Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.205
Filtrar
1.
Genet Sel Evol ; 51(1): 42, 2019 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-31387519

RESUMO

BACKGROUND: Columnaris disease (CD) is an emerging problem for the rainbow trout aquaculture industry in the US. The objectives of this study were to: (1) identify common genomic regions that explain a large proportion of the additive genetic variance for resistance to CD in two rainbow trout (Oncorhynchus mykiss) populations; and (2) estimate the gains in prediction accuracy when genomic information is used to evaluate the genetic potential of survival to columnaris infection in each population. METHODS: Two aquaculture populations were investigated: the National Center for Cool and Cold Water Aquaculture (NCCCWA) odd-year line and the Troutlodge, Inc., May odd-year (TLUM) nucleus breeding population. Fish that survived to 21 days post-immersion challenge were recorded as resistant. Single nucleotide polymorphism (SNP) genotypes were available for 1185 and 1137 fish from NCCCWA and TLUM, respectively. SNP effects and variances were estimated using the weighted single-step genomic best linear unbiased prediction (BLUP) for genome-wide association. Genomic regions that explained more than 1% of the additive genetic variance were considered to be associated with resistance to CD. Predictive ability was calculated in a fivefold cross-validation scheme and using a linear regression method. RESULTS: Validation on adjusted phenotypes provided a prediction accuracy close to zero, due to the binary nature of the trait. Using breeding values computed from the complete data as benchmark improved prediction accuracy of genomic models by about 40% compared to the pedigree-based BLUP. Fourteen windows located on six chromosomes were associated with resistance to CD in the NCCCWA population, of which two windows on chromosome Omy 17 jointly explained more than 10% of the additive genetic variance. Twenty-six windows located on 13 chromosomes were associated with resistance to CD in the TLUM population. Only four associated genomic regions overlapped with quantitative trait loci (QTL) between both populations. CONCLUSIONS: Our results suggest that genome-wide selection for resistance to CD in rainbow trout has greater potential than selection for a few target genomic regions that were found to be associated to resistance to CD due to the polygenic architecture of this trait, and because the QTL associated with resistance to CD are not sufficiently informative for selection decisions across populations.


Assuntos
Cruzamento , Mapeamento Cromossômico , Doenças dos Peixes/genética , Infecções por Flavobacteriaceae/veterinária , Flavobacterium , Oncorhynchus mykiss/genética , Animais , Resistência à Doença/genética , Feminino , Pesqueiros , Infecções por Flavobacteriaceae/genética , Padrões de Herança , Masculino , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Seleção Genética
2.
Microbiol Res ; 227: 126297, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31421711

RESUMO

Many plant growth promoting rhizobacteria such as Bacillus velezensis GJ11 can produce acetoin to trigger induced systemic resistance (ISR) in plants. For improving acetoin production, the mutant strains were respectively constructed by knockout of the gene of bdh (2,3-butanediol dehydrogenase) and gdh (glycerol dehydrogenase) in GJ11, but only GJ11Δbdh produced a high level of acetoin triggering strong ISR against Pseudomonas syringae infection in plants. GJ11Δbdh could induce H2O2 accumulation in plants by producing a high level of acetoin. H2O2 was necessary for triggering ISR against the pathogen infection because after scavenging H2O2 with ascorbic acid or catalase, the inhibition role to pathogen infection induced by acetoin almost disappeared in plants. Further investigation found the plants treated with GJ11Δbdh in an obvious "priming" state, in which the mild immune response was observed such as a slight increase of H2O2 production, callose deposition, and enzymes activity related with defence response (e.g. POD, PAL and PPO). The plants in "priming" could rapidly respond to the pathogen infection accompanying with a significant increase of H2O2 production, callose deposition, and enzymes activity. Collectively, this study provides new insight into the role of acetoin as a strong elicitor of defense response, and ascribes a new approach to construct the mutant strains with high production of acetoin for triggering stronger ISR against pathogens infection in plants.


Assuntos
Acetoína/metabolismo , Arabidopsis/genética , Bacillus/genética , Bacillus/metabolismo , Resistência à Doença/genética , Imunidade Vegetal/genética , Oxirredutases do Álcool/genética , Arabidopsis/imunologia , Arabidopsis/microbiologia , Ácido Ascórbico/metabolismo , Catalase/metabolismo , Resistência à Doença/fisiologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Técnicas de Inativação de Genes , Genes de Plantas/genética , Peróxido de Hidrogênio/metabolismo , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Imunidade Vegetal/fisiologia , Pseudomonas syringae/patogenicidade , Desidrogenase do Álcool de Açúcar/genética
3.
BMC Plant Biol ; 19(1): 343, 2019 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-31387524

RESUMO

BACKGROUND: European grapevine cultivars (Vitis vinifera spp.) are highly susceptible to the downy mildew pathogen Plasmopara viticola. Breeding of resistant V. vinifera cultivars is a promising strategy to reduce the impact of disease management. Most cultivars that have been bred for resistance to downy mildew, rely on resistance mediated by the Rpv3 (Resistance to P. viticola) locus. However, despite the extensive use of this locus, little is known about the mechanism of Rpv3-mediated resistance. RESULTS: In this study, Rpv3-mediated defense responses were investigated in Rpv3+ and Rpv3- grapevine cultivars following inoculation with two distinct P. viticola isolates avrRpv3+ and avrRpv3-, with the latter being able to overcome Rpv3 resistance. Based on comparative microscopic, metabolomic and transcriptomic analyses, our results show that the Rpv3-1-mediated resistance is associated with a defense mechanism that triggers synthesis of fungi-toxic stilbenes and programmed cell death (PCD), resulting in reduced but not suppressed pathogen growth and development. Functional annotation of the encoded protein sequence of genes significantly upregulated during the Rpv3-1-mediated defense response revealed putative roles in pathogen recognition, signal transduction and defense responses. CONCLUSION: This study used histochemical, transcriptomic and metabolomic analyses of Rpv3+ and susceptible cultivars inoculated with avirulent and virulent P. viticola isolates to investigate mechanism underlying the Rpv3-1-mediated resistance response. We demonstrated a strong correlation between the expressions of stilbene biosynthesis related genes, the accumulation of fungi-toxic stilbenes, pathogen growth inhibition and PCD.


Assuntos
Resistência à Doença/genética , Genes de Plantas/fisiologia , Estilbenos/metabolismo , Vitis/genética , Regulação da Expressão Gênica de Plantas , Metaboloma , Oomicetos/patogenicidade , Doenças das Plantas/microbiologia , Transcrição Genética , Transcriptoma , Vitis/imunologia , Vitis/microbiologia
4.
Plant Dis ; 103(10): 2559-2568, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31432752

RESUMO

Olive (Olea europaea L.) is one of the most important fruit crops in the Mediterranean Basin, because it occupies significant acreage in these countries and often has important cultural heritage and landscape value. This crop can be infected by several Meloidogyne species (M. javanica, M. arenaria, and M. incognita, among others), and only a few cultivars with some level of resistance to these nematodes have been found. Innovations in intensive olive growing using high planting densities, irrigation, and substantial amounts of fertilizers could increase the nematode population to further damaging levels. To further understand the interactions involved between olive and pathogenic nematodes and in the hope of finding solutions to the agricultural risks, this research aimed to determine the reaction of important olive cultivars in Spain and wild olives to M. javanica infection, including genotypes of the same and other O. europaea subspecies. All olive cultivars tested were good hosts for M. javanica, but high levels of nematode reproduction found in three cultivars (Gordal Sevillana, Hojiblanca, and Manzanilla de Sevilla) were substantially different. In the wild accessions, O. europaea subsp. cerasiformis (genotype W147) and O. europaea subsp. europaea var. sylvestris (genotype W224) were resistant to M. javanica at different levels, with strong resistance in W147 (reproduction factor [Rf] = 0.0003) and moderate resistance in W224 (Rf = 0.79). The defense reaction of W147 to M. javanica showed a strong increase of phenolic compounds but no hypersensitive reaction.


Assuntos
Resistência à Doença , Olea , Patologia Vegetal , Tylenchoidea , Animais , Resistência à Doença/genética , Variação Genética , Genótipo , Olea/parasitologia , Espanha , Tylenchoidea/fisiologia
5.
Plant Dis ; 103(10): 2645-2651, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31453747

RESUMO

Chinese wheat landrace Dahongtou was resistant to 35 of 38 tested Chinese isolates of Blumeria graminis f. sp. tritici at the seedling stage. Genetic analysis of the F2 populations and their derived F2:3 families of crosses of Dahongtou with the susceptible varieties Mingxian 169 and Huixianhong indicated that the resistance of Dahongtou to B. graminis f. sp. tritici isolate E09 was conferred by a single recessive gene, tentatively designated as pmDHT. The gene was mapped to chromosome arm 7BL and flanked by markers Xwmc526/XBE443877 and Xgwm611/Xwmc511 at genetic distances of 0.8 and 0.3 cM, respectively. The chromosomal position of pmDHT was similar to the multi-allelic Pm5 locus on 7BL. Allelism tests with crosses of Dahongtou with Fuzhuang 30 (Pm5e) and Xiaobaidong (mlxbd) indicated that pmDHT was allelic to both Pm5e and mlxbd. However, pmDHT showed a different pattern of resistance to the 38 B. graminis f. sp. tritici isolates compared with wheat lines with Pm5a, Pm5b, Pm5e, mlxbd, and PmHYM and also differed from PmSGA. Thus, pmDHT was identified most likely as a new allele or at least a closely linked gene of the Pm5 locus. This gene can be transferred into susceptible wheat cultivars/lines and pyramided with other resistance genes through marker-assisted selection to improve powdery mildew resistance.


Assuntos
Ascomicetos , Resistência à Doença , Genes de Plantas , Triticum , Ascomicetos/fisiologia , Mapeamento Cromossômico , Resistência à Doença/genética , Genes de Plantas/genética , Marcadores Genéticos/genética , Doenças das Plantas/microbiologia , Triticum/genética , Triticum/microbiologia
6.
Mol Plant Microbe Interact ; 32(9): 1095-1109, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31365325

RESUMO

Verticillium longisporum is a vascular fungal pathogen leading to severe crop loss, particular in oilseed rape. Transcription factors (TF) are highly suited for genetic engineering of pathogen-resistant crops, as they control sets of functionally associated genes. Applying the AtTORF-Ex (Arabidopsis thaliana transcription factor open reading frame expression) collection, a simple and robust screen of TF-overexpressing plants was established displaying reduced fungal colonization. Distinct members of the large ethylene response factor (ERF) family, namely ERF96 and the six highly related subgroup IXb members ERF102 to ERF107, were identified. Whereas overexpression of these ERF significantly reduces fungal propagation, single loss-of-function approaches did not reveal altered susceptibility. Hence, this gain-of-function approach is particularly suited to identify redundant family members. Expression analyses disclosed distinct ERF gene activation patterns in roots and leaves, suggesting functional differences. Transcriptome studies performed on chemically induced ERF106 expression revealed an enrichment of genes involved in the biosynthesis of antimicrobial indole glucosinolates (IG), such as CYP81F2 (CYTOCHROME P450-MONOOXYGENASE 81F2), which is directly regulated by IXb-ERF via two GCC-like cis-elements. The impact of IG in restricting fungal propagation was further supported as the cyp81f2 mutant displayed significantly enhanced susceptibility. Taken together, this proof-of-concept approach provides a novel strategy to identify candidate TF that are valuable genetic resources for engineering or breeding pathogen-resistant crop plants.


Assuntos
Cruzamento , Resistência à Doença , Engenharia Genética , Fatores de Transcrição , Verticillium , Brassica rapa/microbiologia , Resistência à Doença/genética , Mutação com Ganho de Função , Regulação da Expressão Gênica de Plantas , Engenharia Genética/métodos , Fatores de Transcrição/genética
7.
Mol Plant Microbe Interact ; 32(10): 1391-1401, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31408392

RESUMO

Salicylic acid (SA) is closely related to disease resistance of plants. WRKY transcription factors have been linked to the growth and development of plants, especially under stress conditions. However, the regulatory mechanism of WRKY proteins involved in SA production and disease resistance in apple is not clear. In this study, MdPBS3.1 responded to Botryosphaeria dothidea and enhanced resistance to B. dothidea. Electrophoretic mobility shift assays, yeast one-hybrid assays, and chromatin immunoprecipitation and quantitative PCR demonstrated that MdWRKY46 can directly bind to a W-box motif in the promoter of MdPBS3.1. Glucuronidase transactivation and luciferase analysis further showed that MdWRKY46 can activate the expression of MdPBS3.1. Finally, B. dothidea inoculation in transgenic apple calli and fruits revealed that MdWRKY46 improved resistance to B. dothidea by the transcriptional activation of MdPBS3.1. Viral vector-based transformation assays indicated that MdWRKY46 elevates SA content and transcription of SA-related genes, including MdPR1, MdPR5, and MdNPR1 in an MdPBS3.1-dependent way. These findings provide new insights into how MdWRKY46 regulates plant resistance to B. dothidea through the SA signaling pathway.


Assuntos
Ascomicetos , Resistência à Doença , Regulação da Expressão Gênica de Plantas , Malus , Proteínas de Plantas , Transdução de Sinais , Ascomicetos/fisiologia , Resistência à Doença/genética , Malus/genética , Malus/microbiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ácido Salicílico/metabolismo , Transdução de Sinais/genética
8.
Genet Sel Evol ; 51(1): 37, 2019 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-31269896

RESUMO

BACKGROUND: This study aimed at identifying genomic regions that underlie genetic variation of worm egg count, as an indicator trait for parasite resistance in a large population of Australian sheep, which was genotyped with the high-density 600 K Ovine single nucleotide polymorphism array. This study included 7539 sheep from different locations across Australia that underwent a field challenge with mixed gastrointestinal parasite species. Faecal samples were collected and worm egg counts for three strongyle species, i.e. Teladorsagia circumcincta, Haemonchus contortus and Trichostrongylus colubriformis were determined. Data were analysed using genome-wide association studies (GWAS) and regional heritability mapping (RHM). RESULTS: Both RHM and GWAS detected a region on Ovis aries (OAR) chromosome 2 that was highly significantly associated with parasite resistance at a genome-wise false discovery rate of 5%. RHM revealed additional significant regions on OAR6, 18, and 24. Pathway analysis revealed 13 genes within these significant regions (SH3RF1, HERC2, MAP3K, CYFIP1, PTPN1, BIN1, HERC3, HERC5, HERC6, IBSP, SPP1, ISG20, and DET1), which have various roles in innate and acquired immune response mechanisms, as well as cytokine signalling. Other genes involved in haemostasis regulation and mucosal defence were also detected, which are important for protection of sheep against invading parasites. CONCLUSIONS: This study identified significant genomic regions on OAR2, 6, 18, and 24 that are associated with parasite resistance in sheep. RHM was more powerful in detecting regions that affect parasite resistance than GWAS. Our results support the hypothesis that parasite resistance is a complex trait and is determined by a large number of genes with small effects, rather than by a few major genes with large effects.


Assuntos
Enteropatias Parasitárias/veterinária , Doenças dos Ovinos/genética , Doenças dos Ovinos/parasitologia , Animais , Austrália , Mapeamento Cromossômico/veterinária , Resistência à Doença/genética , Fezes/parasitologia , Estudo de Associação Genômica Ampla/veterinária , Hereditariedade , Enteropatias Parasitárias/genética , Ovinos/genética
9.
Plant Sci ; 286: 68-77, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31300143

RESUMO

Apple (Malus domestica) is an important fruit worldwide; however, the development of the apple industry is limited by fungal disease. Apple bitter rot caused by the pathogen Colletotrichum gloeosporioides is one of the most devastating apple diseases, leading to large-scale losses in apple quality and production. WRKY transcription factors have important functions in the regulation of biotic and abiotic stresses. However, their biological and molecular functions in non-model plants, including apple, remain poorly understood. Here, we isolated MdWRKY100 from 'Hanfu' apple. The MdWRKY100 protein fused to green fluorescent protein localized to the nucleus, and MdWRKY100 in yeast cells displayed transcriptional activation activity, which is consistent with the function of a transcription factor. Additionally, several putative cis-acting elements involved in abiotic stress responsiveness were also identified in the MdWRKY100 promoter. Transcriptional analysis revealed that MdWRKY100 was expressed ubiquitously in all examined apple organs. Overexpression in apple increased resistance to Colletotrichum gloeosporioides, while RNAi silencing transgenic plants were more sensitive to Colletotrichum gloeosporioides. Collectively, our data demonstrate that MdWRKY100 is a positive regulator of Colletotrichum gloeosporioides resistance in apple.


Assuntos
Colletotrichum/fisiologia , Resistência à Doença/genética , Malus/genética , Proteínas de Plantas/genética , Fatores de Transcrição/genética , Sequência de Aminoácidos , Malus/metabolismo , Malus/microbiologia , Filogenia , Doenças das Plantas/microbiologia , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Alinhamento de Sequência , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo
10.
BMC Plant Biol ; 19(1): 320, 2019 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-31319813

RESUMO

BACKGROUND: Plant cell walls participate in all plant-environment interactions. Maintaining cell wall integrity (CWI) during these interactions is essential. This realization led to increased interest in CWI and resulted in knowledge regarding early perception and signalling mechanisms active during CWI maintenance. By contrast, knowledge regarding processes mediating changes in cell wall metabolism upon CWI impairment is very limited. RESULTS: To identify genes involved and to investigate their contributions to the processes we selected 23 genes with altered expression in response to CWI impairment and characterized the impact of T-DNA insertions in these genes on cell wall composition using Fourier-Transform Infrared Spectroscopy (FTIR) in Arabidopsis thaliana seedlings. Insertions in 14 genes led to cell wall phenotypes detectable by FTIR. A detailed analysis of four genes found that their altered expression upon CWI impairment is dependent on THE1 activity, a key component of CWI maintenance. Phenotypic characterizations of insertion lines suggest that the four genes are required for particular aspects of CWI maintenance, cell wall composition or resistance to Plectosphaerella cucumerina infection in adult plants. CONCLUSION: Taken together, the results implicate the genes in responses to CWI impairment, cell wall metabolism and/or pathogen defence, thus identifying new molecular components and processes relevant for CWI maintenance.


Assuntos
Arabidopsis/genética , Parede Celular/metabolismo , Genes de Plantas/fisiologia , Arabidopsis/metabolismo , Arabidopsis/fisiologia , Ascomicetos , Parede Celular/fisiologia , Resistência à Doença/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/genética , Técnicas de Silenciamento de Genes , Interações Hospedeiro-Patógeno , Doenças das Plantas/imunologia , Plântula/metabolismo , Plântula/fisiologia , Espectroscopia de Infravermelho com Transformada de Fourier
11.
Plant Mol Biol ; 101(1-2): 163-182, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31273589

RESUMO

KEY MESSAGE: Deeper insights into the resistance response of Cajanus platycarpus were obtained based on comparative transcriptomics under Helicoverpa armigera infestation. Devastation by pod borer, Helicoverpa armigera is one of the major factors for stagnated productivity in Pigeonpea. Despite possessing a multitude of desirable traits including pod borer resistance, wild relatives of Cajanus spp. have remained under-utilized due to linkage drag and cross-incompatibility. Discovery and deployment of genes from them can provide means to tackle key pests like H. armigera. Transcriptomic differences between Cajanus platycarpus and Cajanus cajan during different time points (0, 18, 38, 96 h) of pod borer infestation were elucidated in this study. For the first ever time, we demonstrated captivating variations in their response; C. platycarpus apparently being reasonably agile with effectual transcriptomic reprogramming to deter the insect. Deeper insights into the differential response were obtained by identification of significant GO-terms related to herbivory followed by combined KEGG and ontology analyses. C. platycarpus portrayed a multilevel response with cardinal involvement of SAR, redox homeostasis and reconfiguration of primary metabolites leading to a comprehensive defense response. The credibility of RNA-seq analyses was ascertained by transient expression of selected putative insect resistance genes from C. platycarpus viz., chitinase (CHI4), Alpha-amylase/subtilisin inhibitor (IAAS) and Flavonoid 3_5 hydroxylase (C75A1) in Nicotiana benthamiana followed by efficacy analysis against H. armigera. qPCR validated results of the study provided innovative insights and useful leads for development of durable pod borer resistance.


Assuntos
Cajanus/genética , Resistência à Doença/genética , Mariposas/fisiologia , Doenças das Plantas/imunologia , Transcriptoma , Animais , Cajanus/imunologia , Cajanus/parasitologia , Perfilação da Expressão Gênica , Genômica , Herbivoria , Sequenciamento de Nucleotídeos em Larga Escala , Doenças das Plantas/parasitologia , Análise de Sequência de RNA
12.
BMC Plant Biol ; 19(1): 319, 2019 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-31311507

RESUMO

BACKGROUND: Non-host resistance (NHR) presents a compelling long-term plant protection strategy for global food security, yet the genetic basis of NHR remains poorly understood. For many diseases, including stem rust of wheat [causal organism Puccinia graminis (Pg)], NHR is largely unexplored due to the inherent challenge of developing a genetically tractable system within which the resistance segregates. The present study turns to the pathogen's alternate host, barberry (Berberis spp.), to overcome this challenge. RESULTS: In this study, an interspecific mapping population derived from a cross between Pg-resistant Berberis thunbergii (Bt) and Pg-susceptible B. vulgaris was developed to investigate the Pg-NHR exhibited by Bt. To facilitate QTL analysis and subsequent trait dissection, the first genetic linkage maps for the two parental species were constructed and a chromosome-scale reference genome for Bt was assembled (PacBio + Hi-C). QTL analysis resulted in the identification of a single 13 cM region (~ 5.1 Mbp spanning 13 physical contigs) on the short arm of Bt chromosome 3. Differential gene expression analysis, combined with sequence variation analysis between the two parental species, led to the prioritization of several candidate genes within the QTL region, some of which belong to gene families previously implicated in disease resistance. CONCLUSIONS: Foundational genetic and genomic resources developed for Berberis spp. enabled the identification and annotation of a QTL associated with Pg-NHR. Although subsequent validation and fine mapping studies are needed, this study demonstrates the feasibility of and lays the groundwork for dissecting Pg-NHR in the alternate host of one of agriculture's most devastating pathogens.


Assuntos
Basidiomycota/fisiologia , Berberis/genética , Berberis/microbiologia , Doenças das Plantas/genética , Mapeamento Cromossômico , Cromossomos de Plantas , Resistência à Doença/genética , Perfilação da Expressão Gênica , Genoma de Planta , Hibridização Genética , Padrões de Herança , Fenótipo , Doenças das Plantas/microbiologia , Caules de Planta/microbiologia , Locos de Características Quantitativas
13.
Plant Dis ; 103(9): 2337-2344, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31306087

RESUMO

Puccinia graminis f. sp. tritici race TTKSF+ was collected from the South African wheat cultivar 'Matlabas' in 2010. F2 and F3 populations derived from a Matlabas × Line 37-07 cross segregated for a single resistance gene to race TTKSF that is avirulent to Matlabas. In screening genomic DNA bulks of susceptible or resistant F2 plants with simple sequence repeat (SSR) markers, three chromosome arm 2BS markers and one multilocus marker amplified alleles present only in the resistant bulks and Matlabas. Additional 2B-specific SSR markers, incorporating markers spanning regions containing Sr9h, SrWLR, Sr28, and Sr47, were screened in the parental lines and mapped in the F2 population. Linkage and QTL mapping showed that the gene is located between Xbarc160 in the centromeric region and Xgwm47 on the long arm of chromosome 2B. When 2B-specific SNP markers were mapped, the area of interest was delimited to a 15.3 cM region on chromosome arm 2BL, with XIWA543-HRM and Xgwm47 as flanking loci. Matlabas, Webster, and related Sr9h lines all produced a similar, low infection type to race TTKSF, but were susceptible to race TTKSF+. Phenotypic data and allelic studies suggested that stem rust resistance in Matlabas was derived from an Sr9h source.


Assuntos
Basidiomycota , Resistência à Doença , Triticum , Resistência à Doença/genética , Genótipo , Triticum/genética , Triticum/microbiologia
14.
Plant Dis ; 103(9): 2359-2366, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31355733

RESUMO

In Ethiopia, breeding rust resistant wheat cultivars is a priority for wheat production. A stem rust epidemic during 2013 to 2014 on previously resistant cultivar Digalu highlighted the need to determine the effectiveness of wheat lines to multiple races of Puccinia graminis f. sp. tritici in Ethiopia. During 2014 and 2015, we evaluated a total of 97 bread wheat and 14 durum wheat genotypes against four P. graminis f. sp. tritici races at the seedling stage and in single-race field nurseries. Resistance genes were postulated using molecular marker assays. Bread wheat lines were resistant to race JRCQC, the race most virulent to durum wheat. Lines with stem rust resistance gene Sr24 possessed the most effective resistance to the four races. Only three lines with adult plant resistance possessed resistance effective to the four races comparable with cultivars with Sr24. Although responses of the wheat lines across races were positively correlated, wheat lines were identified that possessed adult plant resistance to race TTKSK but were relatively susceptible to race TKTTF. This study demonstrated the importance of testing wheat lines for response to multiple races of the stem rust pathogen to determine if lines possessed non-race-specific resistance. Copyright © 2019 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.


Assuntos
Resistência à Doença , Triticum , Resistência à Doença/genética , Etiópia , Marcadores Genéticos/genética , Triticum/classificação , Triticum/microbiologia
15.
Plant Dis ; 103(9): 2204-2211, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31355735

RESUMO

One hundred and one rice genotypes were evaluated for response to sheath blight disease under greenhouse and lowland irrigated field conditions in Guyana. The level of resistance varied from highly resistant to resistant in 14 genotypes over five experimental trials. These genotypes were also observed with low area under the disease progress curve values and slow blighting reactions against artificial inoculation of the pathogen. Genotypes GR1568-31-9-1-1-2-1 and cultivar Rustic had susceptible reactions in all experiments. Additive main effect and multiplicative interaction analysis was used to study the genotype and environment interactions. The analysis revealed that 52.98% of the total sum of square was attributed to genotype effect, 7.50% was attributable to environment effect, and 39.52% was attributable to genotype by environment interaction (G × E) effects. The G × E was almost as large as the genotype effect, thus indicating significant differences of genotypes across the testing environments. This revealed that resistance was slightly influenced by the G × E. The genotypes that showed stable resistance in all environments in this study could be used for breeding the sheath blight resistance in rice.


Assuntos
Resistência à Doença , Interação Gene-Ambiente , Modelos Estatísticos , Oryza , Cruzamento , Resistência à Doença/genética , Fungos/fisiologia , Genótipo , Guiana , Oryza/genética , Oryza/microbiologia
16.
Genet Sel Evol ; 51(1): 25, 2019 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-31164080

RESUMO

BACKGROUND: The cuticle is an invisible glycosylated protein layer that covers the outside of the eggshell and forms a barrier to the transmission of microorganisms. Cuticle-specific staining and in situ absorbance measurements have been used to quantify cuticle deposition in several pure breeds of chicken. For brown eggs, a pre-stain and a post-stain absorbance measurement is required to correct for intrinsic absorption by the natural pigment. For white eggs, a post-stain absorbance measurement alone is sufficient to estimate cuticle deposition. The objective of the research was to estimate genetic parameters and provide data to promote adoption of the technique to increase cuticle deposition and reduce vertical transmission of microorganisms. RESULTS: For all pure breeds examined here, i.e. Rhode Island Red, two White Leghorns, White Rock and a broiler breed, the estimate of heritability for cuticle deposition from a meta-analysis was moderately high (0.38 ± 0.04). In the Rhode Island Red breed, the estimate of the genetic correlation between measurements recorded at early and late times during the egg-laying period was ~ 1. There was no negative genetic correlation between cuticle deposition and production traits. Estimates of the genetic correlation of cuticle deposition with shell color ranged from negative values or 0 in brown-egg layers to positive values in white- or tinted-egg layers. Using the intrinsic fluorescence of tryptophan in the cuticle proteins to quantify the amount of cuticle deposition failed because of complex quenching processes. Tryptophan fluorescence intensity at 330 nm was moderately heritable, but there was no evidence of a non-zero genetic correlation with cuticle deposition. This was complicated furthermore by a negative genetic correlation of fluorescence with color in brown eggs, due to the quenching of tryptophan fluorescence by energy transfer to protoporphyrin pigment. We also confirmed that removal of the cuticle increased reflection of ultraviolet wavelengths from the egg. CONCLUSIONS: These results provide additional evidence for the need to incorporate cuticle deposition into breeding programs of egg- and meat-type birds in order to reduce vertical and horizontal transmission of potentially pathogenic organisms and to help improve biosecurity in poultry.


Assuntos
Cruzamento/métodos , Galinhas/genética , Casca de Ovo/metabolismo , Polimorfismo Genético , Animais , Resistência à Doença/genética , Casca de Ovo/microbiologia , Feminino , Masculino , Doenças das Aves Domésticas/genética
17.
Nat Commun ; 10(1): 2543, 2019 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-31186426

RESUMO

The circadian clock is known to regulate plant innate immunity but the underlying mechanism of this regulation remains largely unclear. We show here that mutations in the core clock component LUX ARRHYTHMO (LUX) disrupt circadian regulation of stomata under free running and Pseudomonas syringae challenge conditions as well as defense signaling mediated by SA and JA, leading to compromised disease resistance. RNA-seq analysis reveals that both clock- and defense-related genes are regulated by LUX. LUX binds to clock gene promoters that have not been shown before, expanding the clock gene networks that require LUX function. LUX also binds to the promoters of EDS1 and JAZ5, likely acting through these genes to affect SA- and JA-signaling. We further show that JA signaling reciprocally affects clock activity. Thus, our data support crosstalk between the circadian clock and plant innate immunity and imply an important role of LUX in this process.


Assuntos
Arabidopsis/genética , Relógios Circadianos/genética , Imunidade Vegetal/genética , Arabidopsis/microbiologia , Relógios Circadianos/fisiologia , Resistência à Doença/genética , Regulação da Expressão Gênica de Plantas , Mutação , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Estômatos de Plantas/fisiologia , Pseudomonas syringae/fisiologia , Análise de Sequência de RNA
18.
BMC Plant Biol ; 19(1): 249, 2019 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-31185908

RESUMO

BACKGROUND: As an elite japonica rice variety, Kongyu-131 has been cultivated for over 20 years in the third accumulated temperature zone of Heilongjiang Province, China. However, the cultivated area of Kongyu-131 has decreased each year due to extensive outbreaks of rice blast. To achieve the goals of improving blast resistance and preserving other desirable traits in Kongyu-131, a genome-updating method similar to repairing a bug in a computer program was adopted in this study. A new allele of the broad-spectrum blast resistance gene pi21 in the upland rice variety GKGH was mined by genetic analysis and introgressed into the genome of Kongyu-131 to upgrade its blast resistance. RESULT: QTL analysis was performed with an F2 population derived from a cross between Kongyu-131 and GKGH, and a blast resistance QTL was detected near the pi21 locus. Parental Pi21 sequence alignment showed that the pi21 of the donor (GKGH) was a new allele. By 5 InDel or SNP markers designed based on the sequence within and around pi21, the introgressed chromosome segment was shortened to less than 634 kb to minimize linkage drag by screening recombinants in the target region. The RRPG was 99.92%, calculated according to 201 SNP markers evenly distributed on 12 chromosomes. Artificial inoculation at the seedling stage showed that the blast resistance of the new Kongyu-131 was improved significantly. Field experiments also indicated that the improved Kongyu-131 had enhanced field resistance to rice blast and grain-quality traits similar to those of the original Kongyu-131. CONCLUSIONS: It is feasible to improve resistance to rice blast and preserve other desirable traits by precisely improving the Pi21 locus of Kongyu-131. Linkage drag can be eliminated effectively via recombinant selection on both sides of the target gene.


Assuntos
Resistência à Doença/genética , Genes de Plantas , Oryza/genética , Doenças das Plantas/genética , Proteínas de Plantas/genética , Ligação Genética , Magnaporthe/fisiologia , Oryza/microbiologia , Doenças das Plantas/microbiologia , Proteínas de Plantas/metabolismo
19.
BMC Plant Biol ; 19(1): 270, 2019 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-31226939

RESUMO

BACKGROUND: The Bemisia tabaci is a major leaf feeding insect pest to pepper (Capsicum annuum), causing serious damage to pepper growth and yield. It is particularly important to study the mechanism of pepper resistance to B. tabaci, and to breed and promote the varieties of pepper resistant to B. tabaci. However, very limited molecular mechanism is available about how plants perceive and defend themselves from the destructive pest. Proteome technologies have provided an idea method for studying plant physiological processes in response to B. tabaci. RESULTS: Here, a highly resistant genotype and a highly susceptible genotype were exposed to B. tabaci feeding for 48 h to explore the defense mechanisms of pepper resistance to B. tabaci. The proteomic differences between both genotypes were compared using isobaric tag for relative and absolute quantification (iTRAQ). The quantitative data were validated by parallel reaction monitoring (PRM). The results showed that 37 differential abundance proteins (DAPs) were identified in the RG (resistant genotype), while 17 DAPs were identified in the SG (susceptible genotype) at 48 h after B. tabaci feeding. 77 DAPs were identified when comparing RG with SG without feeding. The DAP functions were determined for the classification of the pathways, mainly involved in redox regulation, stress response, protein metabolism, lipid metabolism and carbon metabolism. Some candidate DAPs are closely related to B. tabaci resistance such as annexin D4-like (ANN4), calreticulin-3 (CRT3), heme-binding protein 2-like (HBP1), acidic endochitinase pcht28-like (PR3) and lipoxygenase 2 (LOX2). CONCLUSIONS: Taken together, this study indicates complex resistance-related events in B. tabaci interaction, provides novel insights into the molecular mechanism underlying the response of plant to B. tabaci, and identifies some candidate proteins against B. tabaci attack.


Assuntos
Capsicum/parasitologia , Resistência à Doença/genética , Hemípteros/fisiologia , Proteínas de Plantas/fisiologia , Animais , Capsicum/imunologia , Genótipo , Espectrometria de Massas/métodos , Proteínas de Plantas/genética , Proteoma , Proteômica/métodos
20.
BMC Plant Biol ; 19(1): 272, 2019 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-31226952

RESUMO

BACKGROUND: Cyclophilins (CYPs), belonging to the peptidyl prolyl cis/trans isomerase (PPIase) superfamily, play important roles during plant responses to biotic and abiotic stresses. RESULTS: Here, a total of 79 CYPs were identified in the genome of Gossypium hirsutum. Of which, 65 GhCYPs only contained one cyclophilin type PPIase domain, others 14 GhCYPs contain additional domains. A number of cis-acting elements related to phytohormone signaling were predicated in the upstream of GhCYPs ORF. The expression analysis revealed that GhCYPs were induced in response to cold, hot, salt, PEG and Verticillium dahliae infection. In addition, the functional importance of GhCYP-3 in Verticillium wilt resistance was also presented in this study. GhCYP-3 showed both cytoplasmic and nuclear localization. Overexpression of GhCYP-3 in Arabidopsis significantly improved Verticillium wilt resistance of the plants. Recombinant GhCYP-3 displayed PPIase activity and evident inhibitory effects on V. dahliae in vitro. Moreover, the extracts from GhCYP-3 transgenic Arabidopsis displayed significantly inhibit activity to conidia germinating and hyphal growth of V. dahliae. CONCLUSIONS: Our study identified the family members of cotton CYP genes using bioinformatics tools. Differential expression patterns of GhCYPs under various abiotic stress and V. dahliae infection conditions provide a comprehensive understanding of the biological functions of candidate genes. Moreover, GhCYP-3 involved in the resistance of cotton to V. dahliae infection presumably through antifungal activity.


Assuntos
Ciclofilinas/genética , Resistência à Doença/genética , Gossypium/genética , Doenças das Plantas/microbiologia , Verticillium , Sequência de Aminoácidos , Arabidopsis/genética , Clonagem Molecular , Sequência Conservada , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Humanos , Doenças das Plantas/genética , Reguladores de Crescimento de Planta/metabolismo , Alinhamento de Sequência , Estresse Fisiológico , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA