RESUMO
Nanotechnology provides tremendous potential in agriculture, mitigating climate change impact and improving abiotic stress management strategy. Chitosan nanoparticles (NCS) were synthesised using the ion gelation method and characterised for size (75.5nm in particle size analyser), shape (spherical under scanning electron microscopy) and stability (132.2mV zeta potential). Further, salicylic acid was incorporated into NCS to craft salicylic acid-functionalised chitosan nanoparticles (SA-NCS) and illustrated for size (517nm), shape (spherical) and stability (197.1mV). The influence of the exogenous application of SA-NCS (0.08%) was studied at the reproductive stage of three genotypes of cotton (Gossypium hirsutum ): (1) heat-tolerant Solar-651 BGII; (2) moderately heat-tolerant Solar-701 BGII; and (3) heat-susceptible Solar-805 BGII, exposed to different temperature regimes: (1) H1 (optimal), 32/20±2°C; (2) H2 (sub-optimal), 38/24±2°C; H3 (supra-optimal), 45/30±2°C. Heat stress significantly reduces carbon-fixing Rubisco, enzymes related to sucrose metabolism and pollen tube length. Considering three genotypes and reproductive stages (sepal and anther tissues), activities of Rubisco (sepals), invertase (sepals), sucrose phosphate synthase (anthers), sucrose content (sepals) and pollen tube length were elevated under high-temperature regimes, signifying better source to sink transposition of sucrose influenced by SA-NCS. The study provides new insights into SA-NCS to improve source-sink imbalance and restore sucrose metabolism for better growth of reproductive structure under heat stress in cotton.
Assuntos
Quitosana , Gossypium , Gossypium/genética , Gossypium/metabolismo , Quitosana/metabolismo , Ribulose-Bifosfato Carboxilase/metabolismo , Resposta ao Choque Térmico , Sacarose/metabolismoRESUMO
Steviol glycosides (SGs) are a variety of important natural sweeteners. They are 200-350 times sweeter than sucrose without calories. Currently, their production is still mainly dependent on extraction from Stevia rebaudiana Bertoni (stevia). Oligosaccharides are environmentally friendly elicitors that promote plant growth and accumulation of secondary metabolites. In the present study, different concentrations of chitosan oligosaccharides (COS) and alginate oligosaccharides (AOS) were applied to stevia to explore their effect on growth and SGs biosynthesis. It was found that both COS and AOS promoted biomass production by increasing the leaf number and photosynthetic efficiency, which may be related to the decreased content of abscisic acid. The content of SGs was significantly increased after 50 mg/L AOS treatment, which not only increased the contents of stevioside (STV) and rebaudioside A (Reb A) significantly, but some important minority glucosides, like Reb E, Reb D, and Reb M. The increased SGs contents were the combined effect of the higher expression of SGs biosynthesis related genes, including KAH, UGT74G1, UGT85C2, and UGT91D2. The geometry changes of stem induced by COS and AOS may help to increase the lodging resistance of stevia. Thus, COS and AOS can be used in the field planting of stevia to increase the yield of SGs for industrial purposes.
Assuntos
Diterpenos do Tipo Caurano , Stevia , Stevia/metabolismo , Biomassa , Glucosídeos/metabolismo , Diterpenos do Tipo Caurano/metabolismo , Sacarose/metabolismo , Folhas de Planta/metabolismo , Glicosídeos/metabolismoRESUMO
Sucrose synthases (SUS; EC 2.4.1.13) encoded by a small multigene family are the central system of sucrose metabolism and have important implications for carbon allocation and energy conservation in nonphotosynthetic cells of plants. Though the SUS family genes (SUSs) have been identified in several plants, they have not been explored in sweet potato. In this research, nine, seven and seven SUSs were identified in the cultivated sweet potato (Ipomoea batatas, 2n = 6x = 90) as well as its two diploid wild relatives I. trifida (2n = 2x = 30) and I. triloba (2n = 2x = 30), respectively, and divided into three subgroups according to their phylogenetic relationships. Their protein physicochemical properties, chromosomal localization, phylogenetic relationship, gene structure, promoter cis-elements, protein interaction network and expression patterns were systematically analyzed. The results indicated that the SUS gene family underwent segmental and tandem duplications during its evolution. The SUSs were highly expressed in sink organs. The IbSUSs especially IbSUS2, IbSUS5 and IbSUS7 might play vital roles in storage root development and starch biosynthesis. The SUSs could also respond to drought and salt stress responses and take part in hormone crosstalk. This work provides new insights for further understanding the functions of SUSs and candidate genes for improving yield, starch content, and abiotic stress tolerance in sweet potatoes.
Assuntos
Ipomoea batatas , Ipomoea batatas/metabolismo , Filogenia , Diploide , Amido/metabolismo , Sacarose/metabolismo , Regulação da Expressão Gênica de PlantasRESUMO
Nucleotide sugars are essential precursors for carbohydrate synthesis but are in scarce supply. Uridine diphosphate (UDP)-glucose is a core building block in nucleotide sugar preparation, making its efficient synthesis critical. Here, a process for producing valuable UDP-glucose and functional mannose from sucrose was established and improved via a semirational sucrose synthase (SuSy) design and the accurate D-mannose isomerase (MIase) cascade. Engineered SuSy exhibited enzyme activity 2.2-fold greater than that of the WT. The structural analysis identified a latch-hinge combination as the hotspot for enhancing enzyme activity. Coupling MIase, process optimization, and reaction kinetic analysis revealed that MIase addition during the high-speed UDP-glucose synthesis phase distinctly accelerated the entire process. The simultaneous triggering of enzyme modules halved the reaction time and significantly increased the UDP-glucose yield. A maximum UDP-glucose yield of 83%, space-time yield of 70 g/L/h, and mannose yield of 32% were achieved. This novel and efficient strategy for sucrose value-added exploitation has industrial promise.
Assuntos
Uridina Difosfato Glucose , Uridina Difosfato Glucose/química , Uridina Difosfato Glucose/metabolismo , Sacarose/química , Sacarose/metabolismo , Mutação , Cinética , Modelos Moleculares , Manose/química , Manose/metabolismo , Estrutura Terciária de ProteínaRESUMO
Sweet potato is an important food crop that can also be used as an industrial raw material. Sucrose is the main form of long-distance carbohydrate transport in plants, and sucrose transporter (SUT) regulates the transmembrane transport and distribution of sucrose during plant growth and metabolism. Moreover, SUT plays a key role in phloem mediated source-to-sink sucrose transport and physiological activities, supplying sucrose for the sink tissues. In this study, the full-length cDNA sequences of IbSUT62788 and IbSUT81616 were obtained by rapid amplification of cDNA ends (RACE) cloning according to the transcripts of the two SUT coding genes which were differentially expressed in sweet potato storage roots with different starch properties. Phylogenetic analysis was performed to clarify the classification of IbSUT62788 and IbSUT81616. The subcellular localization of IbSUT62788 and IbSUT81616 was determined by transient expression in Nicotiana benthamiana. The function of IbSUT62788 and IbSUT81616 in sucrose and hexose absorption and transport was identified using yeast functional complementarity system. The expression pattern of IbSUT62788 and IbSUT81616 in sweet potato organs were analyzed by real-time fluorescence quantitative PCR (RT-qPCR). Arabidopsis plants heterologous expressing IbSUT62788 and IbSUT81616 genes were obtained using floral dip method. The differences in starch and sugar contents between transgenic and wild-type Arabidopsis were compared. The results showed IbSUT62788 and IbSUT81616 encoded SUT proteins with a length of 505 and 521 amino acids, respectively, and both proteins belonged to the SUT1 subfamily. IbSUT62788 and IbSUT81616 were located in the cell membrane and were able to transport sucrose, glucose and fructose in the yeast system. In addition, IbSUT62788 was also able to transport mannose. The expression of IbSUT62788 was higher in leaves, lateral branches and main stems, and the expression of IbSUT81616 was higher in lateral branches, stems and storage roots. After IbSUT62788 and IbSUT81616 were heterologously expressed in Arabidopsis, the plants grew normally, but the biomass increased. The heterologous expression of IbSUT62788 increased the soluble sugar content, leaf size and 1 000-seed weight of Arabidopsis plants. Heterologous expression of IbSUT81616 increased starch accumulation in leaves and root tips and 1 000-seed weight of seeds, but decreased soluble sugar content. The results obtained in this study showed that IbSUT62788 and IbSUT81616 might be important genes regulating sucrose and sugar content traits in sweet potato. They might carry out physiological functions on cell membrane, such as transmembrane transport of sucrose, sucrose into and out of sink tissue, as well as transport and unloading of sucrose into phloem. The changes in traits result from their heterologous expression in Arabidopsis indicates their potential in improving the yield of other plants or crops. The results obtained in this study provide important information for revealing the functions of IbSUT62788 and IbSUT81616 in starch and glucose metabolism and formation mechanism of important quality traits in sweet potato.
Assuntos
Arabidopsis , Ipomoea batatas , Ipomoea batatas/genética , Ipomoea batatas/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Sacarose/metabolismo , Saccharomyces cerevisiae/metabolismo , DNA Complementar , Filogenia , Plantas Geneticamente Modificadas/genética , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Amido/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de PlantasRESUMO
Embryogenic tissue (ET) is important for genetic modification and plant re-generation. The proliferation ability and vigor of ET are crucial for plant propagation via somatic embryogenesis. In this study, ET was induced from mature zygotic embryos in blue spruce (Picea pungens Engelm.). There were significant differences in ET induction between two provenances, i.e. 78.8 ± 12.5% and 62.50 ± 12.8% respectively. Effects of 2,4-Dichlorophenoxy acetic acid (2,4-D), 6-Benzyl amino-purine (6-BA) and/or sucrose on ET proliferation and somatic embryo (SE) maturation were further investigated with four cell lines. The highest ET proliferation rate reached 1473.7 ± 556.0% biweekly. Concentrations of 2,4-D or 6-BA applied at tissue proliferation stage impacted SE maturation among the cell lines, whereas sucrose showed less effects. The highest rate, 408 ± 230 mature SEs/g FW, was achieved in SE maturation cultures. This research demonstrated that the culture conditions, i.e. the specific concentrations of 2,4-D and BA, at ET proliferation stage affected not only ET growth, but also the quality of ET for SE maturation. This study revealed the necessity and benefit in developing both the general and the genotype-specific protocols for efficient production of mature SEs, or somatic plants in blue spruce.
Assuntos
Picea , Reguladores de Crescimento de Plantas , Reguladores de Crescimento de Plantas/farmacologia , Reguladores de Crescimento de Plantas/metabolismo , Picea/genética , Sacarose/farmacologia , Sacarose/metabolismo , Proliferação de Células , Ácido 2,4-Diclorofenoxiacético/farmacologia , Sementes , Técnicas de Embriogênese Somática de Plantas/métodosRESUMO
Although once a health concern largely considered in adults, the obesity epidemic is now prevalent in pediatric populations. While detrimental effects on skeletal muscle function have been seen in adulthood, the effects of obesity on skeletal muscle function in childhood is not clearly understood. The purpose of this study was to determine if the consumption of a high-fat high-sucrose (HFS) diet, starting in the post-weaning period, leads to changes in skeletal muscle morphology and mechanics after 14 weeks on the HFS diet. Eighteen 3-week-old male CD-Sprague Dawley rats were randomly assigned to a HFS (C-HFS, n = 10) or standard chow diet (C-CHOW, n = 8). Outcome measures included: weekly energy intake, activity levels, oxygen consumption, body mass, body composition, metabolic profile, serum protein levels, and medial gastrocnemius gene expression, morphology, and mechanics. The main findings from this study were that C-HFS rats: (1) had a greater body mass and percent body fat than control rats; (2) showed early signs of metabolic syndrome; (3) demonstrated potential impairment in muscle remodeling; (4) produced lower relative muscle force; and (5) had a shift in the force-length relationship, indicating that the medial gastrocnemius had shorter muscle fiber lengths compared to those of C-CHOW rats. Based on the results of this study, we conclude that exposure to a HFS diet led to increased body mass, body fat percentage, and early signs of metabolic syndrome, resulting in functional deficits in MG of childhood rats.
Assuntos
Síndrome Metabólica , Sacarose , Ratos , Masculino , Animais , Ratos Sprague-Dawley , Sacarose/efeitos adversos , Sacarose/metabolismo , Síndrome Metabólica/metabolismo , Obesidade/metabolismo , Dieta Hiperlipídica/efeitos adversos , Músculo Esquelético/metabolismoRESUMO
Abscisic acid (ABA) plays a vital role in the induction of low temperature tolerance in plants. To understand the molecular basis of this phenomenon, we performed a proteomic analysis on an ABA-deficit mutant barley (Az34) and its wild type (cv Steptoe) under control conditions (25/18 °C) and after exposure to 0 °C for 24 h. Most of the differentially abundant proteins were involved in the processes of photosynthesis and metabolisms of starch, sucrose, carbon, and glutathione. The chloroplasts in Az34 leaves were more severely damaged, and the decrease in Fv/Fm was larger in Az34 plants compared with WT under low temperature. Under low temperature, Az34 plants possessed significantly higher activities of ADP-glucose pyrophosphorylase, fructokinase, monodehydroascorbate reductase, and three invertases, but lower UDP-glucose pyrophosphorylase activity than WT. In addition, concentrations of proline and soluble protein were lower, while concentration of H2O2 was higher in Az34 plants compared to WT under low temperature. Collectively, the results indicated that ABA deficiency induced modifications in starch and sucrose biosynthesis and sucrolytic pathway and overaccumulation of reactive oxygen species were the main reason for depressed low temperature tolerance in barley, which provide novel insights to the response of barley to low temperature under future climate change.
Assuntos
Ácido Abscísico , Hordeum , Ácido Abscísico/metabolismo , Hordeum/metabolismo , Proteômica , Peróxido de Hidrogênio/metabolismo , Fotossíntese , Amido/metabolismo , Sacarose/metabolismo , Oxirredução , Homeostase , Regulação da Expressão Gênica de PlantasRESUMO
SnRK2.6 (SUCROSE NONFERMENTING 1-RELATED PROTEIN KINASE2.6) has been characterized as a molecular switch for the intracellular abscisic acid (ABA) signal-transduction pathway. Normally, SnRK2.6 is kept in an "off" state, forming a binary complex with protein phosphatase type 2Cs (PP2Cs). Upon stressful conditions, SnRK2.6 turns into an "on" state by its release from PP2Cs and then phosphorylation at Ser175. However, how the "on" and "off" states for SnRK2.6 are fine-tuned, thereby controlling the initiation and braking processes of ABA signaling, is still largely unclear. SnRK2.6 activity was tightly regulated through protein post-translational modifications (PTM), such as persulfidation and phosphorylation. Taking advantage of molecular dynamics simulations, our results showed that Cys131/137 persulfidation on SnRK2.6 induces destabilized binding and weakened interactions between SnRK2.6 and HAB1 (HYPERSENSITIVE TO ABA1), an important PP2C family protein. This unfavorable effect on the association of the SnRK2.6-HAB1 complex suggests that persulfidation functions are a positive regulator of ABA signaling initiation. In addition, Ser267 phosphorylation in persulfidated SnRK2.6 renders a stable physical association between SnRK2.6 and HAB1, a key characterization for SnRK2.6 inhibition. Rather than Ser175, HAB1 cannot dephosphorylate Ser267 in SnRK2.6, which implies that the retained phosphorylation status of Ser267 could ensure that the activated SnRK2.6 reforms the binary complex to cease ABA signaling. Taken together, our findings expand current knowledge concerning the regulation of persulfidation and phosphorylation on the state transition of SnRK2.6 and provide insights into the fine-tuned mechanism of ABA signaling.
Assuntos
Proteínas de Arabidopsis , Arabidopsis , Fosforilação , Proteínas de Arabidopsis/genética , Simulação de Dinâmica Molecular , Arabidopsis/metabolismo , Ácido Abscísico/farmacologia , Ácido Abscísico/metabolismo , Sacarose/metabolismo , Regulação da Expressão Gênica de PlantasRESUMO
To examine the function of phytoglobin 2 (Pgb2) on seed oil level in the oil-producing crop Brassica napus L., we generated transgenic plants in which BnPgb2 was over-expressed in the seeds using the cruciferin1 promoter. Over-expression of BnPgb2 elevated the amount of oil, which showed a positive relationship with the level of BnPgb2, without altering the oil nutritional value, as evidenced by the lack of major changes in composition of fatty acids (FA), and key agronomic traits. Two key transcription factors, LEAFY COTYLEDON1 (LEC1) and WRINKLED1 (WRI1), known to promote the synthesis of fatty acids (FA) and potentiate oil accumulation, were induced in BnPgb2 over-expressing seeds. The concomitant induction of several enzymes of sucrose metabolism, SUCROSE SYNTHASE1 (SUS) 1 and 3, FRUCTOSE BISPHOSPHATE ALDOLASE (FPA), and PHOSPHOGLYCERATE KINASE (PGK), and starch synthesis, ADP-GLUCOSE PHOSPHORYLASE (AGPase) suggests that BnPgb2 favors sugar mobilization for FA production. The two plastid FA biosynthetic enzymes SUBUNIT A OF ACETYL-CoA CARBOXYLASE (ACCA2), and MALONYL-CoA:ACP TRANSACYLASE (MCAT) were also up-regulated by the over-expression of BnPgb2. The requirement of BnPgb2 for oil deposition was further evidenced in natural germplasm by the higher levels of BnPgb2 in seeds of high-oil genotypes relative to their low-oil counterparts.
Assuntos
Brassica napus , Brassica napus/genética , Brassica napus/metabolismo , Ácidos Graxos/metabolismo , Sementes/genética , Sementes/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Óleos de Plantas/metabolismo , Sacarose/metabolismo , Regulação da Expressão Gênica de PlantasRESUMO
Drought stress is an important constraint for the germination of soybean (Glycine max [L.] Merr.) seeds and seedling establishment. A pot experiment was conducted to determine the effects of priming soybean seeds with 5 µM α-naphthaleneacetic acid (NAA) and the mechanism responsible for the induced tolerance of drought stress (soil relative water content of 55%). NAA priming inhibited drought-induced oxidative damage in seeds, and further analysis indicated that it induced an early spike in hydrogen peroxide content by the upregulation of abscisic acid-dependent GmRbohC2, resulting in an enhancement of antioxidant capacity. Moreover, NAA priming also improved the hydrolysis of triacylglycerol (TAG) to sucrose in stressed cotyledons by causing a 2- to 5-fold increase in the transcript levels of GmSDP1, GmACX2, GmMFP2, GmICL, GmMLS, GmGLI1, GmPCK1, GmFBPase1, GmSPS1 and GmSPS2. Consistently, it upregulated the expression levels of GmSUT1, GmCWINV1 and GmMST2 under drought stress, thus enhancing the transport of sucrose from cotyledons to embryonic axes, providing carbon skeletons and energy for axis growth. The seed germination percentage increased by 208.1% at 21 h after sowing, and seedling establishment percentage increased by 47.8% at 14 days after sowing. Collectively, the positive effects of NAA priming on seed germination and seedling establishment can be attributed to enhanced antioxidant ability in seeds, TAG mobilization in cotyledons and sucrose transport from cotyledons to embryonic axes under drought stress.
Assuntos
Germinação , Plântula , Soja/metabolismo , Antioxidantes/metabolismo , Secas , Sementes , Sacarose/metabolismoRESUMO
Selenium (Se) is a microelement that can counteract (a)biotic stresses in plants. Excess antimony (Sb) will inhibit plant photosynthesis, which can be alleviated by appropriate doses of Se but the associated mechanisms at the molecular levels have not been fully explored. Here, a rice variety (Yongyou 9) was exposed to selenite [Se(IV), 0.2 and 0.8 mg L-1] alone or combined with antimonite [Sb(III), 5 and 10 mg L-1]. When compared to the 10 mg L-1 Sb treatment alone, addition of Se in a dose-dependent manner 1) reduced the heat dissipation efficiency resulting from the inhibited donors, Sb concentrations in shoots and roots, leaf concentrations of fructose, H2O2 and O2â¢-; 2) enhanced heat dissipation efficiency resulting from the inhibited accepters value, concentrations of Chl a, sucrose and starch, and the enzyme activity of adenosine diphosphate glucose pyrophosphorylase, sucrose phosphate synthase, and sucrose synthase; but 3) did not alter gas exchange parameters, concentrations of Chl b and total Chl, enzyme activity of soluble acid invertase, and values of maximum P700 signal, photochemical efficiency of PSI and electron transport rate of PSI. Se alleviated the damage caused by Sb to the oxygen-evolving complex and promoted the transfer of electrons from QA to QB. When compared to the 10 mg L-1 Sb treatment alone, addition of Se 1) up-regulated genes correlated to synthesis pathways of Chl, carotenoid, sucrose and glucose; 2) disturbed signal transduction pathway of abscisic acid; and 3) upregulated gene expression correlated to photosynthetic complexes (OsFd1, OsFER1 and OsFER2).
Assuntos
Oryza , Selênio , Transporte de Elétrons , Antimônio/farmacologia , Oryza/genética , Oryza/metabolismo , Ácido Selenioso/farmacologia , Ácido Selenioso/metabolismo , Transcriptoma , Peróxido de Hidrogênio/metabolismo , Elétrons , Fotossíntese , Selênio/farmacologia , Folhas de Planta/metabolismo , Ciclo do Carbono , Sacarose/metabolismo , Clorofila/metabolismoRESUMO
Post-traumatic stress disorder (PTSD) is prevalent in women; however, preclinical research on PTSD has predominantly been conducted in male animals. Using a predator scent stress (PSS) rodent model of PTSD, we sought to determine if stress-susceptible female rats show altered monoamine concentrations in brain regions associated with PTSD: the medial prefrontal cortex (mPFC), nucleus accumbens (NAc), and dorsal (dHIPP) and ventral (vHIPP) hippocampus. Female Sprague-Dawley rats were exposed to a single, 10-min PSS exposure and tested for persistent anhedonia, fear, and anxiety-like behavior over four weeks. Rats were phenotyped as stress-Susceptible based on sucrose consumption in the sucrose preference task and time spent in the open arms of the elevated plus maze. Brain tissue was collected, and norepinephrine, dopamine, serotonin, and their metabolites were quantified using high-performance liquid chromatography. Stress-susceptibility in female rats was associated with increased dopamine and serotonin turnover in the mPFC. Susceptibility was also associated with elevated dopamine turnover in the NAc and increased norepinephrine in the vHIPP. Our findings suggest that stress-susceptibility after a single stress exposure is associated with long-term effects on monoamine function in female rats. These data suggest interventions that decrease monoamine turnover, such as MAOIs, may be effective in the treatment of PTSD in women.
Assuntos
Dopamina , Serotonina , Ratos , Feminino , Masculino , Animais , Dopamina/metabolismo , Ratos Sprague-Dawley , Serotonina/metabolismo , Odorantes , Encéfalo/metabolismo , Norepinefrina/metabolismo , Sacarose/metabolismoRESUMO
Nonalcoholic fatty liver disease (NAFLD) is a serious metabolic disorder characterized by excess fat accumulation in the liver. Over the past decade, NAFLD prevalence and incidence have risen globally. There are currently no effective licensed drugs for its treatment. Thus, further study is required to identify new targets for NAFLD prevention and treatment. In this study, we fed C57BL6/J mice one of three diets, a standard chow diet, high-sucrose diet, or high-fat diet, and then characterized them. The mice fed a high-sucrose diet had more severely compacted macrovesicular and microvesicular lipid droplets than those in the other groups. Mouse liver transcriptome analysis identified lymphocyte antigen 6 family member D (Ly6d) as a key regulator of hepatic steatosis and the inflammatory response. Data from the Genotype-Tissue Expression project database showed that individuals with high liver Ly6d expression had more severe NAFLD histology than those with low liver Ly6d expression. In AML12 mouse hepatocytes, Ly6d overexpression increased lipid accumulation, while Ly6d knockdown decreased lipid accumulation. Inhibition of Ly6d ameliorated hepatic steatosis in a diet-induced NAFLD mouse model. Western blot analysis showed that Ly6d phosphorylated and activated ATP citrate lyase, which is a key enzyme in de novo lipogenesis. In addition, RNA- and ATAC-sequencing analyses revealed that Ly6d drives NAFLD progression by causing genetic and epigenetic changes. In conclusion, Ly6d is responsible for the regulation of lipid metabolism, and inhibiting Ly6d can prevent diet-induced steatosis in the liver. These findings highlight Ly6d as a novel therapeutic target for NAFLD.
Assuntos
Hepatopatia Gordurosa não Alcoólica , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , Fígado/metabolismo , Inflamação/metabolismo , Metabolismo dos Lipídeos/genética , Dieta Hiperlipídica/efeitos adversos , Lipídeos , Sacarose/metabolismo , Camundongos Endogâmicos C57BLRESUMO
Protein-based biostimulants (PBBs) have a positive effect on plant development, although the biological background for this effect is not well understood. Here, hydrolyzed wheat gluten (HWG) and potato protein film (PF) in two levels (1 and 2 g/kg soil) and in two different soils (low and high nutrient; LNC and HNC) were used as PBBs. The effect of these PBBs on agronomic traits, sugars, protein, and peptides, as well as metabolic processes, were evaluated on sugar beet in comparison with no treatment (control) and treatment with nutrient solution (NS). The results showed a significant growth enhancement of the plants using HWG and PF across the two soils. Sucrose and total sugar content in the roots were high in NS-treated plants and correlated to root growth in HNC soil. Traits related to protein composition, including nitrogen, peptide, and RuBisCO contents, were enhanced in PBB-treated plants (mostly for HWG and PF at 2 g/kg soil) by 100% and >250% in HNC and LNC, respectively, compared to control. The transcriptomic analysis revealed that genes associated with ribosomes and photosynthesis were upregulated in the leaf samples of plants treated with either HWG or PP compared to the control. Furthermore, genes associated with the biosynthesis of secondary metabolites were largely down-regulated in root samples of HWG or PF-treated plants. Thus, the PBBs enhanced protein-related traits in the plants through a higher transcription rate of genes related to protein- and photosynthesis, which resulted in increased plant growth, especially when added in certain amounts (2 g/kg soil). However, sucrose accumulation in the roots of sugar beet seemed to be related to the easy availability of nitrogen.
Assuntos
Beta vulgaris , Beta vulgaris/metabolismo , Nitrogênio/metabolismo , Desenvolvimento Vegetal , Solo , Sacarose/metabolismo , Raízes de Plantas/metabolismoRESUMO
2-O-α-D-glucopyranosyl-sn-glycerol (2-αGG) is a high value product with wide applications. Here, an efficient, safe and sustainable bioprocesses for 2-αGG production was designed. A novel sucrose phosphorylase (SPase) was firstly identified from Leuconostoc mesenteroides ATCC 8293. Subsequently, SPase mutations were processed with computer-aided engineering, of which the activity of SPaseK138C was 160% higher than that of the wild-type. Structural analysis revealed that K138C was a key functional residue moderating substrate binding pocket and thus influences catalytic activity. Furthermore, Corynebacterium glutamicum was employed to construct microbial cell factories along with ribosome binding site (RBS) fine-tuning and a two-stage substrate feeding control strategy. The maximum production of 2-αGG by these combined strategies reached 351.8 g·L-1 with 98% conversion rate from 1.4 M sucrose and 3.5 M glycerol in a 5-L bioreactor. This was one of the best performance reported in single-cell biosynthesis of 2-αGG, which paved effective ways for industrial-scale preparation of 2-αGG.
Assuntos
Leuconostoc mesenteroides , Leuconostoc mesenteroides/metabolismo , Glicerol , Sacarose/metabolismo , Biotransformação , Leuconostoc/genética , Leuconostoc/metabolismoRESUMO
The trisaccharide 1-kestose, a major constituent of fructooligosaccharide, has strong prebiotic effects. We used high-performance liquid chromatography and 1H nuclear magnetic resonance spectroscopy to show that BiBftA, a ß-fructosyltransferase belonging to glycoside hydrolase family 68, from Beijerinckia indica subsp. indica catalyzes transfructosylation of sucrose to produce mostly 1-kestose and levan polysaccharides. We substituted His395 and Phe473 in BiBftA with Arg and Tyr, respectively, and analyzed the reactions of the mutant enzymes with 180 g/L sucrose. The ratio of the molar concentrations of glucose and 1-kestose in the reaction mixture with wild-type BiBftA was 100:8.1, whereas that in the reaction mixture with the variant H395R/F473Y was 100:45.5, indicating that H395R/F473Y predominantly accumulated 1-kestose from sucrose. The X-ray crystal structure of H395R/F473Y suggests that its catalytic pocket is unfavorable for binding of sucrose while favorable for transfructosylation.
Assuntos
Proteínas de Bactérias , Hexosiltransferases , Hexosiltransferases/genética , Hexosiltransferases/metabolismo , Sacarose/metabolismoRESUMO
Carbon isotope composition of tree-ring (δ13 CRing ) is a commonly used proxy for environmental change and ecophysiology. δ13 CRing reconstructions are based on a solid knowledge of isotope fractionations during formation of primary photosynthates (δ13 CP ), such as sucrose. However, δ13 CRing is not merely a record of δ13 CP . Isotope fractionation processes, which are not yet fully understood, modify δ13 CP during sucrose transport. We traced, how the environmental intra-seasonal δ13 CP signal changes from leaves to phloem, tree-ring and roots, for 7 year old Pinus sylvestris, using δ13 C analysis of individual carbohydrates, δ13 CRing laser ablation, leaf gas exchange and enzyme activity measurements. The intra-seasonal δ13 CP dynamics was clearly reflected by δ13 CRing , suggesting negligible impact of reserve use on δ13 CRing . However, δ13 CP became increasingly 13 C-enriched during down-stem transport, probably due to post-photosynthetic fractionations such as sink organ catabolism. In contrast, δ13 C of water-soluble carbohydrates, analysed for the same extracts, did not reflect the same isotope dynamics and fractionations as δ13 CP , but recorded intra-seasonal δ13 CP variability. The impact of environmental signals on δ13 CRing , and the 0.5 and 1.7 depletion in photosynthates compared ring organic matter and tree-ring cellulose, respectively, are useful pieces of information for studies exploiting δ13 CRing .
Assuntos
Terapia a Laser , Pinus sylvestris , Pinus , Árvores/metabolismo , Pinus sylvestris/metabolismo , Estações do Ano , Isótopos de Carbono/análise , Carboidratos/análise , Folhas de Planta/metabolismo , Sacarose/metabolismo , Pinus/metabolismoRESUMO
Sugar deficiency is the persistent challenge for plants during development. Trehalose-6-phosphate (T6P) is recognized as a key regulator in balancing plant sugar homeostasis. However, the underlying mechanisms by which sugar starvation limits plant development are unclear. Here, a basic helix-loop-helix (bHLH) transcription factor (OsbHLH111) was named starvation-associated growth inhibitor 1 (OsSGI1) and the focus is on the sugar shortage of rice. The transcript and protein levels of OsSGI1 were markedly increased during sugar starvation. The knockout mutants sgi1-1/2/3 exhibited increased grain size and promoted seed germination and vegetative growth, which were opposite to those of overexpression lines. The direct binding of OsSGI1 to sucrose non-fermenting-1 (SNF1)-related protein kinase 1a (OsSnRK1a) was enhanced during sugar shortage. Subsequently, OsSnRK1a-dependent phosphorylation of OsSGI1 enhanced the direct binding to the E-box of trehalose 6-phosphate phosphatase 7 (OsTPP7) promoter, thus rose the transcription inhibition on OsTPP7, then elevated trehalose 6-phosphate (Tre6P) content but decreased sucrose content. Meanwhile, OsSnRK1a degraded phosphorylated-OsSGI1 by proteasome pathway to prevent the cumulative toxicity of OsSGI1. Overall, we established the OsSGI1-OsTPP7-Tre6P loop with OsSnRK1a as center and OsSGI1 as forward, which is activated by sugar starvation to regulate sugar homeostasis and thus inhibits rice growth.
Assuntos
Oryza , Açúcares , Açúcares/metabolismo , Oryza/genética , Oryza/metabolismo , Trealose/metabolismo , Plantas/metabolismo , Sacarose/metabolismo , Fosfatos/metabolismo , Regulação da Expressão Gênica de Plantas/genéticaRESUMO
Stomata are pores found in the epidermis of stems or leaves that modulate both plant gas exchange and water/nutrient uptake. The development and function of plant stomata are regulated by a diverse range of environmental cues. However, how carbohydrate status in preexisting leaves might determine systemic stomatal formation within newly developing leaves has remained obscure. The glucose (Glc) sensor HEXOKINASE1 (HXK1) has been reported to decrease the stability of an ethylene/Glc signaling transcriptional regulator, EIN3 (ETHYLENE INSENSITIVE3). EIN3 in turn directly represses the expression of SUC2 (sucrose transporter 2), encoding a master transporter of sucrose (Suc). Further, KIN10, a nuclear regulator involved in energy homeostasis, has been reported to repress the transcription factor SPCH (SPEECHLESS), a master regulator of stomatal development. Here, we demonstrate that the Glc status of preexisting leaves determines systemic stomatal development within newly developing leaves by the HXK1-¦EIN3-¦SUC2 module. Further, increasing Glc levels in preexisting leaves results in a HXK1-dependent decrease of EIN3 and increase of SUC2, triggering the perception, amplification and relay of HXK1-dependent Glc signaling and thereby triggering Suc transport from mature to newly developing leaves. The HXK1-¦EIN3-¦SUC2 molecular module thereby drives systemic Suc transport from preexisting leaves to newly developing leaves. Subsequently, increasing Suc levels within newly developing leaves promotes stomatal formation through the established KIN10â¶ SPCH module. Our findings thus show how a carbohydrate signal in preexisting leaves is sensed, amplified and relayed to determine the extent of systemic stomatal development within newly developing leaves.