RESUMO
Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) catalyzes the first step of carbon fixation performed by photosynthetic organisms. Form I of this enzyme found in plants and cyanobacteria is composed of eight large (RbcL) and eight small (RbcS) subunits. To form a functional enzyme, Rubisco subunits need to be properly folded, with the assistance of cellular chaperone machinery, and consecutively assembled in a strictly orchestrated manner, with the help of multiple auxiliary factors. In recent years, multiple Rubisco assembly chaperones and their function in enzyme biogenesis have been extensively characterized. Little is known about the potential specialized factors involved in Rubisco subunits folding at the pre-chaperonin stage, yet this knowledge is greatly needed for the fast and efficient testing of new Rubisco variants.Synechococcus sp. PCC 6803 Rubisco shows limited solubility and a lack of assembly in the Escherichia coli expression system. In this study, we aim to identify which additional chaperones are necessary and sufficient in sustaining the heterologous assembly of native Rubisco. Our findings prove that upon the introduction of Synechocystis DnaK2 to the E. coli system, RbcL is produced in soluble form. The addition of specific DnaJ (Sll1384) enhances this effect. We explain these combined effects based on binding constancies, measured for particular partners in vitro, as well as our analysis of the putative tertiary structure of the proteins. Our results have potential implications for Rubisco engineering.
Assuntos
Proteínas de Bactérias , Ribulose-Bifosfato Carboxilase , Synechocystis , Proteínas de Bactérias/metabolismo , Proteínas de Choque Térmico HSP40/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Chaperonas Moleculares/metabolismo , Ribulose-Bifosfato Carboxilase/metabolismo , Synechocystis/metabolismoRESUMO
The entry of carbon dioxide from the atmosphere into the biosphere is mediated by the enzyme Rubisco, which catalyzes the carboxylation of ribulose 1,5-bisphosphate (RuBP) as the entry reaction of the Calvin Benson Bassham cycle (CBBC), leading to the formation of 2 molecules of 3-phosphoglyceric acid (3PGA) per CO2 fixed. 3PGA is reduced to triose phosphates at the expense of NADPH + H+ and ATP that are provided by the photosynthetic light reactions. Triose phosphates are the principal products of the CBBC and the precursors for almost any compound in the biosphere.
Assuntos
Fosfatos , Fotossíntese , Trioses , Ribulose-Bifosfato Carboxilase/metabolismo , Dióxido de CarbonoRESUMO
Increasing plants' photosynthetic efficiency is a major challenge that must be addressed in order to cover the food demands of the growing population in the changing climate. Photosynthesis is greatly limited at the initial carboxylation reaction, where CO2 is converted to the organic acid 3-PGA, catalyzed by the RuBisCO enzyme. RuBisCO has poor affinity for CO2, but also the CO2 concentration at the RuBisCO site is limited by the diffusion of atmospheric CO2 through the various leaf compartments to the reaction site. Beyond genetic engineering, nanotechnology can offer a materials-based approach for enhancing photosynthesis, and yet, it has mostly been explored for the light-dependent reactions. In this work, we developed polyethyleneimine-based nanoparticles for enhancing the carboxylation reaction. We demonstrate that the nanoparticles can capture CO2 in the form of bicarbonate and increase the CO2 that reacts with the RuBisCO enzyme, enhancing the 3-PGA production in in vitro assays by 20%. The nanoparticles can be introduced to the plant via leaf infiltration and, because of the functionalization with chitosan oligomers, they do not induce any toxic effect to the plant. In the leaves, the nanoparticles localize in the apoplastic space but also spontaneously reach the chloroplasts where photosynthetic activity takes place. Their CO2 loading-dependent fluorescence verifies that, in vivo, they maintain their ability to capture CO2 and can be therefore reloaded with atmospheric CO2 while in planta. Our results contribute to the development of a nanomaterials-based CO2-concentrating mechanism in plants that can potentially increase photosynthetic efficiency and overall plants' CO2 storage.
Assuntos
Quitosana , Nanopartículas , Dióxido de Carbono , Polietilenoimina , Ribulose-Bifosfato Carboxilase/genética , Ribulose-Bifosfato Carboxilase/metabolismo , Fotossíntese , Plantas/metabolismo , Folhas de Planta/metabolismoRESUMO
While most studies of biomolecular phase separation have focused on the condensed phase, relatively little is known about the dilute phase. Theory suggests that stable complexes form in the dilute phase of two-component phase-separating systems, impacting phase separation; however, these complexes have not been interrogated experimentally. We show that such complexes indeed exist, using an in vitro reconstitution system of a phase-separated organelle, the algal pyrenoid, consisting of purified proteins Rubisco and EPYC1. Applying fluorescence correlation spectroscopy (FCS) to measure diffusion coefficients, we found that complexes form in the dilute phase with or without condensates present. The majority of these complexes contain exactly one Rubisco molecule. Additionally, we developed a simple analytical model which recapitulates experimental findings and provides molecular insights into the dilute phase organization. Thus, our results demonstrate the existence of protein complexes in the dilute phase, which could play important roles in the stability, dynamics, and regulation of condensates.
Assuntos
Plastídeos , Ribulose-Bifosfato Carboxilase , Ribulose-Bifosfato Carboxilase/química , Ribulose-Bifosfato Carboxilase/metabolismoRESUMO
Saccharum spontaneum and Saccharum officinarum contributed to the genetic background of modern sugarcane cultivars. Saccharum spontaneum has shown a higher net photosynthetic rate and lower soluble sugar than S. officinarum. Here, we analyzed 198 RNA-sequencing samples to investigate the molecular mechanisms for the divergences of photosynthesis and sugar accumulation between the two Saccharum species. We constructed gene co-expression networks based on differentially expressed genes (DEGs) both for leaf developmental gradients and diurnal rhythm. Our results suggested that the divergence of sugar accumulation may be attributed to the enrichment of major carbohydrate metabolism and the oxidative pentose phosphate pathway. Compared with S. officinarum, S. spontaneum DEGs showed a high enrichment of photosynthesis and contained more complex regulation of photosynthesis-related genes. Noticeably, S. spontaneum lacked gene interactions with sulfur assimilation stimulated by photorespiration. In S. spontaneum, core genes related to clock and photorespiration displayed a sensitive regulation by the diurnal rhythm and phase-shift. Small subunit of Rubisco (RBCS) displayed higher expression in the source tissues of S. spontaneum. Additionally, it was more sensitive under a diurnal rhythm, and had more complex gene networks than that in S. officinarum. This indicates that the differential regulation of RBCS Rubisco contributed to photosynthesis capacity divergence in both Saccharum species.
Assuntos
Saccharum , Saccharum/genética , Saccharum/metabolismo , Transcriptoma , Ribulose-Bifosfato Carboxilase/genética , Ribulose-Bifosfato Carboxilase/metabolismo , Fotossíntese/genética , Açúcares/metabolismoRESUMO
The rate with which crop yields per hectare increase each year is plateauing at the same time that human population growth and other factors increase food demand. Increasing yield potential ( Y p ) of crops is vital to address these challenges. In this review, we explore a component of Y p that has yet to be optimised - that being improvements in the efficiency with which light energy is converted into biomass ( ε c ) via modifications to CO2 fixed per unit quantum of light (α), efficiency of respiratory ATP production ( ε prod ) and efficiency of ATP use ( ε use ). For α, targets include changes in photoprotective machinery, ribulose bisphosphate carboxylase/oxygenase kinetics and photorespiratory pathways. There is also potential for ε prod to be increased via targeted changes to the expression of the alternative oxidase and mitochondrial uncoupling pathways. Similarly, there are possibilities to improve ε use via changes to the ATP costs of phloem loading, nutrient uptake, futile cycles and/or protein/membrane turnover. Recently developed high-throughput measurements of respiration can serve as a proxy for the cumulative energy cost of these processes. There are thus exciting opportunities to use our growing knowledge of factors influencing the efficiency of photosynthesis and respiration to create a step-change in yield potential of globally important crops.
Assuntos
Dióxido de Carbono , Produtos Agrícolas , Citocromo P-450 CYP2B1 , Trifosfato de Adenosina/metabolismo , Dióxido de Carbono/metabolismo , Produtos Agrícolas/fisiologia , Citocromo P-450 CYP2B1/metabolismo , Fotossíntese , Ribulose-Bifosfato Carboxilase/metabolismoRESUMO
Submerged macrophytes play an important role in the global carbon cycle through diversified pathways of inorganic carbon (Ci) utilization distinct from terrestrial plants. However, the effects of silver nanoparticles (AgNPs), an emerging contaminant, were unknown on the Ci utilization of submerged macrophytes. In Ottelia alismoides, the only known submerged macrophyte with three pathways of Ci utilization, before absorption, AgNPs inhibited the external carbonic anhydrase activity thus reducing the capacity of the plant to use HCO3-. After entering the plant, AgNPs mainly aggregated at the cell wall and in the chloroplast. The internalized AgNPs inhibited ribulose 1,5-bisphosphate carboxylase-oxygenase (Rubisco) activity blocking CO2 fixation and disturbed C4 and crassulacean acid metabolism (CAM) by inhibiting phosphoenolpyruvate carboxylase (PEPC), pyruvate phosphate dikinase (PPDK), and NAD-dependent malic enzyme (NAD-ME) activities to alter intracellular malate biosynthesis and decarboxylation. Overall, our findings indicate that the Ci utilization of the submerged macrophyte is a target of AgNPs toxicity that might affect the carbon cycle in aquatic systems.
Assuntos
Nanopartículas Metálicas , Nanopartículas Metálicas/toxicidade , Prata/toxicidade , NAD/metabolismo , Fotossíntese , Plantas/metabolismo , Carbono/metabolismo , Dióxido de Carbono/farmacologia , Dióxido de Carbono/metabolismo , Ribulose-Bifosfato Carboxilase/metabolismoRESUMO
Photosynthetic acclimation to prolonged elevated CO2 could be attributed to the two limited biochemical capacity, ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) carboxylation and ribulose-1,5-bisphosphate (RuBP) regeneration, however, which one is the primary driver is unclear. To quantify photosynthetic acclimation induced by biochemical limitation, we investigated photosynthetic characteristics and leaf nitrogen allocation to photosynthetic apparatus (Rubisco, bioenergetics, and light-harvesting complex) in a japonica rice grown in open-top chambers at ambient CO2 and ambient CO2+200 µmol mol-1 (e [CO2]). Results showed that photosynthesis was stimulated under e [CO2], but concomitantly, photosynthetic acclimation obviously occurred across the whole growth stages. The content of leaf nitrogen allocation to Rubisco and biogenetics was reduced by e [CO2], while not in light-harvesting complex. Unlike the content, there was little effects of CO2 enrichment on the percentage of nitrogen allocation to photosynthetic components. Additionally, leaf nitrogen did not reallocate within photosynthetic apparatus until the imbalance of sink-source under e [CO2]. The contribution of biochemical limitations, including Rubisco carboxylation and RuBP regeneration, to photosynthetic acclimation averaged 36.2% and 63.8% over the growing seasons, respectively. This study suggests that acclimation of photosynthesis is mainly driven by RuBP regeneration limitation and highlights the importance of RuBP regeneration relative to Rubisco carboxylation in the future CO2 enrichment.
Assuntos
Oryza , Oryza/metabolismo , Dióxido de Carbono/farmacologia , Ribulose-Bifosfato Carboxilase/metabolismo , Fotossíntese , Aclimatação , Nitrogênio/farmacologia , Folhas de Planta/metabolismoRESUMO
The photorespiratory repair pathway (photorespiration in short) was set up from ancient metabolic modules about three billion years ago in cyanobacteria, the later ancestors of chloroplasts. These prokaryotes developed the capacity for oxygenic photosynthesis, i.e. the use of water as a source of electrons and protons (with O2 as a by-product) for the sunlight-driven synthesis of ATP and NADPH for CO2 fixation in the Calvin cycle. However, the CO2-binding enzyme, ribulose 1,5-bisphosphate carboxylase (known under the acronym Rubisco), is not absolutely selective for CO2 and can also use O2 in a side reaction. It then produces 2-phosphoglycolate (2PG), the accumulation of which would inhibit and potentially stop the Calvin cycle and subsequently photosynthetic electron transport. Photorespiration removes the 2-PG and in this way prevents oxygenic photosynthesis from poisoning itself. In plants, the core of photorespiration consists of ten enzymes distributed over three different types of organelles, requiring interorganellar transport and interaction with several auxiliary enzymes. It goes together with the release and to some extent loss of freshly fixed CO2. This disadvantageous feature can be suppressed by CO2-concentrating mechanisms, such as those that evolved in C4 plants thirty million years ago, which enhance CO2 fixation and reduce 2PG synthesis. Photorespiration itself provided a pioneer variant of such mechanisms in the predecessors of C4 plants, C3-C4 intermediate plants. This article is a review and update particularly on the enzyme components of plant photorespiration and their catalytic mechanisms, on the interaction of photorespiration with other metabolism and on its impact on the evolution of photosynthesis. This focus was chosen because a better knowledge of the enzymes involved and how they are embedded in overall plant metabolism can facilitate the targeted use of the now highly advanced methods of metabolic network modelling and flux analysis. Understanding photorespiration more than before as a process that enables, rather than reduces, plant photosynthesis, will help develop rational strategies for crop improvement.
Assuntos
Dióxido de Carbono , Ribulose-Bifosfato Carboxilase , Ribulose-Bifosfato Carboxilase/metabolismo , Dióxido de Carbono/metabolismo , Fotossíntese , Plantas/metabolismo , Cloroplastos/metabolismo , Oxigênio/metabolismoRESUMO
Crop photosynthesis (A) and productivity are often limited by a combination of nutrient stresses, such that changes in the availability of one nutrient may affect the availability of another nutrient, in turn influencing A. In this study, we examined the synergistic effects of phosphorus (P) and potassium (K) on leaf A in a nutrient amendment experiment, in which P and K were added individually or in combination to Brassica napus grown under P and K co-limitation. The data revealed that the addition of P gradually removed the dominant limiting factor (i.e. the limited availability of P) and improved leaf A. Strikingly, the addition of K synergistically improved the overall uptake of P, mainly by boosting plant growth, and compensated for the physiological demand for P by prioritizing investment in metabolic pools of P (P-containing metabolites and inorganic phosphate, Pi). The enlarged pool of metabolically active P was partially associated with the upregulation of Pi regeneration through release from triose phosphates rather than replacement of P-containing lipids. This process mitigated P restrictions on A by maintaining the ATP/NADPH and NADPH/NADP+ ratios and increasing the content and activity of Rubisco. Our findings demonstrate that sufficient K increased Pi-limited A by enhancing metabolic P fractions and Rubisco activity. Thus, ionic synergism may be exploited to mitigate nutrient-limiting factors to improve crop productivity.
Assuntos
Brassica napus , Fósforo , Fósforo/metabolismo , Fosfatos/metabolismo , Potássio/metabolismo , Brassica napus/metabolismo , Ribulose-Bifosfato Carboxilase/metabolismo , NADP/metabolismo , Fotossíntese/fisiologia , Folhas de Planta/metabolismoRESUMO
Bacteria and Eucarya utilize the non-oxidative pentose phosphate pathway to direct the ribose moieties of nucleosides to central carbon metabolism. Many archaea do not possess this pathway, and instead, Thermococcales utilize a pentose bisphosphate pathway involving ribose-1,5-bisphosphate (R15P) isomerase and ribulose-1,5-bisphosphate (RuBP) carboxylase/oxygenase (Rubisco). Intriguingly, multiple genomes from halophilic archaea seem only to harbor R15P isomerase, and do not harbor Rubisco. In this study, we identify a previously unrecognized nucleoside degradation pathway in halophilic archaea, composed of guanosine phosphorylase, ATP-dependent ribose-1-phosphate kinase, R15P isomerase, RuBP phosphatase, ribulose-1-phosphate aldolase, and glycolaldehyde reductase. The pathway converts the ribose moiety of guanosine to dihydroxyacetone phosphate and ethylene glycol. Although the metabolic route from guanosine to RuBP via R15P is similar to that of the pentose bisphosphate pathway in Thermococcales, the downstream route does not utilize Rubisco and is unique to halophilic archaea.
Assuntos
Ribose , Ribulose-Bifosfato Carboxilase , Ribulose-Bifosfato Carboxilase/genética , Ribulose-Bifosfato Carboxilase/metabolismo , Ribose/metabolismo , Pentoses/metabolismo , Archaea/genética , Archaea/metabolismo , Guanosina/metabolismo , FosfatosRESUMO
Continuous CO2 emissions from human activities increase atmospheric CO2 concentrations and affect global climate change. The carbon storage capacity of the ocean is 20-fold higher than that of the land, and diatoms contribute to approximately 40% of carbon capture in the ocean. Manganese (Mn) is a major driver of marine phytoplankton growth and the marine carbon pump. Here, we discovered self-assembled manganese oxides (MnOx) for CO2 fixation in a diatom-based biohybrid system. MnOx shared key features (e.g., di-µ-oxo-bridged Mn-Mn) with the Mn4CaO5 cluster of the biological catalyst in photosystem II and promoted photosynthesis and carbon capture by diatoms/MnOx. The CO2 capture capacity of diatoms/MnOx was 1.5-fold higher than that of diatoms alone. Diatoms/MnOx easily allocated carbon into proteins and lipids instead of carbohydrates. Metabolomics showed that the contents of several metabolites (e.g., lysine and inositol) were positively associated with increased CO2 capture. Diatoms/MnOx upregulated six genes encoding photosynthesis core proteins and a key rate-limiting enzyme (Rubisco, ribulose 1,5-bisphosphate carboxylase-oxygenase) in the Calvin-Benson-Bassham carbon assimilation cycle, revealing the link between MnOx and photosynthesis. These findings provide a route for offsetting anthropogenic CO2 emissions and inspiration for self-assembled biohybrid systems for carbon capture by marine phytoplankton.
Assuntos
Diatomáceas , Humanos , Carbono/metabolismo , Manganês , Dióxido de Carbono/metabolismo , Ribulose-Bifosfato Carboxilase/metabolismo , Fitoplâncton/metabolismo , FotossínteseRESUMO
Analysis of Rubisco evolution could inform how to engineer a better enzyme.
Assuntos
Dióxido de Carbono , Ribulose-Bifosfato Carboxilase , Fotossíntese , Ribulose-Bifosfato Carboxilase/genética , Ribulose-Bifosfato Carboxilase/metabolismoRESUMO
Ribulose 1,5-bisphosphate carboxylase/oxygenase (RuBisCO) functions as the initial enzyme in the dark reactions of photosynthesis, catalyzing reactions that extract CO2 from the atmosphere and fix CO2 into organic compounds. RuBisCO is classified into four types (isoforms I-IV) according to sequence-based phylogenetic trees. Given its size, the computational cost of accurate quantum-chemical calculations for functional analysis of RuBisCO is high; however, recent advances in hardware performance and the use of the fragment molecular orbital (FMO) method have enabled the ab initio analyses of RuBisCO. Here, we performed FMO calculations on multiple structural datasets for various complexes with the 2'-carboxylarabinitol 1,5-bisphosphate (2CABP) ligand as a substrate analog and investigated whether phylogenetic relationships based on sequence information are physicochemically relevant as well as whether novel information unobtainable from sequence information can be revealed. We extracted features similar to the phylogenetic relationships found in sequence analysis, and in terms of singular value decomposition, we identified residues that strongly interacted with the ligand and the characteristics of the isoforms for each principal component. These results identified a strong correlation between phylogenetic relationships obtained by sequence analysis and residue interaction energies with the ligand. Notably, some important residues were located far from the ligand, making comparisons among species using only residues proximal to the ligand insufficient.
Assuntos
Dióxido de Carbono , Ribulose-Bifosfato Carboxilase , Dióxido de Carbono/metabolismo , Ligantes , Oxigenases/metabolismo , Fotossíntese , Filogenia , Extratos Vegetais , Ribulose-Bifosfato Carboxilase/metabolismoRESUMO
The carboxysome is a protein-based nanoscale organelle in cyanobacteria and many proteobacteria, which encapsulates the key CO2-fixing enzymes ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) and carbonic anhydrase (CA) within a polyhedral protein shell. The intrinsic self-assembly and architectural features of carboxysomes and the semipermeability of the protein shell provide the foundation for the accumulation of CO2 within carboxysomes and enhanced carboxylation. Here, we develop an approach to determine the interior pH conditions and inorganic carbon accumulation within an α-carboxysome shell derived from a chemoautotrophic proteobacterium Halothiobacillus neapolitanus and evaluate the shell permeability. By incorporating a pH reporter, pHluorin2, within empty α-carboxysome shells produced in Escherichia coli, we probe the interior pH of the protein shells with and without CA. Our in vivo and in vitro results demonstrate a lower interior pH of α-carboxysome shells than the cytoplasmic pH and buffer pH, as well as the modulation of the interior pH in response to changes in external environments, indicating the shell permeability to bicarbonate ions and protons. We further determine the saturated HCO3- concentration of 15 mM within α-carboxysome shells and show the CA-mediated increase in the interior CO2 level. Uncovering the interior physiochemical microenvironment of carboxysomes is crucial for understanding the mechanisms underlying carboxysomal shell permeability and enhancement of Rubisco carboxylation within carboxysomes. Such fundamental knowledge may inform reprogramming carboxysomes to improve metabolism and recruit foreign enzymes for enhanced catalytical performance.
Assuntos
Anidrases Carbônicas , Ribulose-Bifosfato Carboxilase , Proteínas de Bactérias/metabolismo , Bicarbonatos , Carbono/metabolismo , Dióxido de Carbono/metabolismo , Anidrases Carbônicas/metabolismo , Concentração de Íons de Hidrogênio , Organelas/metabolismo , Oxigenases/metabolismo , Permeabilidade , Prótons , Ribulose-Bifosfato Carboxilase/química , Ribulose-Bifosfato Carboxilase/metabolismoRESUMO
Life-long efforts of the Tartu photosynthesis research group have been summarized. The measurements were facilitated by self-designed instruments, distinct in multifunctionality and fastresponse time. The black-box type kinetical analysis on intact leaves has revealed several physiologically significant features of leaf photosynthesis. Rubisco studies reflected competition for the active site between the substrates and products, linearizing in vivo kinetics compared with the low-Km in vitro responses. Rubisco Activase usually activates only a small part of the Rubisco, making the rest of it a storage protein. Precisely quantifying absorbed photons and the responding transmittance changes, electron flow rates through cytochrome b6f, plastocyanin and photosystem I were measured, revealing competition between the proton-uncoupled cyclic electron flow from PSI to Cyt b6f to P700+ and the proton-coupled linear flow from PSII to Cyt b6f to P700+. Analyzing responses of O2 evolution and Chl fluorescence to ms-length light pulses we concluded that explanation of the sigmoidal fluorescence induction by excitonic connectivity between PSII units is a misconception. Each PSII processes excitation from its own antenna, but the sigmoidicity is caused by rise of the fluorescence yield of the QA-reduced PSII units after their QB site becomes occupied by reduced plastoquinone (or diuron). Unlike respiration, photosynthetic electrons must prepare their acceptor by coupled synthesis of 3ATP/4e-. Feedback regulation of this ratio leads to oscillations under saturating light and CO2, when the rate is Pi-limited. The slow oscillations (period 60s) indicate that the magnitudes of the deflections in the 3ATP/4e- ratio, corrected by regulating cyclic and alternative electron flow (including the Mehler type O2 reduction), are only a fraction of a per cent. The Pi limitation causes slip in the ATP synthase, slightly increasing the basic 12H+/3ATP requirement.
Assuntos
Clorofila , Ribulose-Bifosfato Carboxilase , Clorofila/metabolismo , Transporte de Elétrons/fisiologia , Ribulose-Bifosfato Carboxilase/metabolismo , Prótons , Citocromos b/metabolismo , Complexo de Proteína do Fotossistema I/metabolismo , Fotossíntese/fisiologia , Folhas de Planta/fisiologia , Complexo de Proteína do Fotossistema II/metabolismo , Oxirredução , LuzRESUMO
Tea-oil tree (Camellia oleifera Abel) is an important woody oil crop with high economic value. However, it has low photosynthetic production considering the low light intensity of its growth environment. To understand the acclimation mechanism of tea-oil trees to low light conditions, three light intensity treatments were conducted: high light (450-500 µmol. m-2. s-1), medium light (180-200 µmol. m-2. s-1), and low light (45-50 µmol. m-2. s-1). The carbon (C) and nitrogen (N) metabolism network were constructed by investigating the leaf anatomy, photosynthetic characteristics, N partitioning, transcriptome and metabolome. Results demonstrated that a larger proportion light energy was used for photochemical reactions in an environment with lower light intensity, which resulted in an increase in photosystem II photochemical efficiency and instantaneous light use efficiency (LUE) at the leaf level. As the light intensity increased, decreased electron transfer and carboxylation efficiencies, photorespiration and dark respiration rates, LUE at plant level, and N use efficiency (PNUE) were observed. Leaves trended to harvest more light using higher expression levels of light-harvesting protein genes, higher chlorophyll content, more granum and more tightly stacked granum lamella under lower light intensity. At transcriptional and metabolic levels, the TCA cycle, and the synthesis of starch and saccharides were weakened as light intensity decreased, while the Calvin cycle did not show the regularity between different treatments. Less N was distributed in Rubisco, respiration, and cell wall proteins as light decreased. Storage N was prominently accumulated in forms of amino acids (especially L-arginine) and amino acid derivatives as under medium and low light environments, to make up for C deficiency. Therefore, tea-oil trees actively improve light-harvesting capacity and enlarges the storage N pool to adapt to a low light environment, at the cost of a decrease of photosynthetic C assimilation and PNUE.
Assuntos
Camellia , Ribulose-Bifosfato Carboxilase , Aclimatação , Aminoácidos/metabolismo , Arginina/metabolismo , Camellia/metabolismo , Carbono/metabolismo , Clorofila/metabolismo , Nitrogênio/metabolismo , Fotossíntese , Complexo de Proteína do Fotossistema II/metabolismo , Folhas de Planta/metabolismo , Ribulose-Bifosfato Carboxilase/metabolismo , Amido/metabolismo , CháRESUMO
Polar microalgae face two major challenges: 1- growing at temperatures (-1.7 to 5°C) that limit enzyme kinetics; and 2- surviving and exploiting a wide range of irradiance. The objective of this study is to understand the adaptation of an Arctic diatom to its environment by studying its ability to acclimate to changes in light and temperature. We acclimated the polar diatom Chaetoceros neogracilis to various light levels at two different temperatures and studied its growth and photosynthetic properties using semi-continuous cultures. Rubisco content was high, to compensate for low catalytic rates, but did not change detectably with growth temperature. Contrary to what is observed in temperate species, in C. neogracilis, carbon fixation rate (20 min 14C incorporation) equaled net growth rate (µ) suggesting very low or very rapid (<20 min) re-oxidation of the newly fixed carbon. The comparison of saturation irradiances for electron transport, oxygen net production and carbon fixation revealed alternative electron pathways that could provide energy and reducing power to the cell without consuming organic carbon which is a very limiting product at low temperatures. High protein contents, low re-oxidation of newly fixed carbon and the use of electron pathways alternative to carbon fixation may be important characteristics allowing efficient growth under those extreme environmental conditions.