Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 104.910
Filtrar
1.
J Cell Sci ; 135(5)2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-34000034

RESUMO

Membrane phase separation to form micron-scale domains of lipids and proteins occurs in artificial membranes; however, a similar large-scale phase separation has not been reported in the plasma membrane of the living cells. We show here that a stable micron-scale protein-depleted region is generated in the plasma membrane of yeast mutants lacking phosphatidylserine at high temperatures. We named this region the 'void zone'. Transmembrane proteins and certain peripheral membrane proteins and phospholipids are excluded from the void zone. The void zone is rich in ergosterol, and requires ergosterol and sphingolipids for its formation. Such properties are also found in the cholesterol-enriched domains of phase-separated artificial membranes, but the void zone is a novel membrane domain that requires energy and various cellular functions for its formation. The formation of the void zone indicates that the plasma membrane in living cells has the potential to undergo phase separation with certain lipid compositions. We also found that void zones were frequently in contact with vacuoles, in which a membrane domain was also formed at the contact site.


Assuntos
Fosfatidilserinas , Saccharomyces cerevisiae , Membrana Celular , Microdomínios da Membrana , Fosfolipídeos , Saccharomyces cerevisiae/genética , Esfingolipídeos
2.
J Cell Sci ; 135(5)2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-34028531

RESUMO

Lipid droplets (LDs) are globular subcellular structures that store neutral lipids. LDs are closely associated with the endoplasmic reticulum (ER) and are limited by a phospholipid monolayer harboring a specific set of proteins. Most of these proteins associate with LDs through either an amphipathic helix or a membrane-embedded hairpin motif. Here, we address the question of whether integral membrane proteins can localize to the surface of LDs. To test this, we fused perilipin 3 (PLIN3), a mammalian LD-targeted protein, to ER-resident proteins. The resulting fusion proteins localized to the periphery of LDs in both yeast and mammalian cells. This peripheral LD localization of the fusion proteins, however, was due to a redistribution of the ER around LDs, as revealed by bimolecular fluorescence complementation between ER- and LD-localized partners. A LD-tethering function of PLIN3-containing membrane proteins was confirmed by fusing PLIN3 to the cytoplasmic domain of an outer mitochondrial membrane protein, OM14. Expression of OM14-PLIN3 induced a close apposition between LDs and mitochondria. These data indicate that the ER-LD junction constitutes a barrier for ER-resident integral membrane proteins.


Assuntos
Gotículas Lipídicas , Proteínas de Membrana , Animais , Retículo Endoplasmático/genética , Proteínas de Membrana/genética , Fosfolipídeos , Saccharomyces cerevisiae
3.
Int J Mol Sci ; 22(12)2021 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-34201004

RESUMO

Cadmium is a carcinogen that can induce ER stress, DNA damage, oxidative stress and cell death. The yeast mitogen-activated protein kinase (MAPK) signalling pathways paly crucial roles in response to various stresses. Here, we demonstrate that the unfolded protein response (UPR) pathway, the high osmolarity glycerol (HOG) pathway and the cell wall integrity (CWI) pathway are all essential for yeast cells to defend against the cadmium-induced toxicity, including the elevated ROS and cell death levels induced by cadmium. We show that the UPR pathway is required for the cadmium-induced phosphorylation of HOG_MAPK Hog1 but not for CWI_MAPK Slt2, while Slt2 but not Hog1 is required for the activation of the UPR pathway through the transcription factors of Swi6 and Rlm1. Moreover, deletion of HAC1 and IRE1 could promote the nuclear accumulation of Hog1, and increase the cytosolic and bud neck localisation of Slt2, indicating crucial roles of Hog1 and Slt2 in regulating the cellular process in the absence of UPR pathway. Altogether, our findings highlight the significance of these two MAPK pathways of HOG and CWI and their interrelationship with the UPR pathway in responding to cadmium-induced toxicity in budding yeast.


Assuntos
Cádmio/toxicidade , Parede Celular/química , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Glicerol/farmacologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Parede Celular/efeitos dos fármacos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Concentração Osmolar , Fosforilação , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/crescimento & desenvolvimento , Transdução de Sinais
4.
Int J Mol Sci ; 22(12)2021 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-34201352

RESUMO

The VPS13 family of proteins have emerged as key players in intracellular lipid transport and human health. Humans have four different VPS13 orthologs, the dysfunction of which leads to different diseases. Yeast has a single VPS13 gene, which encodes a protein that localizes to multiple different membrane contact sites. The yeast vps13Δ mutant is pleiotropic, exhibiting defects in sporulation, protein trafficking, endoplasmic reticulum (ER)-phagy and mitochondrial function. Non-null alleles resulting from missense mutations can be useful reagents for understanding the multiple functions of a gene. The exceptionally large size of Vps13 makes the identification of key residues challenging. As a means to identify critical residues in yeast Vps13, amino acid substitution mutations from VPS13A, B, C and D, associated with human disease, were introduced at the cognate positions of yeast VPS13, some of which created separation-of-function alleles. Phenotypic analyses of these mutants have revealed that the promotion of ER-phagy is a fourth, genetically separable role of VPS13 and provide evidence that co-adaptors at the endosome mediate the activity of VPS13 in vacuolar sorting.


Assuntos
Mitocôndrias/metabolismo , Mutação , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Vacúolos/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Transporte Biológico , Membrana Celular/metabolismo , Retículo Endoplasmático/metabolismo , Humanos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Transporte Vesicular/genética
5.
Molecules ; 26(11)2021 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-34199487

RESUMO

Phenolic compounds are thought to be important to prevent neurodegenerative diseases (ND). Parkinson's Disease (PD) is a neurodegenerative disorder known for its typical motor features, the deposition of α-synuclein (αsyn)-positive inclusions in the brain, and for concomitant cellular pathologies that include oxidative stress and neuroinflammation. Neuroprotective activity of fisetin, a dietary flavonoid, was evaluated against main hallmarks of PD in relevant cellular models. At physiologically relevant concentrations, fisetin protected SH-SY5Y cells against oxidative stress overtaken by tert-butyl hydroperoxide (t-BHP) and against methyl-4-phenylpyridinuim (MPP+)-induced toxicity in dopaminergic neurons, the differentiated Lund human Mesencephalic (LUHMES) cells. In this cellular model, fisetin promotes the increase of the levels of dopamine transporter. Remarkably, fisetin reduced the percentage of cells containing αsyn inclusions as well as their size and subcellular localization in a yeast model of αsyn aggregation. Overall, our data show that fisetin exerts modulatory activities toward common cellular pathologies present in PD; remarkably, it modulates αsyn aggregation, supporting the idea that diets rich in this compound may prove beneficial.


Assuntos
Butiratos/efeitos adversos , Flavonóis/farmacologia , Doença de Parkinson/metabolismo , Piperidinas/efeitos adversos , alfa-Sinucleína/metabolismo , Linhagem Celular , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Humanos , Modelos Biológicos , Estresse Oxidativo , Doença de Parkinson/tratamento farmacológico , Agregados Proteicos/efeitos dos fármacos , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/metabolismo , terc-Butil Hidroperóxido/metabolismo
6.
Molecules ; 26(13)2021 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-34201949

RESUMO

The improvement of milk dairy products' quality and nutritional value during shelf-life storage is the ultimate goal of many studies worldwide. Therefore, in the present study, prospective beneficial effects of adding two different industrial yeasts, Kluyveromyces lactis and Saccharomyces cerevisiae pretreated by heating at 85 °C for 10 min to be inactivated, before fermentation on some properties of ABT fermented milk were evaluated. The results of this study showed that the addition of 3% and 5% (w/v) heat-treated yeasts to the milk enhanced the growth of starter culture, Lactobacillus acidophilus, Bifidobacteria, and Streptococcus thermophilus, during the fermentation period as well as its viability after 20 days of cold storage at 5 ± 1 °C. Furthermore, levels of lactic and acetic acids were significantly increased from 120.45 ± 0.65 and 457.80 ± 0.70 µg/mL in the control without heat-treated yeast to 145.67 ± 0.77 and 488.32 ± 0.33 µg/mL with 5% supplementation of Sacch. cerevisiae respectively. Moreover, the addition of heat-treated yeasts to ABT fermented milk enhanced the antioxidant capacity by increasing the efficiency of free radical scavenging as well as the proteolytic activity. Taken together, these results suggest promising application of non-viable industrial yeasts as nutrients in the fermentation process of ABT milk to enhance the growth and viability of ABT starter cultures before and after a 20-day cold storage period by improving the fermented milk level of organic acids, antioxidant capacity, and proteolytic activities.


Assuntos
Bifidobacterium , Produtos Fermentados do Leite/microbiologia , Kluyveromyces , Lactobacillus acidophilus , Saccharomyces cerevisiae , Streptococcus thermophilus
7.
BMC Plant Biol ; 21(1): 319, 2021 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-34217205

RESUMO

BACKGROUND: PTI1 (Pto-interacting 1) protein kinase belongs to the receptor-like cytoplasmic kinase (RLCK) group of receptor-like protein kinases (RLK), but lack extracellular and transmembrane domains. PTI1 was first identified in tomato (Solanum lycopersicum) and named SlPTI1, which has been reported to interact with bacterial effector Pto, a serine/threonine protein kinase involved in plant resistance to bacterial disease. Briefly, the host PTI1 specifically recognizes and interacts with the bacterial effector AvrPto, which triggers hypersensitive cell death to inhibit the pathogen growth in the local infection site. Previous studies have demonstrated that PTI1 is associated with oxidative stress and hypersensitivity. RESULTS: We identified 12 putative PTI1 genes from the genome of foxtail millet (Setaria italica) in this study. Gene replication analysis indicated that both segmental replication events played an important role in the expansion of PTI1 gene family in foxtail millet. The PTI1 family members of model plants, i.e. S. italica, Arabidopsis (Arabidopsis thaliana), rice (Oryza sativa), maize (Zea mays), S. lycopersicum, and soybean (Glycine max), were classified into six major categories according to the phylogenetic analysis, among which the PTI1 family members in foxtail millet showed higher degree of homology with those of rice and maize. The analysis of a complete set of SiPTI1 genes/proteins including classification, chromosomal location, orthologous relationships and duplication. The tissue expression characteristics revealed that SiPTI1 genes are mainly expressed in stems and leaves. Experimental qRT-PCR results demonstrated that 12 SiPTI1 genes were induced by multiple stresses. Subcellular localization visualized that all of foxtail millet SiPTI1s were localized to the plasma membrane. Additionally, heterologous expression of SiPTI1-5 in yeast and E. coli enhanced their tolerance to salt stress. CONCLUSIONS: Our results contribute to a more comprehensive understanding of the roles of PTI1 protein kinases and will be useful in prioritizing particular PTI1 for future functional validation studies in foxtail millet.


Assuntos
Genoma de Planta , Família Multigênica , Proteínas de Plantas/genética , Salinidade , Setaria (Planta)/genética , Setaria (Planta)/fisiologia , Cromossomos de Plantas/genética , Escherichia coli/metabolismo , Duplicação Gênica/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Anotação de Sequência Molecular , Motivos de Nucleotídeos/genética , Filogenia , Proteínas de Plantas/metabolismo , Saccharomyces cerevisiae/metabolismo , Estresse Fisiológico/genética , Sintenia/genética
8.
Science ; 373(6550)2021 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-34210851

RESUMO

Synthetic biological networks comprising fast, reversible reactions could enable engineering of new cellular behaviors that are not possible with slower regulation. Here, we created a bistable toggle switch in Saccharomyces cerevisiae using a cross-repression topology comprising 11 protein-protein phosphorylation elements. The toggle is ultrasensitive, can be induced to switch states in seconds, and exhibits long-term bistability. Motivated by our toggle's architecture and size, we developed a computational framework to search endogenous protein pathways for other large and similar bistable networks. Our framework helped us to identify and experimentally verify five formerly unreported endogenous networks that exhibit bistability. Building synthetic protein-protein networks will enable bioengineers to design fast sensing and processing systems, allow sophisticated regulation of cellular processes, and aid discovery of endogenous networks with particular functions.


Assuntos
Bioengenharia , Mapas de Interação de Proteínas , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fosforilação , Proteínas de Saccharomyces cerevisiae/genética
9.
Int J Mol Sci ; 22(13)2021 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-34206573

RESUMO

Processing of the RNA polymerase I pre-rRNA transcript into the mature 18S, 5.8S, and 25S rRNAs requires removing the "spacer" sequences. The canonical pathway for the removal of the ITS1 spacer involves cleavages at the 3' end of 18S rRNA and at two sites inside ITS1. The process can generate either a long or a short 5.8S rRNA that differs in the number of ITS1 nucleotides retained at the 5.8S 5' end. Here we document a novel pathway to the long 5.8S, which bypasses cleavage within ITS1. Instead, the entire ITS1 is degraded from its 5' end by exonuclease Xrn1. Mutations in RNase MRP increase the accumulation of long relative to short 5.8S rRNA. Traditionally this is attributed to a decreased rate of RNase MRP cleavage at its target in ITS1, called A3. However, results from this work show that the MRP-induced switch between long and short 5.8S rRNA formation occurs even when the A3 site is deleted. Based on this and our published data, we propose that the link between RNase MRP and 5.8S 5' end formation involves RNase MRP cleavage at unknown sites elsewhere in pre-rRNA or in RNA molecules other than pre-rRNA.


Assuntos
RNA Ribossômico 5,8S/genética , RNA Ribossômico 5,8S/metabolismo , DNA Espaçador Ribossômico , Endorribonucleases , Regulação Fúngica da Expressão Gênica , Conformação de Ácido Nucleico , Processamento Pós-Transcricional do RNA , RNA Fúngico , RNA Ribossômico 5,8S/química , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Deleção de Sequência
10.
Appl Microbiol Biotechnol ; 105(13): 5607-5616, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34228183

RESUMO

Nitrosamine compounds, represented by N-nitrosodimethylamine, are regarded as potentially genotoxic impurities (PGIs) due to their hazard warning structure, which has attracted great attention of pharmaceutical companies and regulatory authorities. At present, great research gaps exist in genotoxicity assessment and carcinogenicity comparison of nitrosamine compounds. In this work, a collection of GFP-fused yeast cells representing DNA damage repair pathways were used to evaluate the genotoxicity of eight nitrosamine compounds (10-6-105 µg/mL). The high-resolution expression profiles of GFP-fused protein revealed the details of the DNA damage repair of nitrosamines. Studies have shown that nitrosamine compounds can cause extensive DNA damage and activate multiple repair pathways. The evaluation criteria based on the total expression level of protein show a good correlation with the mammalian carcinogenicity data TD50, and the yeast cell collection can be used as a potential reliable criterion for evaluating the carcinogenicity of compounds. The assay based on DNA damage pathway integration has high sensitivity and can be used as a supplementary method for the evaluation of trace PGIs in actual production. KEY POINTS: • The genotoxicity mechanism of nitrosamines was systematically studied. • The influence of compound structure on the efficacy of genotoxicity was explored. • GFP-fused yeast cells have the potential to evaluate impurities in production.


Assuntos
Técnicas Biossensoriais , Nitrosaminas , Animais , Dano ao DNA , Mutagênicos/toxicidade , Nitrosaminas/toxicidade , Saccharomyces cerevisiae/genética
11.
J Agric Food Chem ; 69(28): 7932-7937, 2021 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-34232654

RESUMO

l-Methionine is an essential bioactive amino acid with high commercial value for diverse applications. Sustained attentions have been paid to efficient and economical preparation of l-methionine. In this work, a novel method for l-methionine production was established using O-acetyl-homoserine (OAH) and 3-methylthiopropionaldehyde (MMP) as substrates by catalysis of the yeast OAH sulfhydrylase MET17. The OAH sulfhydrylase gene Met17 was cloned from Saccharomyces cerevisiae S288c and overexpressed in Escherichia coli BL21. A 49 kDa MET17 was detected in the supernatant of the recombinant E. coli strain BL21-Met17 lysate with IPTG induction, which exhibited the biological activity of l-methionine biosynthesis from OAH and MMP. The recombinant MET17 was then purified from E. coli BL21-Met17 and used for in vitro biosynthesis of l-methionine. The maximal conversion rate (86%) of OAH to l-methionine catalyzed by purified MET17 was achieved by optimization of the molar ratio of OAH to MMP. The method proposed in this study provides a possible novel route for the industrial production of l-methionine.


Assuntos
Metionina , Saccharomyces cerevisiae , Carbono-Oxigênio Liases , Catálise , Escherichia coli/genética , Cinética , Saccharomyces cerevisiae/genética
12.
Nat Commun ; 12(1): 4202, 2021 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-34244507

RESUMO

Biochemical reactions typically depend on the concentrations of the molecules involved, and cell survival therefore critically depends on the concentration of proteins. To maintain constant protein concentrations during cell growth, global mRNA and protein synthesis rates are tightly linked to cell volume. While such regulation is appropriate for most proteins, certain cellular structures do not scale with cell volume. The most striking example of this is the genomic DNA, which doubles during the cell cycle and increases with ploidy, but is independent of cell volume. Here, we show that the amount of histone proteins is coupled to the DNA content, even though mRNA and protein synthesis globally increase with cell volume. As a consequence, and in contrast to the global trend, histone concentrations decrease with cell volume but increase with ploidy. We find that this distinct coordination of histone homeostasis and genome content is already achieved at the transcript level, and is an intrinsic property of histone promoters that does not require direct feedback mechanisms. Mathematical modeling and histone promoter truncations reveal a simple and generalizable mechanism to control the cell volume- and ploidy-dependence of a given gene through the balance of the initiation and elongation rates.


Assuntos
Histonas/biossíntese , Modelos Genéticos , Biossíntese de Proteínas/genética , RNA Mensageiro/biossíntese , Transcrição Genética , DNA Fúngico/genética , Genoma Fúngico , Histonas/genética , Ploidias , Regiões Promotoras Genéticas/genética , RNA Fúngico/biossíntese , RNA Fúngico/genética , RNA Mensageiro/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/biossíntese , Proteínas de Saccharomyces cerevisiae/genética
13.
J Agric Food Chem ; 69(27): 7581-7592, 2021 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-34197112

RESUMO

There is growing evidence that prevention of metabolic syndrome (MS) by dietary fibers is intricately linked to gut microbiota. In the present work, the mice were fed a high-fat diet (HFD) and orally treated with yeast ß-glucan to further examine the effects of ß-glucan on MS and gut microbiota and the potential relationship between gut microbiota and its activity. After intervention for 10 weeks, it was found that the treatment of yeast ß-glucan could significantly improve the HFD-induced MS. Furthermore, pro-inflammatory cytokines in plasma including IL-6 and IL-1ß were decreased. Yeast ß-glucan could regulate the diversity and composition of HFD-induced gut microbiota. Moreover, the relative abundances of Lactobacillus and Lactococcus, having significant positive correlation with metabolic changes, were decreased by ß-glucan, which might play a critical role in attenuation of MS. Our findings suggest that yeast ß-glucan shows promising application as a prebiotic for preventing MS and regulating gut microbiota.


Assuntos
Microbioma Gastrointestinal , Síndrome Metabólica , beta-Glucanas , Animais , Proliferação de Células , Dieta Hiperlipídica/efeitos adversos , Lactobacillus , Lactococcus , Camundongos , Camundongos Endogâmicos C57BL , Saccharomyces cerevisiae/genética
14.
Adv Exp Med Biol ; 1208: 43-53, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34260020

RESUMO

Phagophore closure is a critical step during macroautophagy. However, the proteins and mechanisms to regulate this step have been elusive for a long time. In 2017, Rab5 was affirmed to play a role in phagophore closure in yeast. Furthermore, in mammalian cells, ESCRT III was reported to have roles in phagophore closure and mitophagosome closure in vivo in 2018 and 2019, respectively. The role of ESCRT in phagophore closure was confirmed in yeast, both in vivo and in vitro, in 2019. Most importantly, the latter paper found that Atg17 recruited the ESCRT III subunit Snf7 to the phagophore to close it under the control of Rab5. To determine the closure characteristics of autophagosome-like membrane structures in ESCRT mutants, a traditional protease protection assay with immunoblotting was used, accompanied by new techniques that were developed, including immunofluorescence assays, autophagosome completion assays, and the optogenetic closure assay. This study delivered our current understanding of phagophore closure and provided more reference methods to detect membrane closure.


Assuntos
Autofagossomos , Proteínas de Saccharomyces cerevisiae , Animais , Autofagia , Complexos Endossomais de Distribuição Requeridos para Transporte , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
15.
Adv Exp Med Biol ; 1208: 99-114, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34260024

RESUMO

Autophagy, a highly conserved metabolic process in eukaryotes, is a widespread degradation/recycling system. However, there are significant differences (as well as similarities) between autophagy in animals, plants, and microorganisms such as yeast. While the overall process of autophagy is similar between different organisms, the molecular mechanisms and the pathways regulating autophagy are different, which is manifested in the diversity and specificity of the genes involved. In general, the autophagy system is much more complicated in mammals than in yeast. In addition, there are some differences in the types of autophagy present in animals, plants, and microorganisms. For example, there is a unique type of selective autophagy called the cytoplasm-to-vacuole targeting (Cvt) pathway in yeast, and a special kind of autophagy, chloroplast autophagy, exists in plants. In conclusion, although autophagy is highly conserved in eukaryotes, there are still many differences between autophagy of animals, plants, and microorganisms.


Assuntos
Autofagia , Vacúolos , Animais , Citoplasma , Mamíferos/genética , Saccharomyces cerevisiae
16.
Adv Exp Med Biol ; 1208: 175-190, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34260027

RESUMO

Macroautophagy (referred to as autophagy hereafter) is a highly conserved catabolic process in eukaryotic cells. Autophagy is essential for cellular homeostasis through elimination and recycling of large cytoplasmic components, such as abnormal protein aggregates and damaged organelles, via lysosomal degradation. Since being originally identified by genetic screening in yeast, autophagy-related (ATG) genes have played a central role in autophagy research in different organisms, including plants, worms, flies, and mammals. Mouse models for monitoring autophagic activity or clarifying its biological functions have also been established. These mice are powerful tools to investigate roles of autophagy in vivo. Owing to the rapid technological advances in molecular biology, it is ever more efficient and simpler to manipulate autophagy-associated genes. Herein, we will introduce some commonly used approaches of gene silencing in mammalian cells, including CRIPSR/Cas9-mediated gene knockout and siRNA- and shRNA-mediated gene knockdown. We also summarized the common mouse models used for assessing autophagy. We hope to bring the researchers some useful information as they study autophagy.


Assuntos
Autofagia , Lisossomos , Animais , Autofagia/genética , Mamíferos , Camundongos , Proteínas , Saccharomyces cerevisiae
17.
Adv Exp Med Biol ; 1208: 357-371, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34260033

RESUMO

Autophagy is an important intracellular lysosomal degradation process in cells, which is highly conserved from yeast to mammals. The process of autophagy is roughly divided into the following key steps: the formation of a membrane structure called ISM (isolated membrane) after stimulation, the biogenesis and maturation of autophagosomes, and finally the degradation of autophagosomes. A number of proteins are required to function in the whole process of autophagy. Since the initial genetic screening in yeast cells, multiple genes that play pivotal roles in autophagy have been discovered. These molecules have been named ATG genes (AuTophaGy related genes). The screening for new key molecules involved in autophagy has greatly promoted the characterization of the mechanism of the autophagy machinery and provides multiple targets for the development of autophagy-based regulatory drugs.


Assuntos
Autofagossomos , Autofagia , Animais , Autofagia/genética , Proteínas Relacionadas à Autofagia/genética , Lisossomos , Saccharomyces cerevisiae
18.
Sheng Wu Gong Cheng Xue Bao ; 37(6): 2050-2076, 2021 Jun 25.
Artigo em Chinês | MEDLINE | ID: mdl-34227294

RESUMO

Plant polyphenols are phenylpropanoid derivatives including phenolic acids, stilbenes, curcumins and flavonoids. These compounds display a variety of biological and pharmacological activities such as antioxidation, vasorelaxation, anti-coagulation, anti-inflammation, anti-tumor and anti-virus, conferring a huge application potential in the sectors of drugs, foods, cosmetics, and chemicals. Microorganisms have become important hosts for heterologous synthesis of natural products due to the advantages of fast growth, easiness of culture and industrial operation. In recent years, the development of synthetic biology has boosted the microbial synthesis of plant natural products, achieving substantial progress. In this review, we summarize the synthesis of plant polyphenols in engineered Escherichia coli, Saccharomyces cerevisiae and other microorganisms equipped with the designed biosynthetic pathways of polyphenols. We also discuss the optimization strategies such as precursor engineering, dynamic regulation, and co-cultivation to improve the production of polyphenols and propose future prospects for polyphenol pathway engineering.


Assuntos
Engenharia Metabólica , Polifenóis , Vias Biossintéticas , Plantas , Saccharomyces cerevisiae/genética
19.
Sheng Wu Gong Cheng Xue Bao ; 37(6): 2085-2104, 2021 Jun 25.
Artigo em Chinês | MEDLINE | ID: mdl-34227296

RESUMO

Terpenoids are a group of structurally diverse compounds with good biological activities and versatile functions such as anti-cancer and immunity-enhancing effects, and are widely used in food, healthcare and medical industries. Facilitated by the increasing understandings on the natural biosynthetic pathways of terpenoids in recent years, Saccharomyces cerevisiae has been engineered into high-yield strains for production of a variety of terpenoids, some of which have reached or become close to the level required by industrial production. In this connection, synthetic biology driven biotechnological production of terpenoids has become a promising alternative to chemical synthesis and traditional extraction approaches. This article summarizes the recent process in engineering S. cerevisiae for terpenoids biosynthesis, highlighting the effect of synthetic biology strategies by taking a couple of typical terpenoids as examples.


Assuntos
Engenharia Metabólica , Saccharomyces cerevisiae , Vias Biossintéticas , Saccharomyces cerevisiae/genética , Biologia Sintética , Terpenos
20.
Sheng Wu Gong Cheng Xue Bao ; 37(5): 1578-1602, 2021 May 25.
Artigo em Chinês | MEDLINE | ID: mdl-34085444

RESUMO

Since its birth in the early 1990s, metabolic engineering technology has gone 30 years rapid development. As one of the preferred chassis for metabolic engineering, S. cerevisiae cells have been engineered into microbial cell factories for the production of a variety of bulk chemicals and novel high value-added bioactive compounds. In recent years, synthetic biology, bioinformatics, machine learning and other technologies have also greatly contributed to the technological development and applications of metabolic engineering. This review summarizes the important technological development for metabolic engineering of S. cerevisiae in the past 30 years. Firstly, classical metabolic engineering tools and strategies were reviewed, followed by reviewing systems metabolic engineering and synthetic biology driven metabolic engineering approaches. The review is concluded with discussing future perspectives for metabolic engineering of S. cerevisiae in the light of state-of-the-art technological development.


Assuntos
Engenharia Metabólica , Saccharomyces cerevisiae , Biologia Computacional , Saccharomyces cerevisiae/genética , Biologia Sintética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...