Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.027
Filtrar
1.
Mem Inst Oswaldo Cruz ; 115: e200313, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33533870

RESUMO

BACKGROUND: Aedes aegypti is the sole vector of urban arboviruses in French Guiana. Overtime, the species has been responsible for the transmission of viruses during yellow fever, dengue, chikungunya and Zika outbreaks. Decades of vector control have produced resistant populations to deltamethrin, the sole molecule available to control adult mosquitoes in this French Territory. OBJECTIVES: Our surveillance aimed to provide public health authorities with data on insecticide resistance in Ae. aegypti populations and other species of interest in French Guiana. Monitoring resistance to the insecticide used for vector control and to other molecule is a key component to develop an insecticide resistance management plan. METHODS: In 2009, we started to monitor resistance phenotypes to deltamethrin and target-site mechanisms in Ae. aegypti populations across the territory using the WHO impregnated paper test and allelic discrimination assay. FINDINGS: Eight years surveillance revealed well-installed resistance and the dramatic increase of alleles on the sodium voltage-gated gene, known to confer resistance to pyrethroids (PY). In addition, we observed that populations were resistant to malathion (organophosphorous, OP) and alpha-cypermethrin (PY). Some resistance was also detected to molecules from the carbamate family. Finally, those populations somehow recovered susceptibility against fenitrothion (OP). In addition, other species distributed in urban areas revealed to be also resistant to pyrethroids. CONCLUSION: The resistance level can jeopardize the efficiency of chemical adult control in absence of other alternatives and conducts to strongly rely on larval control measures to reduce mosquito burden. Vector control strategies need to evolve to maintain or regain efficacy during epidemics.


Assuntos
Aedes/efeitos dos fármacos , Insetos Vetores/genética , Resistência a Inseticidas/genética , Inseticidas/farmacologia , Mosquitos Vetores/efeitos dos fármacos , Piretrinas/farmacologia , Aedes/genética , Aedes/virologia , Animais , Guiana Francesa , Insetos Vetores/efeitos dos fármacos , Controle de Mosquitos/métodos , Mosquitos Vetores/virologia , Análise Espaço-Temporal
2.
Pestic Biochem Physiol ; 172: 104768, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33518055

RESUMO

The melon aphid, Aphis gossypii, is an important pest of vegetables. Insecticide resistance in A. gossypii has increased due to the frequent use of insecticides. We studied the levels and mechanisms of A. gossypii resistance to imidacloprid, acetamiprid and lambda-cyhalothrin here. The resistance levels of the three insecticides in 20 populations of A. gossypii varied. When compared to the susceptible strain (Lab-SS), there were two moderate resistance (MR) populations and nine low resistance (LR) populations to imidacloprid, respectively, two MR populations and two LR populations to acetamiprid, respectively, and, five MR populations and two LR populations to λ-cyhalothrin, respectively. Gene mutation detection in the MR level populations showed arginine to threonine substitution (R81T) in three populations and lysine to glutamine substitution (K264E) in the nicotinic acetylcholine receptor (nAChR) ß1 subunit in one population, respectively. No valine to isoleucine substitution (V62I) was found in the nAChR ß1 subunit in any of the tested populations. The leucine to phenylalanine substitution (L1014F) in sodium channel α subunit was found in five MR populations. The relative expression of the CYP6CY13 gene was significantly upregulated in the Daiyue and Shenxian populations. The CYP6CY14 gene was significantly upregulated in Daiyue, Dongchangfu, Shenxian, Mengyin and Anqiu populations. The CYP6CY19 gene was significantly upregulated in the Dongchangfu and Mengyin populations. The relative expressions of the esterase E4 or FE4 genes were significantly upregulated in most of the MR populations. These results provide insight into the current insecticide resistance of A. gossypii and may contribute to more effective resistance management strategies.


Assuntos
Afídeos , Cucurbitaceae , Inseticidas , Animais , Afídeos/genética , China , Resistência a Inseticidas/genética , Inseticidas/toxicidade
3.
Pest Manag Sci ; 77(1): 313-324, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33411414

RESUMO

BACKGROUND: The investigation of molecular mechanisms and evolution of resistance to insecticides is an ongoing challenge, as researchers must provide guidance to manage the resistance to achieve sustainable production in agriculture. Predicting, monitoring, and managing insecticide resistance requires information on the origins, selection, and spread of resistance genes. The resistance of Plutella xylostella (L.) against diamide insecticides is becoming an increasingly severe problem in east and southeast Asia. In this study, the evolution of resistance was investigated using a resistance allele [ryanodine receptor (RyR); G4946E mutation] and its flanking regions, as well as mitochondrial cytochrome c oxidase subunit I (mtCOI). RESULTS: The sequences of the flanking region of the G4946E and mtCOI suggested that the G4946E mutation has a key role in resistance. Furthermore, the G4946E mutation has multiple origins, and congenic resistant mutations have spread across east and southeast Asia, despite substantial geographical barriers. In addition, the susceptibility of field populations partially recovered during winter, based on the observed decrease in the G4946E (resistant allele) frequency. Finally, the resistance level indexed by the frequency of the E4946 allele was significantly lower in non-overwintering regions than in overwintering regions. CONCLUSION: The information of the present study is useful to monitor resistance using molecular markers and to develop strategies to delay the evolution of diamide resistance.


Assuntos
Inseticidas , Mariposas , Alelos , Animais , Ásia Sudeste , Diamida , Resistência a Inseticidas/genética , Inseticidas/farmacologia , Mariposas/genética
4.
GM Crops Food ; 12(1): 192-211, 2021 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-33380258

RESUMO

Evolution of resistance to genetically modified Bacillus thuringiensis (Bt) crops in pest populations is a major threat to the sustainability of the technology. Incidents of field resistance that have led to control problems of Bt crops or significantly reduced susceptibility of individual Bt proteins in pyramided plants have increased dramatically across the world, especially in recent years. Analysis of globally published data showed that 61.5% and 60.0% of the cases of resistance with major alleles that allowed homozygous resistant genotypes to survival on Bt crops were functionally non-recessive and did not involve fitness costs, respectively. Dominance levels (DFLs) measured on Bt plants ranged from -0.02 to 1.56 with a mean (± sem) of 0.35 ± 0.13 for the 13 cases of single-gene resistance to Bt plants that have been evaluated. Among these, all six cases with field control problems were functionally non-recessive with a mean DFL of 0.63 ± 0.24, which was significantly greater than the DFL (0.11 ± 0.07) of the seven cases without field resistance. In addition, index of fitness costs (IFC) of major resistance was calculated for each case based on the fitness of resistant (R'R') and heterozygous (R'S') genotypes on non-Bt plants divided by the fitness of their susceptible (S'S') counterparts. The estimated IFCs for 15 cases of single-gene resistance were similar for R'R' and R'S', and for the cases with and without field resistance; and the values averaged 1.10 ± 0.12 for R'R' and 1.20 ± 0.18 for R'S'. Limited published data suggest that resistance of insects to dual/multiple-gene Bt crops is likely to be more recessive than the related single-gene resistance, but their IFCs are similar. The quantitative analysis of the global data documents that the prevalence of non-recessive resistance has played an essential role in the widespread evolution of resistance to Bt crops, while the lack of fitness costs is apparently not as critical as the non-recessive resistance. The results suggest that planting of 'high dose' traits is an effective method for Bt crop IRM and more comprehensive management strategies that are also effective for functionally non-recessive resistance should be deployed.


Assuntos
Bacillus thuringiensis , Animais , Bacillus thuringiensis/genética , Proteínas de Bactérias/genética , Produtos Agrícolas/genética , Endotoxinas , Proteínas Hemolisinas/genética , Insetos , Resistência a Inseticidas/genética , Controle Biológico de Vetores , Plantas Geneticamente Modificadas
5.
Pestic Biochem Physiol ; 171: 104746, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33357539

RESUMO

Anopheles sacharovi, a primer malaria vector species of Turkey, have a significant public health importance. It is aimed to determine the insecticide resistance status in Anopheles sacharovi populations in the Aegean and Mediterranean regions of Turkey. A total of 1638 individuals were analysed from 15 populations. Bioassay results indicated all An. sacharovi populations were resistant to DDT, malathion, fenitrothion, bendiocarb, propoxur. Many populations have begun to have resistance against permethrin and deltamethrin. Biochemical analyses results revealed that glutathione-S-transferases and P450 monooxygenases might be responsible from the mechanisms of DDT resistance; esterases and acetylcholinesterase might be responsible for organophosphate and carbamate resistance; P450 monooxygenases and esterases might be responsible for pyrethroid resistance into populations sampled from the study area. Allele-specific primers detected L1014F and L1014S mutations that provide kdr resistance against pyrethroids and DDT. Increased acetylcholinesterase insensitivity was detected while Ace-1 G119S mutations were not detected in An. sacharovi populations by using allele-specific primers. Overall results indicate the presence of multiple resistance mechanisms in Turkish An. sacharovi field populations suggesting that populations might gain resistance against all possible insecticide in the future. Therefore, insecticide resistance management strategies are urgently needed for effective vector control implementation.


Assuntos
Anopheles , Inseticidas , Malária , Piretrinas , Acetilcolinesterase/genética , Alelos , Animais , Anopheles/genética , Resistência a Inseticidas/genética , Inseticidas/farmacologia , Malária/genética , Mosquitos Vetores , Mutação
6.
Pestic Biochem Physiol ; 171: 104720, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33357542

RESUMO

Chilo suppressalis Walker (Lepidoptera: Crambidae) is a widely destructive pest occurring in rice, particularly in the rice-growing regions of Asia. In recent years, C. suppressalis has developed resistance to several insecticides because of the extensive use of insecticides. The resistance levels to four insecticides were determined among populations from different regions of Sichuan Province, China, using a drop-method bioassay. Based on LC50 values of a laboratory susceptible strain, all field populations showed moderate level of resistance to triazophos (23.9- to 83.5-fold) and were either susceptible or had a low level of resistance to abamectin (2.1- to 5.8-fold). All field-collected populations had a low or moderate level of resistance to chlorpyrifos (1.7- to 47.1-fold) and monosultap (2.7- to 13.5-fold). The synergism experiment indicated that the resistance of the XW19 to triazophos may be associated with cytochrome P450 monooxygenases (P450s), with the highest synergistic ratio (SR) of 3.05-fold and increased ratio (IR) of 2.28-fold for piperonylbutoxide (PBO). The P450 activity of the TJ19 population was the greatest among the six field populations. Moreover, the relative expression levels of four resistance-related P450 genes were detected with qRT-PCR, and the results indicated that CYP324A12, CYP321F3 and CYP9A68 were overexpressed in the resistant population, especially in the XW19 population (by 1.2-, 3.4 -, and 18.0-fold, respectively). In addition, the relative expression levels of CYP9A68 among the CZ19 and TJ19 populations were also enhanced 10.5- and 24.9-fold, respectively. These results suggested that CYP324A12, CYP321F3 and CYP9A68 may be related to the resistance development of C. suppressalis to triazophos.


Assuntos
Clorpirifos , Inseticidas , Lepidópteros , Mariposas , Oryza , Animais , China , Clorpirifos/farmacologia , Resistência a Inseticidas/genética , Inseticidas/farmacologia , Mariposas/genética , Oryza/genética
7.
Pestic Biochem Physiol ; 171: 104723, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33357545

RESUMO

The white-backed planthopper, Sogatella furcifera (Horváth) (Hemiptera, Delphacidae), is an energetic rice insect pest in rice production or rice-growing areas. Due to excessive use of the chemical insecticide, S. furcifera has produced the high resistance to some frequently used insecticides. In this paper, the resistance levels of S. furcifera from the eight different areas of Sichuan Province against the five chemicals were monitored by using the rice seedling dipping during 2017-2018 to understand the resistance levels. The results showed that most of all populations have developed low or moderate level of resistance for chlorpyrifos (3.4 to 44.3-fold) and thiamethoxam (3.9- to 15.5-fold), the populations in the LS (1.7 to 5.4- fold)and WS (1.6 to 5.0- fold) regions were still sensitive or low resistance levels compared with other local populations. Almost all populations displayed the susceptible to imidacloprid (0.9- to 5.0-fold), buprofezin (0.9- to 4.3-fold) or low levels of resistance to pymetrozine (1.5- to 6.8-fold). The synergism experiment indicated that P450 enzymes may be important contributed to the metabolic detoxification of chlorpyrifos. The cross-resistance bioassay showed that there was no cross-resistance between chlorpyrifos and triflumezopyrim, but for sulfoxaflor, in the XY17 population. The relative expression level of twelve insecticide resistant-related P450 genes were analyzed by using qRT-PCR and found that CYP4C77, CYP418A1, CYP418A2, CYP408A3 and CYP6ER4 were significantly more expressed in the 3rd-instar nymph of the XY17 and XY18 field populations. To determine the main resistant-related P450 gene for chlorpyrifos, the relative expression level of five P450 genes were detected by using qRT-PCR from the G2 and G4 generation of XY17 under the pressure with LC50 of chlorpyrifos. The results showed that CYP6ER4 was significantly up-regulated expression in XY17 G2 and G4 generations population over 700-fold (P < 0.01). The full length and proteins tertiary structure were also cloned and predicted. Meanwhile, the function of CYP6ER4 was analyzed by RNA interference and the results indicated that the relative expression of CYP6ER4 in the XY17 (G4) population after injected dsRNA was lower than that in the dsGFP injected group. Moreover, the mortality rates of the S. furcifera treated with the LC50 concentration of chlorpyrifos after dsRNA microinjection was significantly higher than that of the dsGFP injected group 72 h after treatment (P < 0.01). Therefore, the overexpression of CYP6ER4 may be one of the primary factors in the development of chlorpyrifos resistance in S. furcifera.


Assuntos
Clorpirifos , Hemípteros , Inseticidas , Animais , China , Clorpirifos/toxicidade , Hemípteros/genética , Resistência a Inseticidas/genética , Inseticidas/toxicidade
8.
Pestic Biochem Physiol ; 171: 104725, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33357548

RESUMO

Due to the extensive use of chemical insecticides, the field populations of Rhopalosiphum padi, a serious wheat pest worldwide, have developed resistance to insecticides. Therefore, deep understanding of the mechanisms of the aphid's physiological response to insecticides would be of importance for the management of insecticide resistance in pests. Takeout belongs to a protein superfamily found exclusively in insects. Previous research showed that the takeout gene had various functions in insect physiology and behavior. However, few studies have explored the functions of takeout in insect insecticide susceptibility. The susceptibility of R. padi to imidacloprid and beta-cypermethrin was tested. Thirteen takeout-like genes were identified based on the genome database of R. padi. The number of exons was variable in these takeout-like genes, and nine highly conserved amino acids (two Cysteine, two Proline, four Glycine and one Aspartic acid) were identified. Expression levels of takeout-like-2, takeout-like-3, takeout-like-5, takeout-like-8, takeout-like-10 and takeout-like-11 were significantly increased after imidacloprid treatment; seven genes (takeout-like-1, takeout-like-2, takeout-like-5, takeout-like-6, takeout-like-7, takeout-like-8 and takeout-like-11) tended to be upregulated after beta-cypermethrin treatment. RNA interference results showed that the mortalities of R. padi injected with dsTOL-2, dsTOL-5, dsTOL-8, dsTOL-10 and dsTOL-11 were significantly increased after exposure to imidacloprid in comparison with control (injection of dsGFP). Under two sublethal concentrations of beta-cypermethrin, the silencing of takeout-like-2, takeout-like-5 and takeout-like-11 significantly increased the mortalities of R. padi. These results provide evidence for the involvement of takeout-like genes in insecticide susceptibility of R. padi, which improves our understanding the determinant of insecticide susceptibility.


Assuntos
Afídeos , Inseticidas , Animais , Afídeos/genética , Resistência a Inseticidas/genética , Inseticidas/toxicidade , Triticum
9.
Pestic Biochem Physiol ; 171: 104727, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33357549

RESUMO

Insecticide resistance is an ongoing challenge in agriculture and disease vector control. Here, we demonstrate a novel strategy to attenuate resistance. We used genomics tools to target fundamental energy-associated pathways and identified a potential "Achilles' heel" for resistance, a resistance-associated protein that, upon inhibition, results in a substantial loss in the resistance phenotype. Specifically, we compared the gene expression profiles and structural variations of the insulin/insulin-like growth factor signaling (IIS) pathway genes in DDT-susceptible (91-C) and -resistant (91-R) Drosophila melanogaster (Drosophila) strains. A total of eight and seven IIS transcripts were up- and down-regulated, respectively, in 91-R compared to 91-C. A total of 114 nonsynonymous mutations were observed between 91-C and 91-R, of which 51.8% were fixed. Among the differentially expressed transcripts, phosphoenolpyruvate carboxykinase (PEPCK), down-regulated in 91-R, encoded the greatest number of amino acid changes, prompting us to perform PEPCK inhibitor-pesticide exposure bioassays. The inhibitor of PEPCK, hydrazine sulfate, resulted in a 161- to 218-fold decrease in the DDT resistance phenotype (91-R) and more than a 4- to 5-fold increase in susceptibility in 91-C. A second target protein, Glycogen synthase kinase 3ß (GSK3ß-PO), had one amino acid difference between 91-C and 91-R, and the corresponding transcript was also down-regulated in 91-R. A GSK3ß-PO inhibitor, lithium chloride, likewise reduced the resistance but to a lesser extent than did hydrazine sulfate for PEPCK. We demonstrate the potential role of IIS genes in DDT resistance and the potential discovery of an "Achilles' heel" against pesticide resistance in this pathway.


Assuntos
Proteínas de Drosophila , Drosophila melanogaster , Animais , DDT/farmacologia , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Calcanhar , Resistência a Inseticidas/genética , Insulina , Transdução de Sinais
10.
Pestic Biochem Physiol ; 171: 104729, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33357551

RESUMO

The melon aphid, Aphis gossypii is a globally distributed crop pest with a wide host range. The intensive use of insecticides against this insect over several years has led to develop resistance against many insecticides including acetamiprid. Understanding the relationship between acetamiprid resistance and fitness of A. gossypii is essential to limit the spread of the resistant population in the field. In this study, age-stage, two-sex life table approach was used to investigate these relationships in the lab. Results showed that resistant strain (Ace-R) had a reduced fitness (relative fitness = 0.909) along with significantly decreased adult longevity, fecundity, net reproductive (R0), mean generation time (T) and gross reproductive rate (GRR). Compared to the susceptible strain (Ace-S), the pre-adult period and total pre-oviposition period (TPOP) were also significantly shorter in Ace-R strain. Moreover, the expression profiles of EcR, JHBP, JHAMT, JHEH, USP and Vg genes supposed to be involved in insect reproduction and development were analyzed using Quantitative Real Time PCR. The EcR, JHBP, JHAMT and USP genes were up-regulated, Vg gene was down-regulated while the mRNA level of JHEH gene was statistically same in the Ace-R strain compared to the Ace-S strain. Collectively, this study provides the occurrence and magnitude of fitness costs of A. gossypii against acetamiprid resistance and could be helpful to manage the resistance evolution in field populations.


Assuntos
Afídeos , Cucurbitaceae , Inseticidas , Animais , Afídeos/genética , Feminino , Resistência a Inseticidas/genética , Inseticidas/farmacologia , Tábuas de Vida , Neonicotinoides
11.
Pestic Biochem Physiol ; 171: 104741, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33357563

RESUMO

Insecticide resistance in pest populations is an increasing problem in both urban and rural settings due to over-application of insecticides and lack of rotation among insecticidal chemical classes. The house fly (Musca domestica L.) is a cosmopolitan pest fly species implicated in the transmission of numerous pathogens. The evolution of insecticide resistance long has been documented in house flies, with resistance reported to all major insecticide classes. House fly resistance to imidacloprid, the most widely used neonicotinoid insecticide available for fly control, has evolved in field populations through both physiological and behavioral mechanisms. Previous studies have characterized and mapped the genetic changes that confer physiological resistance to imidacloprid, but no study have examined the genetics involved in behavioral resistance to imidacloprid to date. In the current study, several approaches were utilized to characterize the genetics and inheritance of behavioral resistance to imidacloprid in the house fly. These include behavioral observation analyses, preference assays, and the use of genetic techniques for the identification of house fly chromosome(s) carrying factors. Behavioral resistance was mapped to autosomes 1 and 4. Inheritance of resistance was shown to be neither fully dominant nor recessive. Factors on autosomes 1 and 4 independently conferred contact-dependent avoidance of imidacloprid and a feeding preference for sugar alone or for sugar with dinotefuran, another neonicotinoid insecticide, over imidacloprid. This study serves as the first linkage analysis of a behavioral trait in the house fly, and provides new avenues for research regarding inherited behavior in the house fly and other animals.


Assuntos
Moscas Domésticas , Inseticidas , Animais , Moscas Domésticas/genética , Resistência a Inseticidas/genética , Inseticidas/farmacologia , Neonicotinoides/farmacologia , Nitrocompostos
12.
Pestic Biochem Physiol ; 171: 104744, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33357566

RESUMO

The sweetpotato whitefly Bemisia tabaci is a polyphagous crop pest distributed worldwide and frequent exposure to many different defensive secondary metabolites in its host plants. To counteract these defensive plant secondary metabolites, B. tabaci elevate their production of detoxification enzymes, including cytochrome P450 monooxygenases. Besides their tolerance to phytotoxin, B. tabaci have quickly developed resistance to various insecticides in the field. However, the relationship between host plant secondary metabolites and insecticide resistance in B. tabaci is not fully understood. In this study, the influence of plant flavonoid ingestion on B. tabaci tolerance to thiamethoxam and flupyradifurone insecticides and its possible mechanism were examined. Eight plant flavonoids were screened to evaluate their effects on B. tabaci adult sensitivity to thiamethoxam and flupyradifurone. Of which rutin, quercetin, kaempferol, myricetin and catechin significantly reduced adult sensitivity to thiamethoxam and flupyradifurone. Application of cytochrome P450 inhibitor piperonyl butoxide significantly increased the mortality of B. tabaci adults treated with thiamethoxam and flupyradifurone. Moreover, flavonoid ingestion predominantly enhanced the activity of cytochrome P450 enzyme in B. tabaci adults. Meanwhile, the expression level of three cytochrome P450 genes, CYP6CM1, CYP6CX4 and CYP4C64 were induced by the flavonoids in B. tabaci adults. In conclusion, plant flavonoids enhanced the tolerance to thiamethoxam and flupyradifurone in B. tabaci and cytochrome P450s may contribute the flavonoid adaptation. The reduced sensitivity of thiamethoxam and flupyradifurone in flavonoid-fed B. tabaci adults suggested that previous exposure to the host plant-derived flavonoids is likely to compromise the efficacy of insecticides.


Assuntos
Hemípteros , Inseticidas , 4-Butirolactona/análogos & derivados , Animais , Flavonoides/farmacologia , Resistência a Inseticidas/genética , Inseticidas/farmacologia , Piridinas , Tiametoxam
13.
Pestic Biochem Physiol ; 171: 104717, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33357567

RESUMO

The rusty grain beetle, Cryptolestes ferrugineus, a major pest of stored commodities, has developed very high levels (>1000×) of resistance to the fumigant phosphine. Resistance in this species is remarkably stronger than reported in any other stored product pests demanding the need to understand the molecular basis of this trait. Previous genetic studies in other grain insect pests identified specific variants in two major genes, rph1 and rph2 in conferring the strong resistance trait. However, in C. ferrugineus, although the gene, rph1 was identified as cytochrome-b5-fatty acid desaturase, the rph2 gene has not been reported so far. We tested the candidate gene for rph2, dihydrolipoamide dehydrogenase (dld) using the recently published transcriptome of C. ferrugineus and identified three variants, L73N and A355G + D360H, a haplotype, conferring resistance in this species. Our sequence analysis in resistant strain and phosphine selected resistant survivors indicates that these variants occur either alone as a homozygote or a mixture of heterozygotes (i.e complex heterozygotes) both conferring strong resistance. We also found that one of the three variants, possibly L73N expressing "dominant" trait at low frequency in resistant insects. Comparison of dld sequences between Australian and Chinese resistant strain of this species confirmed that the identified variants are highly conserved. Our fitness analysis indicated that resistant insects may not incur significant biological costs in the absence of phosphine selection for 19 generations. Thus, we propose that the observed high levels of resistance in C. ferrugineus could be primarily due to the characteristics of three unique variants, L73N and A355G + D360H within dld.


Assuntos
Besouros , Inseticidas , Fosfinas , Animais , Austrália , Besouros/genética , Di-Hidrolipoamida Desidrogenase/genética , Resistência a Inseticidas/genética , Inseticidas/farmacologia , Fosfinas/farmacologia
14.
Pest Manag Sci ; 77(1): 273-284, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32696499

RESUMO

BACKGROUND: Farmers around the world have used Bt maize for more than two decades, delaying resistance using a high-dose/refuge strategy. Nevertheless, field-evolved resistance to Bacillus thuringiensis (Bt) toxins has been documented. This paper describes a spatially explicit population genetics model of resistance to Bt toxins by the insect Ostrinia nubilalis and an agent-based model of farmer adoption of Bt maize incorporating social networks. The model was used to evaluate multiple resistance mitigation policies, including combinations of increased refuges for all farms, localized bans on Bt maize where resistance develops, area-wide sprays of insecticides on fields with resistance and taxes on Bt maize seed for all farms. Evaluation metrics included resistance allele frequency, pest population density, farmer adoption of Bt maize and economic surplus. RESULTS: The most effective mitigation policies for maintaining a low resistance allele frequency were 50% refuge and localized bans. Area-wide sprays were the most effective for maintaining low pest populations. Based on economic surplus, refuge requirements were the recommended policy for mitigating resistance to high-dose Bt maize. Social networks further enhanced the benefits of refuges relative to other mitigation policies but accelerated the emergence of resistance. CONCLUSION: These results support using refuges as the foundation of resistance mitigation for high-dose Bt maize, just as for resistance management. Other mitigation policies examined were more effective but more costly. Social factors had substantial effects on the recommended management and mitigation of insect resistance, suggesting that agent-based models can make useful contributions for policy analysis.


Assuntos
Bacillus thuringiensis , Zea mays , Animais , Bacillus thuringiensis/genética , Proteínas de Bactérias/genética , Endotoxinas/genética , Proteínas Hemolisinas , Insetos , Resistência a Inseticidas/genética , Controle Biológico de Vetores , Plantas Geneticamente Modificadas/genética , Ciências Sociais , Zea mays/genética
15.
Pest Manag Sci ; 77(1): 482-491, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32812675

RESUMO

BACKGROUND: The peach potato aphid, Myzus persicae, has developed resistance to many insecticides. In Belgium, M. persicae is one of the most common aphids in potato fields and one of the most effective virus vectors. We monitored resistance mutations to pyrethroids, carbamates and neonicotinoids and related these results to microsatellite genotyping to provide information to support the choice of management tactics. RESULTS: Most of the 254 aphids tested (97.6%) displayed at least one mutation conferring resistance to pyrethroids (L1014F, M918L and M918T) and 36.2% additionally carried the modified acetylcholinesterase (MACE) carbamates resistance making them resistant to two insecticide action modes. Ten mutation combinations were detected, two of which were frequent and a strong linkage was found between MACE and M918L mutations. The R81T mutation conferring resistance to neonicotinoids was not detected. Microsatellites highlighted a moderate genetic diversity [69 multilocus genotypes (MLG) detected], severe deviations from Hardy-Weinberg expectations, a highly significant excess of heterozygotes and linkage disequilibrium between all pairs of loci. A structuration of MLGs in association with the mutation combinations was observed. Genetic differentiation was mainly not significant between sampling locations and most MLGs were geographically widespread. These results suggest the likely coexistence of parthenogenesis (obligatory or facultative) and sexual reproduction, and the existence of 'old' parthenogenetic overwintering asexual lineages. CONCLUSION: The results of this monitoring at a regional scale provide useful information on insecticide resistance, genetic diversity and reproductive modes, and highlight the need to reduce the insecticide selection pressure and to implement mitigating techniques.


Assuntos
Afídeos , Inseticidas , Solanum tuberosum , Animais , Afídeos/genética , Bélgica , Genótipo , Resistência a Inseticidas/genética , Inseticidas/farmacologia
16.
Pest Manag Sci ; 77(1): 577-587, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32816378

RESUMO

BACKGROUND: Mythimna separata is a devastating agricultural pest that has recently developed insecticide resistance. Integument-specific cytochrome P450s were reported to participate in cuticle formation and could be potential targets for pesticide synthesis. RESULTS: The transcriptome of integuments of M. separata larvae was constructed, generating a total of 38 058 unigenes with an average length of 1243 bp. These unigenes are enriched in functional categories such as lipid transport and metabolism, and secondary metabolites biosynthesis, transport and catabolism. Amongst unigenes, cytochrome P450s were identified and 66 unique P450s with complete open reading frames were named. These P450s were divided into 17 families and 32 subfamilies, containing conserved motifs such as helix C, helix I, helix K, and the heme-binding region. RNA-Seq and RT-qPCR analyses showed different expression levels of P450s in integuments of M. separata larvae. Further RT-qPCR analysis of P450s among different tissues showed that five P450s, especially CYP4G199, were specifically highly expressed in integuments. Moreover, knockdown of CYP4G199 disturbed cuticle formation, leading to imperfection in larval cuticle, and prevented pupation of M. separata. CONCLUSION: Transcriptome of larval integuments provided sequence and expression of genes in M. separata. CYP4G199 is specifically highly expressed in larval integuments and is important for cuticle formation in M. separata.


Assuntos
Mariposas , Animais , Sistema Enzimático do Citocromo P-450/genética , Humanos , Resistência a Inseticidas/genética , Larva/genética , Mariposas/genética , Spodoptera , Transcriptoma
17.
Chemosphere ; 263: 128269, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33297213

RESUMO

Increasing evidence indicates that insect resistance to synthesized insecticides is regulated by the nuclear receptors. However, the underlying mechanisms of this regulation are not clear. Here, we demonstrate that inhibition of hepatocyte nuclear factor 4 (HNF4) confers imidacloprid resistance in the brown planthopper (BPH) Nilaparvata lugens by regulating cytochrome P450 and UDP-glycosyltransferase (UGT) genes. An imidacloprid-resistant strain (Res) exhibited a 251.69-fold resistance to imidacloprid in comparison to the susceptible counterpart (Sus) was obtained by successive selection with imidacloprid. The expression level of HNF4 in the Res strain was lower than that in Sus, and knockdown of HNF4 by RNA interference significantly enhanced the resistance of BPH to imidacloprid. Comparative transcriptomic analysis identified 1400 differentially expressed genes (DEGs) in the HNF4-silenced BPHs compared to controls. Functional enrichment analysis showed that cytochrome P450- and UGT-mediated metabolic detoxification pathways were enriched by the up-regulated DEGs after HNF4 knockdown. Among of them, UGT-1-7, UGT-2B10 and CYP6ER1 were found to be over-expressed in the Res strain, and knockdown of either gene significantly decreased the resistance of BPH to imidacloprid. This study increases our understanding of molecular mechanisms involved in the regulation of insecticide resistance and also provides potential targets for pest management.


Assuntos
Hemípteros , Inseticidas , Animais , Sistema Enzimático do Citocromo P-450/genética , Glicosiltransferases/genética , Hemípteros/genética , Fator 4 Nuclear de Hepatócito , Imidazóis , Resistência a Inseticidas/genética , Inseticidas/toxicidade , Neonicotinoides/toxicidade , Nitrocompostos/toxicidade , Difosfato de Uridina
18.
PLoS Negl Trop Dis ; 14(12): e0008955, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33326440

RESUMO

Human head lice are blood-sucking insects causing an infestation in humans called pediculosis capitis. The infestation is more prevalent in the school-aged population. Scalp itching, a common presenting symptom, results in scratching and sleep disturbance. The condition can lead to social stigmatization which can lead to loss of self-esteem. Currently, the mainstay of treatment for pediculosis is chemical insecticides such as permethrin. The extended use of permethrin worldwide leads to growing pediculicide resistance. The aim of this study is to demonstrate the presence of the knockdown resistance (kdr) mutation in head lice populations from six different localities of Thailand. A total of 260 head lice samples in this study were collected from 15 provinces in the 6 regions of Thailand. Polymerase chain reaction (PCR) was used to amplify the α subunit of voltage-sensitive sodium channel (VSSC) gene, kdr mutation (C→T substitution). Restriction fragment length polymorphism (RFLP) patterns and sequencing were used to identify the kdr T917I mutation and demonstrated three genotypic forms including homozygous susceptible (SS), heterozygous genotype (RS), and homozygous resistant (RR). Of 260 samples from this study, 156 (60.00%) were SS, 58 (22.31%) were RS, and 46 (17.69%) were RR. The overall frequency of the kdr T917I mutation was 0.31. Genotypes frequencies determination using the exact test of Hardy-Weinberg equilibrium found that northern, central, northeastern, southern, and western region of Thailand differed from expectation. The five aforementioned localities had positive inbreeding coefficient value (Fis > 0) which indicated an excess of homozygotes. The nucleotide and amino acid sequences of RS and RR showed T917I and L920F point mutations. In conclusion, this is the first study detecting permethrin resistance among human head lice from Thailand. PCR-RFLP is an easy technique to demonstrate the kdr mutation in head louse. The data obtained from this study would increase awareness of increasing of the kdr mutation in head louse in Thailand.


Assuntos
Resistência a Inseticidas/genética , Inseticidas/farmacologia , Infestações por Piolhos/parasitologia , Pediculus/genética , Permetrina/farmacologia , Substituição de Aminoácidos , Animais , Criança , Feminino , Genótipo , Humanos , Infestações por Piolhos/epidemiologia , Masculino , Mutação de Sentido Incorreto , Pediculus/efeitos dos fármacos , Mutação Puntual , Prevalência , Instituições Acadêmicas , Estudantes , Tailândia/epidemiologia
19.
Korean J Parasitol ; 58(5): 543-550, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33202506

RESUMO

Mosquitoes are globally distributed and important vectors for the transmission of many human diseases. Mosquito control is a difficult task and the cost of preventing mosquito-borne diseases is much lower than that for curing the associated diseases. Thus, chemical control remains the most effective tool for mosquito. Due to the long-term intensive use of insecticides to control mosquito vectors, resistance to most chemical insecticides has been reported. This study aimed to investigate the relationship between insecticide resistance and target site mutation of L1014 kdr and G119 ace alleles in 5 species/species group of mosquitoes (Aedes vexans, Ae. albopictus, Anopheles spp., Culex pipiens complex, and Cx. tritaeniorhynchus) obtained from 6 collection sites. For Anopheles spp., the proportion of mosquitoes with mutated alleles in L1014 was 88.4%, homozygous resistant genotypes were observed in 46.7%, and heterozygous resistant genotypes were observed in 41.8%. For the Cx. pipiens complex and Cx. tritaeniorhynchus species, homozygous resistant genotypes were found in 25.9% and 9.8%, respectively. However, target site mutation of L1014 in the Ae. vexans nipponii and Ae. albopictus species was not observed. Anopheles spp., Cx. pipiens complex, and Cx. tritaeniorhynchus mosquitoes were resistant to deltamethrin and chlorpyriphos, whereas Ae. vexans nipponii and Ae. albopictus were clearly susceptible. We also found a correlation between the resistance phenotype and the presence of the L1014 kdr and G119 ace mutations only in the Anopheles spp. population. In this study, we suggest that insecticide resistance poses a growing threat and resistance management must be integrated into all mosquito control programs.


Assuntos
Alelos , Proteínas de Insetos/genética , Resistência a Inseticidas/genética , Inseticidas/farmacologia , Controle de Mosquitos , Mosquitos Vetores/efeitos dos fármacos , Mosquitos Vetores/genética , Mutação/efeitos dos fármacos , Animais , Monitoramento Ambiental , Humanos , Mosquitos Vetores/classificação , República da Coreia , Doenças Transmitidas por Vetores/prevenção & controle , Doenças Transmitidas por Vetores/transmissão
20.
Pestic Biochem Physiol ; 170: 104687, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32980055

RESUMO

Cytochrome P450 monooxygenases (P450s) are highly conserved multifunctional enzymes that play crucial roles in insecticide resistance development. In this study, the molecular mechanisms of P450s in acetamiprid resistance development to melon aphid, Aphis gossypii was investigated. Acetamiprid resistant (32.64-fold resistance) population (Ace-R) of A. gossypii was established by continuous selection with acetamiprid for 24 generations. Quantitative Real Time PCR was carried out to analyze the expression of P450 genes in both acetamiprid resistant (Ace-R) and susceptible (Ace-S) strains. Result showed that nine genes (CYP6CY14, CYP6DC1, CYP6CZ1, CYP6DD1, CYP6CY5, CYP6CY9, CYP6DA1, CYP6CY18, and CYP6CY16) of CYP3 clade, four genes (CYP302A1, CYP315A1, CYP301A1, and CYP314A1) of CYP2 clade, two genes (CYP4CK1, CYP4G51) of CYP4 clade and three genes (CYP306A1, CYP305E1, CYP307A1) of mitochondrial clade (Mito clad) were significantly up-regulated, in Ace-R compared to Ace-S strain. Whilst CYP4CJ2 gene from (CYP4 clade) was significantly down-regulated in Ace-R strain. Furthermore, RNA interference-mediated knockdown of CYP6CY14, CYP6DC1, and CYP6CZ1 genes significantly increased the sensitivity of Ace-R strain to acetamiprid. Taken together, this study showed that P450 genes especially CYP6CY14, CYP6DC1 and CYP6CZ1 are potentially involved in acetamiprid resistance development in A. gossypii. This study could be useful to understand the molecular basis of acetamiprid resistance mechanism in A. gossypii.


Assuntos
Afídeos/efeitos dos fármacos , Afídeos/genética , Cucurbitaceae , Inseticidas/farmacologia , Animais , Sistema Enzimático do Citocromo P-450/genética , Resistência a Inseticidas/efeitos dos fármacos , Resistência a Inseticidas/genética , Neonicotinoides
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA