Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.653
Filtrar
1.
Commun Biol ; 5(1): 164, 2022 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-35210545

RESUMO

Quantification of system dynamics is a central aim of mathematical modelling in biology. Defining experimentally supported functional relationships between molecular entities by mathematical terms enables the application of computational routines to simulate and analyse the underlying molecular system. In many fields of natural sciences and engineering, trigonometric functions are applied to describe oscillatory processes. As biochemical oscillations occur in many aspects of biochemistry and biophysics, Fourier analysis of metabolic functions promises to quantify, describe and analyse metabolism and its reaction towards environmental fluctuations. Here, Fourier polynomials were developed from experimental time-series data and combined with block diagram simulation of plant metabolism to study heat shock response of photosynthetic CO2 assimilation and carbohydrate metabolism in Arabidopsis thaliana. Simulations predicted a stabilising effect of reduced sucrose biosynthesis capacity and increased capacity of starch biosynthesis on carbon assimilation under transient heat stress. Model predictions were experimentally validated by quantifying plant growth under such stress conditions. In conclusion, this suggests that Fourier polynomials represent a predictive mathematical approach to study dynamic plant-environment interactions.


Assuntos
Proteínas de Arabidopsis , Proteínas de Arabidopsis/metabolismo , Carbono/metabolismo , Folhas de Planta , Sacarose/metabolismo , Temperatura
2.
Bioengineered ; 13(5): 11856-11866, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35543383

RESUMO

MicroRNA-139-5p (miR-139-5p) is one of the most differentially expressed miRNAs in the brain between healthy people and depressed patients. However, its function in depression is unclear. Therefore, we investigated the function of miR-139-5p in depression. Here, miR-139-5p expression was found to be upregulated in the model group. MiR-139-5p inhibition could increase sucrose preference and decrease mice immobility time after chronic corticosterone (CORT) injection. Furthermore, compared with the antago-NC group, 3 weeks of antagomiR-139-5p treatment significantly decreased miR-139-5p level in model group hippocampus, increased sucrose preference index, reduced neuron damages, and enhanced the levels of nuclear receptor subfamily 3 group C member 1 (NR3C1), brain-derived neurotrophic factor (BDNF), phosphorylated/total tyrosine kinase receptor B (p-TrkB/TrkB), phosphorylated/total cAMP-response element-binding protein (p-CREB/CREB) and phosphorylated/total extracellular regulated protein kinases (p-ERK/ERK). Moreover, as a potential target for miR-139-5p, NR3C1 level was reduced by miR-139-5p mimic. Altogether, by activating the BDNF-TrkB signaling pathway, miR-139-5p inhibition plays an antidepressant-like role and might serve as an effective depression target (Fig. graphical abstract).


Assuntos
Fator Neurotrófico Derivado do Encéfalo , MicroRNAs , Animais , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Depressão/genética , Genes Supressores , Hipocampo , Humanos , Camundongos , MicroRNAs/metabolismo , Sacarose/metabolismo
3.
Parasit Vectors ; 15(1): 127, 2022 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-35413939

RESUMO

BACKGROUND: Anautogenous mosquitoes commonly consume nectars and other solutions containing sugar but are thought to only produce eggs in discrete gonadotrophic cycles after blood-feeding on a vertebrate host. However, some anautogenous species are known to produce eggs if amino acids in the form of protein are added to a sugar solution. Unclear is how different sources of amino acids in sugar solutions affect the processes that regulate egg formation and whether responses vary among species. In this study, we addressed these questions by focusing on Aedes aegypti and conducting some comparative assays with Aedes albopictus, Anopheles gambiae, Anopheles stephensi and Culex quinquefasciatus. METHODS: Adult female mosquitoes were fed sugar solutions containing amino acids, peptides or protein. Markers for activation of a gonadotrophic cycle including yolk deposition into oocytes, oviposition, ovary ecdysteroidogenesis, expression of juvenile hormone and 20-hydroxyecdysone-responsive genes, and adult blood-feeding behavior were then measured. RESULTS: The five anautogenous species we studied produced eggs when fed two proteins (bovine serum albumin, hemoglobin) or a mixture of peptides (tryptone) in 10% sucrose but deposited only small amounts of yolk into oocytes when fed amino acids in 10% sucrose. Focusing on Ae. aegypti, cultures were maintained for multiple generations by feeding adult females protein- or tryptone-sugar meals. Ad libitum access to protein- or tryptone-sugar solutions protracted production of ecdysteroids by the ovaries, vitellogenin by the fat body and protease activity by the midgut albeit at levels that were lower than in blood-fed females. Females also exhibited semi-continual oogenesis and repressed host-seeking behavior. CONCLUSIONS: Several anautogenous mosquitoes produce eggs when provided ad libitum access to protein- or peptide-sugar meals, but several aspects of oogenesis also differ from females that blood-feed.


Assuntos
Aedes , Anopheles , Aedes/fisiologia , Aminoácidos/metabolismo , Animais , Feminino , Oogênese/fisiologia , Peptídeos , Sacarose/metabolismo
4.
BMC Plant Biol ; 22(1): 215, 2022 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-35468728

RESUMO

Sucrose synthase (SUS) is a common sugar-base transfer enzyme in plants, and sucrose phosphate synthase (SPS) is one of the major enzymes in higher plants that regulates sucrose synthesis. However, information of the SPS and SUS gene families in Actinidia, as well as their evolutionary and functional properties, is limited. According to the SPS and SUS proteins conserved domain of Arabidopsis thaliana, we found 6 SPS genes and 6 SUS genes from A. chinensis (cultivar: 'Hongyang'), and 3 SPS genes and 6 SUS genes from A. eriantha (cultivar: 'White'). The novel CDC50 conserved domains were discovered on AcSUS2, and all members of the gene family contain similar distinctive conserved domains. The majority of SUS and SPS proteins were hydrophilic, lipid-soluble enzymes that were expected to be found in the cytoplasm. The tertiary structure of SPS and SUS protein indicated that there were many tertiary structures in SPS, and there were windmill-type and spider-type tertiary structures in SUS. The phylogenetic tree was created using the neighbor-joining method, and members of the SPS and SUS gene families are grouped into three subgroups. Genes with comparable intron counts, conserved motifs, and phosphorylation sites were clustered together first. SPS and SUS were formed through replication among their own family members. AcSPS1, AcSPS2, AcSPS4, AcSPS5, AcSUS5, AcSUS6, AeSPS3, AeSUS3 and AeSUS4 were the important genes in regulating the synthesis and accumulation of sucrose for Actinidia during the fruit growth stages.


Assuntos
Actinidia , Arabidopsis , Actinidia/genética , Actinidia/metabolismo , Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Glucosiltransferases/genética , Glucosiltransferases/metabolismo , Filogenia , Sacarose/metabolismo
5.
J Agric Food Chem ; 70(16): 5095-5105, 2022 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-35388691

RESUMO

Microbial levansucrases (LSs, EC 2.4.1.10) have been widely studied for the synthesis of ß-(2,6)-fructans (levan) from sucrose. LSs synthesize levan-type fructo-oligosaccharides, high-molecular-mass levan polymer or combinations of both. Here, we report crystal structures of LS from the G--bacterium Brenneria sp. EniD 312 (Brs-LS) in its apo form, as well as of two mutants (A154S, H327A) targeting positions known to affect LS reaction specificity. In addition, we report a structure of Brs-LS complexed with sucrose, the first crystal structure of a G--LS with a bound substrate. The overall structure of Brs-LS is similar to that of G-- and G+-LSs, with the nucleophile (D68), transition stabilizer (D225), and a general acid/base (E309) in its active site. The H327A mutant lacks an essential interaction with glucosyl moieties of bound substrates in subsite +1, explaining the observed smaller products synthesized by this mutant. The A154S mutation affects the hydrogen-bond network around the transition stabilizing residue (D225) and the nucleophile (D68), and may affect the affinity of the enzyme for sucrose such that it becomes less effective in transfructosylation. Taken together, this study provides novel insights into the roles of structural elements and residues in the product specificity of LSs.


Assuntos
Gammaproteobacteria , Hexosiltransferases , Frutanos/metabolismo , Hexosiltransferases/química , Sacarose/metabolismo
6.
Planta ; 255(5): 100, 2022 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-35389118

RESUMO

MAIN CONCLUSION: Sweet cherry flesh cells burst when exposed to water but they do so in clusters indicating heterogeneity with respect to osmotic concentration, which depends on proximity to a minor vein. Water plays a key role in cracking in sweet cherry fruit. Magnetic resonance imaging has previously indicated preferential partitioning of water along veins. A more negative osmotic potential along veins seems the likely explanation. Here we establish if cell bursting in mature sweet cherry fruit is also associated with the veins. Cell bursting was identified by a novel light microscope technique involving exposure of a cut fruit surface to water or to sucrose solutions. Upon exposure to water there was no bursting of skin cells but for cells of the flesh (mesocarp) bursting increased with time. When the cut surface was exposed to sucrose solutions of decreasing osmotic concentrations (increasing water potentials) the incidence of cell bursting increased from hypertonic (no bursting), to isotonic, to hypotonic. Cell bursting in the outer mesocarp occurred primarily in the vicinity of minor veins that in the inner mesocarp was primarily between radial veins. The median distance between a minor vein and a bursting cell (mean diameter 0.129 mm) was about 0.318 mm that between a radial vein and a bursting cell was about 0.497 mm. In contrast, the distance between adjacent minor veins averaged 2.57 mm, that between adjacent radial veins averaged 0.83 mm. Cell bursting tends to occur in clusters. Mapping of cell bursting indicates (1) that a seemingly uniform population of mesocarp cells actually represents a heterogeneous population with regard to their cell osmotic potentials and (2) cell bursting afflicts clusters of neighbouring cells in the vicinities of minor veins.


Assuntos
Prunus avium , Frutas/metabolismo , Osmose , Prunus avium/metabolismo , Sacarose/metabolismo , Água/metabolismo
7.
J Agric Food Chem ; 70(16): 5049-5056, 2022 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-35412322

RESUMO

Elicitation treatments of grape cell cultures with methyl jasmonate (MeJA), ultraviolet-C (UV-C) irradiation, and sucrose induce mild production of stilbenes and flavonoids due to limited substrate availability. However, these treatments cause a synergistic boost of stilbenes production when applied to two phenylalanine (Phe)-enriched transgenic grape cell lines, AroG* + STS and AroG* + FLS. The combined treatment of UV-C elicitation on the Phe-fed AroG* + STS line resulted in the highest content of stilbenes (37.8-fold increase, 17.39 mg/g dry weight (DW)) mainly due to resveratrol (64-fold, 3.23 mg/g DW) and viniferin (1343-fold, 13.43 mg/g DW). The synergistic increase following either UV-C or MeJA elicitation was due to the induction of stilbene-related genes, while sucrose treatment had no effect on gene expression levels and served as an additional carbon source for phenylpropanoids. The combined strategy presented may enable future usage of grape cell cultures for the production of stilbenes and in particular viniferin.


Assuntos
Estilbenos , Vitis , Técnicas de Cultura de Células , Fenilalanina/metabolismo , Estilbenos/metabolismo , Sacarose/metabolismo , Vitis/metabolismo
8.
Plant Physiol Biochem ; 181: 12-22, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35421745

RESUMO

Pomegranate (Punica granatum), an important fruit tree in the world, is rich in bioactive substances and has broad prospects for development. In this study, gene expression levels and the concentrations of metabolites involved in the metabolism of soluble sugars and organic acids were investigated in sweet and sour pomegranate cultivars at the S1 (July 25) stage, S2 (August 26) stage, and S3 (September 24) stage. The results showed that glucose, fructose, citric acid, and malic acid were predominantly present in pomegranate. The expression of invertase 2 (INV2), INV1, FRK2, FRK7, PFK2, PFK7, and HK1 was closely correlated with the fructose and glucose contents during different developmental stages, whereas the expression of sucrose synthase 3 (SUS3) and INV1 was negatively correlated with the sucrose content. The expression of MDH (c28468_g3) and WRKY42 (c20711_g1) genes were closely related to the content of sucrose, malic acid, citric acid, and succinic acid during different developmental stages. Gene expression and metabolite concentrations varied between the two cultivars. The results provide valuable information for gene discovery, marker-assisted selection, and investigation of metabolism mechanisms in pomegranate fruits.


Assuntos
Romã (Fruta) , Açúcares , Ácidos/metabolismo , Carboidratos , Ácido Cítrico/metabolismo , Frutose/metabolismo , Frutas/metabolismo , Glucose/metabolismo , Metabolômica , Compostos Orgânicos , Sacarose/metabolismo , Açúcares/metabolismo , Transcriptoma
9.
Int J Mol Sci ; 23(7)2022 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-35409249

RESUMO

Autophagy is an essential intracellular eukaryotic recycling mechanism, functioning in, among others, carbon starvation. Surprisingly, although autophagy-deficient plants (atg mutants) are hypersensitive to carbon starvation, metabolic analysis revealed that they accumulate sugars under such conditions. In plants, sugars serve as both an energy source and as signaling molecules, affecting many developmental processes, including root and shoot formation. We thus set out to understand the interplay between autophagy and sucrose excess, comparing wild-type and atg mutant seedlings. The presented work showed that autophagy contributes to primary root elongation arrest under conditions of exogenous sucrose and glucose excess but not during fructose or mannitol treatment. Minor or no alterations in starch and primary metabolites were observed between atg mutants and wild-type plants, indicating that the sucrose response relates to its signaling and not its metabolic role. Extensive proteomic analysis of roots performed to further understand the mechanism found an accumulation of proteins essential for ROS reduction and auxin maintenance, which are necessary for root elongation, in atg plants under sucrose excess. The analysis also suggested mitochondrial and peroxisomal involvement in the autophagy-mediated sucrose response. This research increases our knowledge of the complex interplay between autophagy and sugar signaling in plants.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Autofagia , Carbono/metabolismo , Regulação da Expressão Gênica de Plantas , Mutação , Proteômica , Sacarose/metabolismo
10.
Microb Cell Fact ; 21(1): 61, 2022 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-35397553

RESUMO

BACKGROUND: Soluble cello-oligosaccharides (COS, ß-1,4-D-gluco-oligosaccharides with degree of polymerization DP 2-6) have been receiving increased attention in different industrial sectors, from food and feed to cosmetics. Development of large-scale COS applications requires cost-effective technologies for their production. Cascade biocatalysis by the three enzymes sucrose-, cellobiose- and cellodextrin phosphorylase is promising because it enables bottom-up synthesis of COS from expedient substrates such as sucrose and glucose. A whole-cell-derived catalyst that incorporates the required enzyme activities from suitable co-expression would represent an important step towards making the cascade reaction fit for production. Multi-enzyme co-expression to reach distinct activity ratios is challenging in general, but it requires special emphasis for the synthesis of COS. Only a finely tuned balance between formation and elongation of the oligosaccharide precursor cellobiose results in the desired COS. RESULTS: Here, we show the integration of cellodextrin phosphorylase into a cellobiose-producing whole-cell catalyst. We arranged the co-expression cassettes such that their expression levels were upregulated. The most effective strategy involved a custom vector design that placed the coding sequences for cellobiose phosphorylase (CbP), cellodextrin phosphorylase (CdP) and sucrose phosphorylase (ScP) in a tricistron in the given order. The expression of the tricistron was controlled by the strong T7lacO promoter and strong ribosome binding sites (RBS) for each open reading frame. The resulting whole-cell catalyst achieved a recombinant protein yield of 46% of total intracellular protein in an optimal ScP:CbP:CdP activity ratio of 10:2.9:0.6, yielding an overall activity of 315 U/g dry cell mass. We demonstrated that bioconversion catalyzed by a semi-permeabilized whole-cell catalyst achieved an industrial relevant COS product titer of 125 g/L and a space-time yield of 20 g/L/h. With CbP as the cellobiose providing enzyme, flux into higher oligosaccharides (DP ≥ 6) was prevented and no insoluble products were formed after 6 h of conversion. CONCLUSIONS: A whole-cell catalyst for COS biosynthesis was developed. The coordinated co-expression of the three biosynthesis enzymes balanced the activities of the individual enzymes such that COS production was maximized. With the flux control set to minimize the share of insolubles in the product, the whole-cell synthesis shows a performance with respect to yield, productivity, product concentration and quality that is promising for industrial production.


Assuntos
Celobiose , Celulose , Biocatálise , Celobiose/metabolismo , Celulose/metabolismo , Cistina Difosfato/metabolismo , Oligossacarídeos/metabolismo , Sacarose/metabolismo
11.
Int J Mol Sci ; 23(8)2022 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-35457135

RESUMO

During the growth cycle of lilies, assimilates undergo a process of accumulation, consumption and reaccumulation in bulbs and are transported and allocated between aboveground and underground organs and tissues. The sink-source relationship changes with the allocation of assimilates, affecting the vegetative growth and morphological establishment of lilies. In this study, the carbohydrate contents in different tissues of five critical stages during lily development were measured to observe the assimilates allocation. The results showed bulbs acted as the main source to provide energy before the budding stage (S3); after the flowering stage (S4), bulbs began to accumulate assimilates as a sink organ again. During the period when the plant height was 30cm with leaf-spread (S2), leaves mainly accumulated assimilates from bulbs through the symplastic pathway, while when leaves were fully expanded, it transformed to export carbohydrates. At the S4 stage, flowers became a new active sink with assimilates influx. To further understand the allocation of assimilates, 16 genes related to sugar transport and metabolism (ST genes) were identified and categorized into different subfamilies based on the phylogenetic analysis, and their protein physicochemical properties were also predicted. Tissue-specific analysis showed that most of the genes were highly expressed in stems and petals, and it was mainly the MST (monosaccharide transporter) genes that were obviously expressed in petals during the S4 stage, suggesting that they may be associated with the accumulation of carbohydrates in flowers and thus affect flower development process. LoSWEET14 (the Sugar will eventually be exported transporters) was significantly correlated with starch in scales and with soluble sugar in leaves. Sugar transporters LoHXT6 and LoSUT1 were significantly correlated with soluble sugar and sucrose in leaves, suggesting that these genes may play key roles in the accumulation and transportation of assimilates in lilies. In addition, we analyzed the expression patterns of ST genes under different abiotic stresses, and the results showed that all genes were significantly upregulated. This study lays a solid foundation for further research on molecular mechanism of sink-source change and response to abiotic stresses in lilies.


Assuntos
Lilium , Regulação da Expressão Gênica de Plantas , Lilium/genética , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Filogenia , Estresse Fisiológico/genética , Sacarose/metabolismo , Açúcares/metabolismo
12.
Int J Mol Sci ; 23(8)2022 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-35457184

RESUMO

Functional lilies are a group of edible lily cultivars with great potential for landscape application. Low-temperature storage can significantly improve their taste, but the knowledge of this process is largely unknown. In this study, we used the functional lilies 'Fly Shaohua' and 'Fly Tiancheng' as materials. Through physiological observation and transcriptome analysis during the bulbs' cold storage, it was found that the starch degradation and sucrose accumulation in bulbs contributed to taste improvement. After 60 d of cold storage, the sucrose accumulation was highest and the starch content was lower in the bulbs, suggesting this time-point was optimal for consumption. Accompanying the fluctuation of sucrose content during cold storage, the enzyme activities of sucrose phosphate synthase and sucrose synthase for sucrose synthesis were increased. Transcriptome analysis showed that many differentially expressed genes (DEGs) were involved in the starch and sucrose metabolism pathway, which might promote the conversion of starch to sucrose in bulbs. In addition, the DEGs involved in dormancy and stress response were also determined during cold storage, which might explain the decreased sucrose accumulation with extended storage time over 60 d due to the energy consumption for dormancy release. Taken together, our results indicated sucrose accumulation was a main factor in the taste improvement of lily bulbs after cold storage, which is attributable to the different gene expression of starch and sucrose metabolism pathways in this process.


Assuntos
Lilium , Temperatura Baixa , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Lilium/genética , Amido/metabolismo , Sacarose/metabolismo
13.
Food Funct ; 13(8): 4576-4591, 2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-35355025

RESUMO

Mulberry leaves exhibit anti-lipogenic and lipid-lowering effects. However, the lipid biomarkers and underlying mechanisms for the improvement of the action of mulberry leaves on obesity and lipid metabolism disorders have not been sufficiently investigated yet. Herein, biochemical analysis combined with metabolomics targeting serum lipid mediators (oxylipins) were used to explore the efficacy and underlying mechanisms of mulberry leaf water extract (MLWE) in high-fat and high-sucrose diet (HFHSD)-fed mice. Our results showed that MLWE supplementation not only decreased body weight gain, serum total triglycerides, low-density lipoprotein cholesterol, alanine transaminase and aspartate transaminase levels, but also increased the serum level of high-density lipoprotein cholesterol. In addition, MLWE supplementation also ameliorated hepatic steatosis and lipid accumulation. These beneficial effects were associated with down-regulating genes involved in oxidative stress, inflammation, and lipogenesis such as acetyl-CoA carboxylase and fatty acid synthase, and up-regulating genes related to lipolysis that encoded peroxisome proliferator-activated receptor α, adiponectin (ADPN), adiponectin receptor (AdipoR) 1, AdipoR2, adenosine monophosphate-activated protein kinase (AMPK) and hormone-sensitive lipase. Moreover, a total of 54 serum lipid mediators were differentially changed in HFHSD-fed mice, among which 11 lipid mediators from n-3 polyunsaturated fatty acids (PUFAs) were apparently reversed by MLWE. These findings indicated that the ADPN/AMPK pathway, anti-inflammation, anti-oxidation, and n-3 PUFA metabolism played important roles in anti-obesity and improvement of lipid metabolism disorders modulated by MLWE supplementation.


Assuntos
Transtornos do Metabolismo dos Lipídeos , Morus , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Colesterol/metabolismo , Dieta Hiperlipídica/efeitos adversos , Metabolismo dos Lipídeos , Transtornos do Metabolismo dos Lipídeos/metabolismo , Fígado/metabolismo , Camundongos , Obesidade/metabolismo , Folhas de Planta/metabolismo , Sacarose/metabolismo , Triglicerídeos/metabolismo
14.
Int J Mol Sci ; 23(5)2022 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-35269687

RESUMO

The specific mechanisms by which nitrogen affects nodulation and nitrogen fixation in leguminous crops are still unclear. To study the relationship between nitrogen, nodulation and nitrogen fixation in soybeans, dual-root soybean plants with unilateral nodulation were prepared by grafting. At the third trifoliate leaf (V3) to fourth trifoliate leaf (V4) growth stages (for 5 days), nitrogen nutrient solution was added to the non-nodulated side, while nitrogen-free nutrient solution was added to the nodulated side. The experiment was designed to study the effects of exogenous nitrogen on proteins and metabolites in root nodules and provide a theoretical reference for analyzing the physiological mechanisms of the interaction between nitrogen application and nitrogen fixation in soybean root nodules. Compared with no nitrogen treatment, exogenous nitrogen regulated the metabolic pathways of starch and sucrose metabolism, organic acid metabolism, nitrogen metabolism, and amino acid metabolism, among others. Additionally, exogenous nitrogen promoted the synthesis of signaling molecules, including putrescine, nitric oxide, and asparagine in root nodules, and inhibited the transformation of sucrose to malic acid; consequently, the rhizobia lacked energy for nitrogen fixation. In addition, exogenous nitrogen reduced cell wall synthesis in the root nodules, thus inhibiting root nodule growth and nitrogen fixation.


Assuntos
Fixação de Nitrogênio , Soja , Regulação da Expressão Gênica de Plantas , Metabolômica , Nitrogênio/metabolismo , Nodulação , Proteômica , Nódulos Radiculares de Plantas/metabolismo , Soja/metabolismo , Sacarose/metabolismo , Simbiose
15.
mSphere ; 7(2): e0003522, 2022 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-35354279

RESUMO

Yeast species in the Wickerhamiella and Starmerella genera (W/S clade) thrive in the sugar-rich floral niche. We have previously shown that species belonging to this clade harbor an unparalleled number of genes of bacterial origin, among which is the SUC2 gene, encoding a sucrose-hydrolyzing enzyme. In this study, we used complementary in silico and experimental approaches to examine sucrose utilization in a broader cohort of species representing extant diversity in the W/S clade. Distinct strategies and modes of sucrose assimilation were unveiled, involving either extracellular sucrose hydrolysis through secreted bacterial Suc2 or intracellular assimilation using broad-substrate-range α-glucoside/H+ symporters and α-glucosidases. The intracellular pathway is encoded in two types of gene clusters reminiscent of the MAL clusters in Saccharomyces cerevisiae, where they are involved in maltose utilization. The genes composing each of the two types of MAL clusters found in the W/S clade have disparate evolutionary histories, suggesting that they formed de novo. Both transporters and glucosidases were shown to be functional and additionally involved in the metabolization of other disaccharides, such as maltose and melezitose. In one Wickerhamiella species lacking the α-glucoside transporter, maltose assimilation is accomplished extracellularly, an attribute which has been rarely observed in fungi. Sucrose assimilation in Wickerhamiella generally escaped both glucose repression and the need for an activator and is thus essentially constitutive, which is consistent with the abundance of both glucose and sucrose in the floral niche. The notable plasticity associated with disaccharide utilization in the W/S clade is discussed in the context of ecological implications and energy metabolism. IMPORTANCE Microbes usually have flexible metabolic capabilities and are able to use different compounds to meet their needs. The yeasts belonging to the Wickerhamiella and Starmerella genera (forming the so-called W/S clade) are usually found in flowers or insects that visit flowers and are known for having acquired many genes from bacteria by a process called horizontal gene transfer. One such gene, dubbed SUC2, is used to assimilate sucrose, which is one of the most abundant sugars in floral nectar. Here, we show that different lineages within the W/S clade used different solutions for sucrose utilization that dispensed SUC2 and differed in their energy requirements, in their capacity to scavenge small amounts of sucrose from the environment, and in the potential for sharing this resource with other microbial species. We posit that this plasticity is possibly dictated by adaptation to the specific requirements of each species.


Assuntos
Saccharomyces cerevisiae , Saccharomycetales , Glucose/metabolismo , Glucosídeos/metabolismo , Humanos , Maltose/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Saccharomycetales/genética , Sacarose/metabolismo
16.
Physiol Plant ; 174(2): e13656, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35243645

RESUMO

Plant growth and development depend on the availability of carbohydrates synthesised in photosynthesis (source activity) and utilisation of these carbohydrates for growth (sink activity). External conditions, such as temperature, nutrient availability and stress, can affect source as well as sink activity. Optimal utilisation of resources is under circadian clock control. This molecular timekeeper ensures that growth responses are adjusted to different photoperiod and temperature settings by modulating starch accumulation and degradation accordingly. For example, during the night, starch degradation is required to provide sugars for growth. Under favourable growth conditions, high sugar availability stimulates growth and development, resulting in an overall accelerated life cycle of annual plants. Key signalling components include trehalose-6-phosphate (Tre6P), which reflects sucrose availability and stimulates growth and branching when the conditions are favourable. Under sink limitation, Tre6P does, however, inhibit night-time starch degradation. Tre6P interacts with Sucrose-non-fermenting1-Related Kinase1 (SnRK1), a protein kinase that inhibits growth under starvation and stress conditions and delays development (including flowering and senescence). Tre6P inhibits SnRK1 activity, but SnRK1 increases the Tre6P to sucrose ratio under favourable conditions. Alongside Tre6P, Target of Rapamycin (TOR) stimulates processes such as protein synthesis and growth when sugar availability is high. In annual plants, an accelerated life cycle results in early leaf and plant senescence, thus shortening the lifespan. While the availability of carbohydrates in the form of sucrose and other sugars also plays an important role in seasonal life cycle events (phenology) of perennial plants, the sugar signalling pathways in perennials are less well understood.


Assuntos
Fosfatos Açúcares , Açúcares , Desenvolvimento Vegetal , Plantas/metabolismo , Amido/metabolismo , Sacarose/metabolismo , Fosfatos Açúcares/metabolismo , Açúcares/metabolismo , Trealose/metabolismo
17.
Physiol Plant ; 174(2): e13657, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35243654

RESUMO

Bilberry fruit is regarded as one of the best natural sources of anthocyanins and is widely explored for its health-beneficial compounds. Besides anthocyanins, one of the major attributes that determine the berry quality is the accumulation of sugars that provide sweetness and flavor to ripening fruit. In this study, we have identified 25 sugar metabolism-related genes in bilberry, including invertases (INVs), hexokinases (HKs), fructokinases (FKs), sucrose synthases (SSs), sucrose phosphate synthases (SPSs), and sucrose phosphate phosphatases (SPPs). The results indicate that isoforms of the identified genes are expressed differentially during berry development, suggesting specialized functions. The highest sugar content was found in ripe berries, with fructose and glucose dominating accompanied by low sucrose amount. The related enzyme activities during berry development and ripening were further analyzed to understand the molecular mechanism of sugar accumulation. The activity of INVs in the cell wall and vacuole increased toward ripe berries. Amylase activity involved in starch metabolism was not detected in unripe berries but was found in ripe berries. Sucrose resynthesizing SS enzyme activity was detected upon early ripening and had the highest activity in ripe berries. Interestingly, our transcriptome data showed that supplemental irradiation with red and blue light triggered upregulation of several sugar metabolism-related genes, including α- and ß-amylases. Also, differential expression patterns in responses to red and blue light were found across sucrose, galactose, and sugar-alcohol metabolism. Our enzymological and transcriptional data provide new understanding of the bilberry fruit sugar metabolism having major effect on fruit quality.


Assuntos
Vaccinium myrtillus , Antocianinas/metabolismo , Frutas/metabolismo , Regulação da Expressão Gênica de Plantas , Fosfatos/metabolismo , Sacarose/metabolismo , Açúcares/metabolismo , Vaccinium myrtillus/genética , Vaccinium myrtillus/metabolismo
18.
Physiol Plant ; 174(2): e13673, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35307852

RESUMO

Invertases are key enzymes for carbon metabolism, cleaving sucrose into energy-rich and signaling metabolites, glucose and fructose. Invertases play pivotal roles in development and stress response, determining yield and quality of seed production. In this context, the repertoire of invertase gene families is critically scarce in legumes. Here, we performed a systematic search for invertase families in 16 Fabaceae genomes. For instance, we identified 19 invertase genes in the model plant Medicago and 17 accessions in the agronomic crop Pisum sativum. Our comprehensive phylogenetic analysis sets a milestone for the scientific community as we propose a new nomenclature to correctly name plant invertases. Thus, neutral invertases were classified into four clades of cytosolic invertase (CINV). Acid invertases were classified into two cell wall invertase clades (CWINV) and two vacuolar invertase clades (VINV). Then, we explored transcriptional regulation of the pea invertase family, focusing on seed development and water stress. Invertase expression decreased sharply from embryogenesis to seed-filling stages, consistent with higher sucrose and lower monosaccharide contents. The vacuolar invertase PsVINV1.1 clearly marked the transition between both developmental stages. We hypothesize that the predominantly expressed cell wall invertase, PsCWINV1.2, may drive sucrose unloading towards developing seeds. The same candidates, PsVINV1.1 and PsCWINV1.2, were also regulated by water deficit during embryonic stage. We suggest that PsVINV1.1 along with vacuolar sugar transporters maintain cellular osmotic pressure and PsCWINV1.2 control hexose provision, thereby ensuring embryo survival in drought conditions. Altogether, our findings provide novel insights into the regulation of plant carbon metabolism in a challenging environment.


Assuntos
Fabaceae , beta-Frutofuranosidase , Carbono/metabolismo , Secas , Fabaceae/genética , Fabaceae/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Ervilhas/genética , Ervilhas/metabolismo , Filogenia , Sementes/genética , Sementes/metabolismo , Sacarose/metabolismo , beta-Frutofuranosidase/genética , beta-Frutofuranosidase/metabolismo
19.
Andrology ; 10(4): 808-817, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35235251

RESUMO

BACKGROUND: The central molecular mechanisms of nonorganic erectile dysfunction remains unknown. OBJECTIVE: This study aimed to investigate the association of dopaminergic neurons projecting to the nucleus accumbens of male rats with nonorganic erectile dysfunction. MATERIALS/METHODS: Nonorganic erectile dysfunction was induced by chronic mild stress. The sucrose consumption test, sexual behavior test, and apomorphine test were carried out to select depression-like rats with erectile dysfunction. These rats were considered as nonorganic erectile dysfunction model rats. Dopamine D1/D2 receptor agonist/antagonist was infused into the nucleus accumbens to observe the effect on sexual behavior. Dopaminergic projections to the nucleus accumbens were labeled with both the retrograde tracer FluoroGold injected into the nucleus accumbens and tyrosine hydroxylase. The expression level of tyrosine hydroxylase in dopaminergic neurons projecting to the nucleus accumbens in the ventral tegmental area was measured. The expression levels of dopamine D1/D2 receptors and tyrosine hydroxylase in the nucleus accumbens were also measured. RESULTS: Nonorganic erectile dysfunction was proved by the sucrose consumption test, sexual behavior test, and apomorphine test in model rats. After central infusion of the dopamine D2 receptor agonist into the nucleus accumbens, the recovery of erectile function, sexual arousal, and motivation were indicated by increased intromission ratio and decreased mount latency. Decreased expression levels of dopamine D2 receptors and tyrosine hydroxylase in the nucleus accumbens and decreased expression level of tyrosine hydroxylase in the dopaminergic neurons projecting to the nucleus accumbens were observed in model rats. DISCUSSION: These results suggest the impairment of dopaminergic neurons projecting to the nucleus accumbens and dopamine D2 signaling in the nucleus accumbens, causing the suppression of erectile function, sexual arousal, and motivation. CONCLUSION: These results suggest that the impaired dopamine D2 receptor pathway in the nucleus accumbens may be one of the main pathway involved in the development of nonorganic erectile dysfunction in the present model.


Assuntos
Disfunção Erétil , Núcleo Accumbens , Animais , Apomorfina/metabolismo , Apomorfina/farmacologia , Dopamina/metabolismo , Dopamina/farmacologia , Disfunção Erétil/metabolismo , Humanos , Masculino , Núcleo Accumbens/metabolismo , Ratos , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D2/metabolismo , Sacarose/metabolismo , Sacarose/farmacologia , Tirosina 3-Mono-Oxigenase/metabolismo , Tirosina 3-Mono-Oxigenase/farmacologia
20.
Sci Rep ; 12(1): 4906, 2022 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-35318399

RESUMO

The effects of exogenous sucrose (Suc) concentrations (0, 0.5, 1, 5, 10 mmol L-1) on carbon (C) and nitrogen (N) metabolisms were investigated in a medicinal plant Andrographis paniculata (Chuanxinlian). Suc application with the concentration of 0.5-5 mmol L-1 significantly promoted plant growth. In contrast, 10 mmol L-1 Suc retarded plant growth and increased contents of anthocyanin and MDA and activity of SOD in comparison to 0.5-5 mmol L-1 Suc. Suc application increased contents of leaf soluble sugar, reducing sugar and trerhalose, as well as isocitrate dehydrogenase (ICDH) activity, increasing supply of C-skeleton for N assimilation. However, total leaf N was peaked at 1 mmol L-1 Suc, which was consistent with root activity, suggesting that exogenous Suc enhanced root N uptake. At 10 mmol L-1 Suc, total leaf N and activities of glutamine synthase (GS), glutamate synthase (GOGAT), NADH-dependent glutamate dehydrogenase (NADH-GDH) and glutamic-pyruvic transaminase (GPT) were strongly reduced but NH4+ concentration was significantly increased. The results revealed that exogenous Suc is an effective stimulant for A. paniculata plant growth. Low Suc concentration (e.g. 1 mmol L-1) increased supply of C-skeleton and promoted N uptake and assimilation in A. paniculata plant, whereas high Suc concentration (e.g. 10 mmol L-1) uncoupled C and N metabolisms, reduced N metabolism and induced plant senescence.


Assuntos
Sacarose , NAD/metabolismo , Nitrogênio/metabolismo , Folhas de Planta/metabolismo , Sacarose/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...