C. sativa, but highlights their potential as new sources of resistance, both for crucifer disease-resistance breeding in general and to enable broader adoption of C. sativa as a more sustainable oilseed crop in its own right.


Assuntos
Ascomicetos , Brassicaceae , Resistência à Doença , Ascomicetos/fisiologia , Brassicaceae/genética , Brassicaceae/microbiologia , Resistência à Doença/genética , Genótipo , Melhoramento Vegetal
4.
Plant Dis ; 103(11): 2742-2750, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31509495

RESUMO

Stripe rust, also known as yellow rust, is a significant threat to wheat yield worldwide. Adult plant resistance (APR) is the preferred way to obtain durable protection. Chinese winter wheat cultivar Xinong1376 has maintained acceptable APR to stripe rust in field environments. To characterize APR in this cultivar, 190 F10 recombinant inbred lines (RILs) developed from Xiaoyan81 × Xinong1376 were evaluated for infection type and disease severity in fields either artificially or naturally inoculated. The population along with parents were genotyped using the Illumina 90K single-nucleotide polymorphism arrays. Six quantitative trait loci (QTL) were detected using the inclusive composite interval mapping method. QYr.nwafu-4AL and QYr.nwafu-6BL.3 conferred stable resistance in all environments, and likely corresponded to a gene-rich region on the long arm of chromosomes 4A and 6B. QYr.nwafu-5AL, QYr.nwafu-5BL, QYr.nwafu-3BL.1, and QYr.nwafu-3BL.2 were detected only in some environments but enhanced the level of resistance conferred by QYr.nwafu-4AL and QYr.nwafu-6BL.3. Kompetitive allele-specific PCR (KASP) markers developed for QYr.nwafu-4AL and QYr.nwafu-6BL.3 were confirmed in a subset of RILs and 133 wheat genotypes. The QTL on 4AL and 6BL with their linked KASP markers would be useful for marker-assisted selection to improve stripe rust resistance in breeding programs.


Assuntos
Resistência à Doença , Ligação Genética , Triticum , Resistência à Doença/genética , Genótipo , Fenótipo , Doenças das Plantas/genética , Triticum/classificação , Triticum/genética , Triticum/microbiologia
5.
Plant Dis ; 103(11): 2759-2763, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31509496

RESUMO

Rice blast caused by the fungus Magnaporthe oryzae is one of the most destructive diseases of rice. Its control through the deployment of host resistance genes would be facilitated by understanding the pathogen's race structure. Here, dynamics of race structures in this decade in Heilongjiang province were characterized by Chinese differential cultivars. Two patterns of dynamics of the race structures emerged: both race diversity and population-specific races increased gradually between 2006 and 2011, but they increased much more sharply between 2011 and 2015, with concomitant falls in both the population-common races and dominant races. Four races (ZD1, ZD3, ZD5, and ZE1) were among the top three dominant races over the whole period, indicating that the core of the race structure remained stable through this decade. On the host side, the composition of resistance in the cultivar differential set could be divided in two: the three indica-type entries of the differential set expressed a higher level of resistance to the population of M. oryzae isolates tested than did the four japonica-type entries. The cultivars Tetep and Zhenlong 13 as well as two additional resistance genes α and ε were confirmed as the most promising donors of blast resistance for the local rice improvement programs.[Formula: see text]Copyright © 2019 The Author(s). This is an open-access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Magnaporthe , Oryza , China , Resistência à Doença/genética , Variação Genética , Magnaporthe/classificação , Magnaporthe/genética , Oryza/genética , Oryza/microbiologia
6.
Plant Dis ; 103(11): 2798-2803, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31524094

RESUMO

Barley yellow dwarf (BYD) is a major virus disease which dramatically reduces wheat yield. Introducing BYD resistance genes into commercial varieties has been proven to be effective in reducing damage caused by barley yellow dwarf virus (BYDV). However, only one major resistance gene is readily deployable for breeding; Bdv2 derived from Thinopyrum intermedium is deployed as a chromosomal translocation. In this study, a double haploid (DH) population was developed from a cross between XuBYDV (introduced from China showing very good resistance to BYD) and H-120 (a BYD-sensitive Chinese accession), and was used to identify QTL for BYD resistance. The population was genotyped using an Infinium iSelect bead chip array targeting 90K gene-based SNPs. The disease resistance of DH lines inoculated with BYDV was assessed at the heading stage. The infections were assessed by tissue blot immunoassay (TBIA). Three new QTL were identified on chromosomes 5A, 6A, and 7A for both symptom and TBIA, with all three resistance alleles being inherited from XuBYDV. Some DH lines with the resistance alleles from all three QTL showed high level resistance to BYD. These new QTL will be useful in breeding programs for pyramiding BYD resistance genes.


Assuntos
Resistência à Doença , Luteovirus , Locos de Características Quantitativas , Triticum , China , Resistência à Doença/genética , Luteovirus/fisiologia , Doenças das Plantas/virologia , Triticum/genética , Triticum/virologia
7.
Mol Plant Microbe Interact ; 32(9): 1095-1109, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31365325

RESUMO

Verticillium longisporum is a vascular fungal pathogen leading to severe crop loss, particular in oilseed rape. Transcription factors (TF) are highly suited for genetic engineering of pathogen-resistant crops, as they control sets of functionally associated genes. Applying the AtTORF-Ex (Arabidopsis thaliana transcription factor open reading frame expression) collection, a simple and robust screen of TF-overexpressing plants was established displaying reduced fungal colonization. Distinct members of the large ethylene response factor (ERF) family, namely ERF96 and the six highly related subgroup IXb members ERF102 to ERF107, were identified. Whereas overexpression of these ERF significantly reduces fungal propagation, single loss-of-function approaches did not reveal altered susceptibility. Hence, this gain-of-function approach is particularly suited to identify redundant family members. Expression analyses disclosed distinct ERF gene activation patterns in roots and leaves, suggesting functional differences. Transcriptome studies performed on chemically induced ERF106 expression revealed an enrichment of genes involved in the biosynthesis of antimicrobial indole glucosinolates (IG), such as CYP81F2 (CYTOCHROME P450-MONOOXYGENASE 81F2), which is directly regulated by IXb-ERF via two GCC-like cis-elements. The impact of IG in restricting fungal propagation was further supported as the cyp81f2 mutant displayed significantly enhanced susceptibility. Taken together, this proof-of-concept approach provides a novel strategy to identify candidate TF that are valuable genetic resources for engineering or breeding pathogen-resistant crop plants.


Assuntos
Cruzamento , Resistência à Doença , Engenharia Genética , Fatores de Transcrição , Verticillium , Brassica rapa/microbiologia , Resistência à Doença/genética , Mutação com Ganho de Função , Regulação da Expressão Gênica de Plantas , Engenharia Genética/métodos , Fatores de Transcrição/genética
8.
Vet Parasitol ; 273: 60-66, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31442895

RESUMO

Maternal antibody transmission via placenta and breastmilk are known to confer protection in infants. In this study, we investigated the maternal immunity transmission in pups delivered by rats infected with Trichinella spiralis and assessed the resulting resistance against subsequent parasitic infection. Our results revealed that parasite-specific IgG, IgG1 and IgG2a antibodies were present in pups prior to breastmilk ingestion (pre-milk), in which IgG and IgG1 antibodies persisted until week 8 after birth while parasite-specific IgG2a antibodies only lasted until week 4. After weaning on week 3, pups delivered by T. spiralis-infected dam and subsequently challenge-infected (immune-challenge) were found to possess higher mucosal IgG antibodies than control groups, whereas mucosal IgA levels were not significantly different across all groups. T. spiralis excretory-secretory antigen was discovered to react with pup sera until week 8, correlating with the resistance against parasitic infection which is represented by lessened worm burden. Upon T. spiralis infection at weeks 3 and 8, lower levels of eosinophil responses were detected in immune-challenge pups compared to naïve-challenge pups, indicating correlates of resistances in which ADCC may be involved. Findings from the present study demonstrate that resistances against T. spiralis infection in pups can be acquired by maternally-derived IgG, IgG1 and IgG2a antibody transmission through the placenta and breastmilk from T. spiralis-infected dam, which lasts until week 8.


Assuntos
Resistência à Doença/imunologia , Imunidade Materno-Adquirida/imunologia , Trichinella spiralis/imunologia , Triquinelose/imunologia , Animais , Anticorpos Anti-Helmínticos/sangue , Antígenos de Helmintos/metabolismo , Feminino , Proteínas de Helminto/metabolismo , Leite/imunologia , Placenta/imunologia , Gravidez , Ratos
9.
Plant Dis ; 103(10): 2559-2568, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31432752

RESUMO

Olive (Olea europaea L.) is one of the most important fruit crops in the Mediterranean Basin, because it occupies significant acreage in these countries and often has important cultural heritage and landscape value. This crop can be infected by several Meloidogyne species (M. javanica, M. arenaria, and M. incognita, among others), and only a few cultivars with some level of resistance to these nematodes have been found. Innovations in intensive olive growing using high planting densities, irrigation, and substantial amounts of fertilizers could increase the nematode population to further damaging levels. To further understand the interactions involved between olive and pathogenic nematodes and in the hope of finding solutions to the agricultural risks, this research aimed to determine the reaction of important olive cultivars in Spain and wild olives to M. javanica infection, including genotypes of the same and other O. europaea subspecies. All olive cultivars tested were good hosts for M. javanica, but high levels of nematode reproduction found in three cultivars (Gordal Sevillana, Hojiblanca, and Manzanilla de Sevilla) were substantially different. In the wild accessions, O. europaea subsp. cerasiformis (genotype W147) and O. europaea subsp. europaea var. sylvestris (genotype W224) were resistant to M. javanica at different levels, with strong resistance in W147 (reproduction factor [Rf] = 0.0003) and moderate resistance in W224 (Rf = 0.79). The defense reaction of W147 to M. javanica showed a strong increase of phenolic compounds but no hypersensitive reaction.


Assuntos
Resistência à Doença , Olea , Patologia Vegetal , Tylenchoidea , Animais , Resistência à Doença/genética , Variação Genética , Genótipo , Olea/parasitologia , Espanha , Tylenchoidea/fisiologia
10.
Plant Dis ; 103(10): 2645-2651, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31453747

RESUMO

Chinese wheat landrace Dahongtou was resistant to 35 of 38 tested Chinese isolates of Blumeria graminis f. sp. tritici at the seedling stage. Genetic analysis of the F2 populations and their derived F2:3 families of crosses of Dahongtou with the susceptible varieties Mingxian 169 and Huixianhong indicated that the resistance of Dahongtou to B. graminis f. sp. tritici isolate E09 was conferred by a single recessive gene, tentatively designated as pmDHT. The gene was mapped to chromosome arm 7BL and flanked by markers Xwmc526/XBE443877 and Xgwm611/Xwmc511 at genetic distances of 0.8 and 0.3 cM, respectively. The chromosomal position of pmDHT was similar to the multi-allelic Pm5 locus on 7BL. Allelism tests with crosses of Dahongtou with Fuzhuang 30 (Pm5e) and Xiaobaidong (mlxbd) indicated that pmDHT was allelic to both Pm5e and mlxbd. However, pmDHT showed a different pattern of resistance to the 38 B. graminis f. sp. tritici isolates compared with wheat lines with Pm5a, Pm5b, Pm5e, mlxbd, and PmHYM and also differed from PmSGA. Thus, pmDHT was identified most likely as a new allele or at least a closely linked gene of the Pm5 locus. This gene can be transferred into susceptible wheat cultivars/lines and pyramided with other resistance genes through marker-assisted selection to improve powdery mildew resistance.


Assuntos
Ascomicetos , Resistência à Doença , Genes de Plantas , Triticum , Ascomicetos/fisiologia , Mapeamento Cromossômico , Resistência à Doença/genética , Genes de Plantas/genética , Marcadores Genéticos/genética , Doenças das Plantas/microbiologia , Triticum/genética , Triticum/microbiologia
11.
J Agric Food Chem ; 67(36): 10000-10009, 2019 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-31442045

RESUMO

Improving plant resistance against systemic diseases remains a challenging research topic. In this study, we developed a dual-action pesticide-loaded hydrogel with the capacity to significantly induce plant resistance against tobacco mosaic virus (TMV) infection and promote plant growth. We produced an alginate-lentinan-amino-oligosaccharide hydrogel (ALA-hydrogel) by coating the surface of an alginate-lentinan drug-loaded hydrogel (AL-hydrogel) with amino-oligosaccharide using electrostatic action. We determined the formation of the amino-oligosaccharide film using various approaches, including Fourier transform infrared spectrometry, the ζ potential test, scanning electron microscopy, and elemental analysis. It was found that the ALA-hydrogel exhibited stable sustained-release activity, and the release time was significantly longer than that of the AL-hydrogel. In addition, we demonstrated that the ALA-hydrogel was able to continuously and strongly induce plant resistance against TMV and increase the release of calcium ions to promote Nicotiana benthamiana growth. Meanwhile, the ALA-hydrogel maintained an extremely high safety to organisms. Our findings provide an alternative to the traditional approach of applying pesticide for controlling plant viral diseases. In the future, this hydrogel with the simple synthesis method, green synthetic materials, and its efficiency in the induction of plant resistance will attract increasing attention and have good potential to be employed in plant protection and agricultural production.


Assuntos
Antivirais/química , Preparações de Ação Retardada/farmacologia , Portadores de Fármacos/química , Lentinano/química , Lentinano/farmacologia , Doenças das Plantas/virologia , Vírus do Mosaico do Tabaco/fisiologia , Tabaco/virologia , Alginatos/química , Antivirais/farmacologia , Preparações de Ação Retardada/química , Resistência à Doença , Hidrogéis/química , Doenças das Plantas/imunologia , Tabaco/imunologia
12.
Phytopathology ; 109(10): 1664-1675, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31369363

RESUMO

Fusarium head blight (FHB) is a major fungal disease affecting wheat production worldwide. Since the early 1990s, FHB, caused primarily by Fusarium graminearum, has become one of the most significant diseases faced by wheat producers in Canada and the United States. The increasing FHB problem is likely due to the increased adoption of conservation tillage practices, expansion of maize production, use of susceptible wheat varieties in rotation, and climate variability. Durum wheat (Triticum turgidum sp. durum) is notorious for its extreme susceptibility to FHB and breeding for resistance is complicated because sources of FHB resistance are rare in the primary gene pool of tetraploid wheat. Losses due to this disease include yield, test weight, seed quality, food and feed quality, and when severe, market access. More importantly, it is the contamination with mycotoxins, such as deoxynivalenol, in Fusarium-infected durum kernels that causes the most serious economic as well as food and feed safety concerns. Several studies and thorough reviews have been published on germplasm development and breeding for FHB resistance and the genetics and genomics of FHB resistance in bread or common wheat (T. aestivum); however, similar reviews have not been conducted in durum wheat. Thus, the aim of this review is to summarize and discuss the recent research efforts to mitigate FHB in durum wheat, including quantitative trait locus mapping, genome-wide association studies, genomic prediction, mutagenesis and characterization of genes and pathways involved in FHB resistance. It also highlights future directions, FHB-resistant germplasm, and the potential role of morphological traits to enhance FHB resistance in durum wheat.


Assuntos
Resistência à Doença , Fusarium , Melhoramento Vegetal , Triticum , Canadá , Fusarium/fisiologia , Estudo de Associação Genômica Ampla , Pesquisa/tendências , Triticum/microbiologia
13.
Genet Sel Evol ; 51(1): 42, 2019 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-31387519

RESUMO

BACKGROUND: Columnaris disease (CD) is an emerging problem for the rainbow trout aquaculture industry in the US. The objectives of this study were to: (1) identify common genomic regions that explain a large proportion of the additive genetic variance for resistance to CD in two rainbow trout (Oncorhynchus mykiss) populations; and (2) estimate the gains in prediction accuracy when genomic information is used to evaluate the genetic potential of survival to columnaris infection in each population. METHODS: Two aquaculture populations were investigated: the National Center for Cool and Cold Water Aquaculture (NCCCWA) odd-year line and the Troutlodge, Inc., May odd-year (TLUM) nucleus breeding population. Fish that survived to 21 days post-immersion challenge were recorded as resistant. Single nucleotide polymorphism (SNP) genotypes were available for 1185 and 1137 fish from NCCCWA and TLUM, respectively. SNP effects and variances were estimated using the weighted single-step genomic best linear unbiased prediction (BLUP) for genome-wide association. Genomic regions that explained more than 1% of the additive genetic variance were considered to be associated with resistance to CD. Predictive ability was calculated in a fivefold cross-validation scheme and using a linear regression method. RESULTS: Validation on adjusted phenotypes provided a prediction accuracy close to zero, due to the binary nature of the trait. Using breeding values computed from the complete data as benchmark improved prediction accuracy of genomic models by about 40% compared to the pedigree-based BLUP. Fourteen windows located on six chromosomes were associated with resistance to CD in the NCCCWA population, of which two windows on chromosome Omy 17 jointly explained more than 10% of the additive genetic variance. Twenty-six windows located on 13 chromosomes were associated with resistance to CD in the TLUM population. Only four associated genomic regions overlapped with quantitative trait loci (QTL) between both populations. CONCLUSIONS: Our results suggest that genome-wide selection for resistance to CD in rainbow trout has greater potential than selection for a few target genomic regions that were found to be associated to resistance to CD due to the polygenic architecture of this trait, and because the QTL associated with resistance to CD are not sufficiently informative for selection decisions across populations.


Assuntos
Cruzamento , Mapeamento Cromossômico , Doenças dos Peixes/genética , Infecções por Flavobacteriaceae/veterinária , Flavobacterium , Oncorhynchus mykiss/genética , Animais , Resistência à Doença/genética , Feminino , Pesqueiros , Infecções por Flavobacteriaceae/genética , Padrões de Herança , Masculino , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Seleção Genética
14.
Plant Mol Biol ; 101(3): 315-323, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31392474

RESUMO

KEY MESSAGE: Pre-treatment of soybean seedlings with 200 µM salicylic acid before fungal inoculation significantly alleviated disease resistance in soybean seedlings against Fusarium solani infection. Sudden death syndrome of soybean is largely caused by Fusarium solani (F. solani). Salicylic acid (SA) has been reported to induce resistance in plants against many pathogens. However, the effect of exogenous SA application on F. solani infection of soybean is less reported. This study investigated the effect of foliar application of SA on soybean seedlings before F. solani infection. Seedlings were sprayed with 200 µM SA and inoculated with F. solani after 24 h of last SA application. After 3 days post-inoculation, seedlings treated with 200 µM SA showed significantly fewer disease symptoms with increased endogenous SA level, SA marker genes expression and antioxidant activities in the SA-treated seedlings more than the untreated control seedlings. Furthermore, the decrease in hydrogen peroxide (H2O2) and malondialdehyde (MDA) levels was observed in the SA-treated plants as compared to the untreated plants. Analysis of the effect of SA application on F. solani showed that the mycelia growth of F. solani was not affected by SA treatment. Further investigation in this study revealed a decreased in F. solani biomass content in the SA treated seedlings. Results from the present study show that pre-treatment of 200 µM SA can induce resistance of soybean seedlings against F. solani infection.


Assuntos
Resistência à Doença/efeitos dos fármacos , Fusarium/patogenicidade , Doenças das Plantas/microbiologia , Ácido Salicílico/farmacologia , Soja/microbiologia , Regulação da Expressão Gênica de Plantas , Peróxido de Hidrogênio/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/microbiologia , Plântula/efeitos dos fármacos , Plântula/microbiologia , Soja/efeitos dos fármacos
15.
Mol Plant Microbe Interact ; 32(10): 1391-1401, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31408392

RESUMO

Salicylic acid (SA) is closely related to disease resistance of plants. WRKY transcription factors have been linked to the growth and development of plants, especially under stress conditions. However, the regulatory mechanism of WRKY proteins involved in SA production and disease resistance in apple is not clear. In this study, MdPBS3.1 responded to Botryosphaeria dothidea and enhanced resistance to B. dothidea. Electrophoretic mobility shift assays, yeast one-hybrid assays, and chromatin immunoprecipitation and quantitative PCR demonstrated that MdWRKY46 can directly bind to a W-box motif in the promoter of MdPBS3.1. Glucuronidase transactivation and luciferase analysis further showed that MdWRKY46 can activate the expression of MdPBS3.1. Finally, B. dothidea inoculation in transgenic apple calli and fruits revealed that MdWRKY46 improved resistance to B. dothidea by the transcriptional activation of MdPBS3.1. Viral vector-based transformation assays indicated that MdWRKY46 elevates SA content and transcription of SA-related genes, including MdPR1, MdPR5, and MdNPR1 in an MdPBS3.1-dependent way. These findings provide new insights into how MdWRKY46 regulates plant resistance to B. dothidea through the SA signaling pathway.


Assuntos
Ascomicetos , Resistência à Doença , Regulação da Expressão Gênica de Plantas , Malus , Proteínas de Plantas , Transdução de Sinais , Ascomicetos/fisiologia , Resistência à Doença/genética , Malus/genética , Malus/microbiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ácido Salicílico/metabolismo , Transdução de Sinais/genética
16.
Plant Dis ; 103(11): 2913-2919, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31436474

RESUMO

Thirty-one melon accessions were screened for resistance to the begomoviruses Melon chlorotic mosaic virus (MeCMV) and Tomato leaf curl New Delhi virus (ToLCNDV). Five accessions presented nearly complete resistance to both viruses. Accession IC-274014, showing the highest level of resistance to both viruses, was crossed with the susceptible cultivar Védrantais. The F1, F2, F3/F4, and both backcross progenies were mechanically inoculated with MeCMV. Plants without symptoms or virus detection by enzyme-linked immunosorbent assay and/or PCR were considered as resistant. The segregations were compatible with two recessive and one dominant independent genes simultaneously required for resistance. Inheritance of resistance to ToLCNDV in the F2 was best explained by one recessive gene and two independent dominant genes simultaneously required. Some F3 and F4 families selected for resistance to MeCMV also were resistant to ToLCNDV, suggesting that common or tightly linked genes were involved in resistance to both viruses. We propose the names begomovirus resistance-1 and Begomovirus resistance-2 for these genes (symbols bgm-1 and Bgm-2). Resistance to MeCMV in IC-274014 was controlled by bgm-1, Bgm-2, and the recessive gene melon chlorotic mosaic virus resistance (mecmv); resistance to ToLCNDV was controlled by bgm-1, Bgm-2, and the dominant gene Tomato leaf curl New Delhi virus resistance (Tolcndv).


Assuntos
Begomovirus , Cucurbitaceae , Resistência à Doença , Begomovirus/fisiologia , Cucurbitaceae/virologia , Resistência à Doença/genética
17.
Plant Dis ; 103(11): 2781-2785, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31469362

RESUMO

Peanut (Arachis hypogaea L.) producers rely on costly fungicide programs to manage stem rot, caused by Sclerotium rolfsii. Planting disease-resistant cultivars could increase profits by allowing for the deployment of less-expensive, lower-input fungicide programs. Field experiments were conducted to characterize stem rot and early and late leaf spot (caused by Passalora arachidicola and Nothopassalora personata, respectively), yield, and overall profitability of cultivars Georgia-06G (stem-rot-susceptible) and Georgia-12Y (stem-rot-resistant) as influenced by seven commercial fungicide programs. Stem rot incidence was consistently lower on Georgia-12Y for all fungicides when compared with Georgia-06G and was lowest for both cultivars in plots treated with prothioconazole plus a tank mixture of penthiopyrad and tebuconazole. Leaf spot severity was similar for both the resistant and susceptible cultivars, and the greatest reduction occurred in plots treated with prothioconazole plus a tank mixture of penthiopyrad and tebuconazole. Fungicide programs gave similar yield and net return on Georgia-12Y; however, plots of Georgia-06G treated with prothioconazole plus a tank mixture of penthiopyrad and tebuconazole had the greatest yield and net return. Yields and economic return from the highest level of fungicide inputs on Georgia-06G were numerically less than those of Georgia-12Y treated with only chlorothalonil. These results show the value of fungicides in peanut disease management with susceptible cultivars, as well as the benefits of planting stem-rot-resistant cultivars in high-risk situations.


Assuntos
Arachis , Ascomicetos , Resistência à Doença , Fungicidas Industriais , Arachis/crescimento & desenvolvimento , Arachis/microbiologia , Ascomicetos/efeitos dos fármacos , Resistência à Doença/fisiologia , Fungicidas Industriais/farmacologia , Georgia
18.
BMC Plant Biol ; 19(1): 343, 2019 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-31387524

RESUMO

BACKGROUND: European grapevine cultivars (Vitis vinifera spp.) are highly susceptible to the downy mildew pathogen Plasmopara viticola. Breeding of resistant V. vinifera cultivars is a promising strategy to reduce the impact of disease management. Most cultivars that have been bred for resistance to downy mildew, rely on resistance mediated by the Rpv3 (Resistance to P. viticola) locus. However, despite the extensive use of this locus, little is known about the mechanism of Rpv3-mediated resistance. RESULTS: In this study, Rpv3-mediated defense responses were investigated in Rpv3+ and Rpv3- grapevine cultivars following inoculation with two distinct P. viticola isolates avrRpv3+ and avrRpv3-, with the latter being able to overcome Rpv3 resistance. Based on comparative microscopic, metabolomic and transcriptomic analyses, our results show that the Rpv3-1-mediated resistance is associated with a defense mechanism that triggers synthesis of fungi-toxic stilbenes and programmed cell death (PCD), resulting in reduced but not suppressed pathogen growth and development. Functional annotation of the encoded protein sequence of genes significantly upregulated during the Rpv3-1-mediated defense response revealed putative roles in pathogen recognition, signal transduction and defense responses. CONCLUSION: This study used histochemical, transcriptomic and metabolomic analyses of Rpv3+ and susceptible cultivars inoculated with avirulent and virulent P. viticola isolates to investigate mechanism underlying the Rpv3-1-mediated resistance response. We demonstrated a strong correlation between the expressions of stilbene biosynthesis related genes, the accumulation of fungi-toxic stilbenes, pathogen growth inhibition and PCD.


Assuntos
Resistência à Doença/genética , Genes de Plantas/fisiologia , Estilbenos/metabolismo , Vitis/genética , Regulação da Expressão Gênica de Plantas , Metaboloma , Oomicetos/patogenicidade , Doenças das Plantas/microbiologia , Transcrição Genética , Transcriptoma , Vitis/imunologia , Vitis/microbiologia
19.
Microbiol Res ; 227: 126297, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31421711

RESUMO

Many plant growth promoting rhizobacteria such as Bacillus velezensis GJ11 can produce acetoin to trigger induced systemic resistance (ISR) in plants. For improving acetoin production, the mutant strains were respectively constructed by knockout of the gene of bdh (2,3-butanediol dehydrogenase) and gdh (glycerol dehydrogenase) in GJ11, but only GJ11Δbdh produced a high level of acetoin triggering strong ISR against Pseudomonas syringae infection in plants. GJ11Δbdh could induce H2O2 accumulation in plants by producing a high level of acetoin. H2O2 was necessary for triggering ISR against the pathogen infection because after scavenging H2O2 with ascorbic acid or catalase, the inhibition role to pathogen infection induced by acetoin almost disappeared in plants. Further investigation found the plants treated with GJ11Δbdh in an obvious "priming" state, in which the mild immune response was observed such as a slight increase of H2O2 production, callose deposition, and enzymes activity related with defence response (e.g. POD, PAL and PPO). The plants in "priming" could rapidly respond to the pathogen infection accompanying with a significant increase of H2O2 production, callose deposition, and enzymes activity. Collectively, this study provides new insight into the role of acetoin as a strong elicitor of defense response, and ascribes a new approach to construct the mutant strains with high production of acetoin for triggering stronger ISR against pathogens infection in plants.


Assuntos
Acetoína/metabolismo , Arabidopsis/genética , Bacillus/genética , Bacillus/metabolismo , Resistência à Doença/genética , Imunidade Vegetal/genética , Oxirredutases do Álcool/genética , Arabidopsis/imunologia , Arabidopsis/microbiologia , Ácido Ascórbico/metabolismo , Catalase/metabolismo , Resistência à Doença/fisiologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Técnicas de Inativação de Genes , Genes de Plantas/genética , Peróxido de Hidrogênio/metabolismo , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Imunidade Vegetal/fisiologia , Pseudomonas syringae/patogenicidade , Desidrogenase do Álcool de Açúcar/genética
20.
Plant Dis ; 103(9): 2288-2294, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31287776

RESUMO

Root-lesion nematode (Pratylenchus zeae) and root-knot nematode (Meloidogyne javanica) are two important pathogens of sugarcane (Saccharum hybrid). No commercial cultivars are resistant to these nematodes in Australia. Twenty accession lines of S. spontaneum, a wild relative of sugarcane, were tested against these two nematode species. S. spontaneum lines were tested twice for resistance to root-lesion nematode and three times for root-knot nematode. Reproduction (final population/starting population) of root-lesion nematodes was significantly lower in 17 of the 20 S. spontaneum accession lines tested in two experiments compared with two commercial cultivars. Four S. spontaneum lines supported a significantly lower number of root-lesion nematodes per gram of root than that of two commercial sugarcane cultivars. Reproduction of root-knot nematodes was significantly lower in 16 S. spontaneum lines compared with two commercial cultivars. Fourteen of the S. spontaneum lines tested supported significantly fewer eggs per gram of root compared with two commercial cultivars. This study showed that S. spontaneum lines possessed resistance for root-lesion and root-knot nematodes. Targeted crossing with commercial hybrid parental lines should be conducted to introduce nematode resistance into sugarcane cultivars for the Australian sugar industry.


Assuntos
Resistência à Doença , Saccharum , Tylenchoidea , Animais , Austrália , Saccharum/classificação , Saccharum/parasitologia , Tylenchoidea/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA