Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 9.812
Filtrar
1.
Mol Genet Genomics ; 295(6): 1489-1500, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32948893

RESUMO

Glucose, fructose and mannose are the preferred carbon/energy sources for the yeast Saccharomyces cerevisiae. Absence of preferred energy sources activates glucose derepression, which is regulated by the kinase Snf1. Snf1 phosphorylates the transcriptional repressor Mig1, which results in its exit from the nucleus and subsequent derepression of genes. In contrast, Snf1 is inactive when preferred carbon sources are available, which leads to dephosphorylation of Mig1 and its translocation to the nucleus where Mig1 acts as a transcription repressor. Here we revisit the role of the three hexose kinases, Hxk1, Hxk2 and Glk1, in glucose de/repression. We demonstrate that all three sugar kinases initially affect Mig1 nuclear localization upon addition of glucose, fructose and mannose. This initial import of Mig1 into the nucleus was temporary; for continuous nucleocytoplasmic shuttling of Mig1, Hxk2 is required in the presence of glucose and mannose and in the presence of fructose Hxk2 or Hxk1 is required. Our data suggest that Mig1 import following exposure to preferred energy sources is controlled via two different pathways, where (1) the initial import is regulated by signals derived from metabolism and (2) continuous shuttling is regulated by the Hxk2 and Hxk1 proteins. Mig1 nucleocytoplasmic shuttling appears to be important for the maintenance of the repressed state in which Hxk1/2 seems to play an essential role.


Assuntos
Núcleo Celular/metabolismo , Frutose/metabolismo , Glucose/metabolismo , Hexoquinase/metabolismo , Manose/metabolismo , Proteínas Repressoras/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Transporte Ativo do Núcleo Celular , Regulação Fúngica da Expressão Gênica , Hexoquinase/genética , Fosforilação , Transporte Proteico , Proteínas Repressoras/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/genética
2.
Nat Commun ; 11(1): 4880, 2020 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-32978375

RESUMO

Through advanced mechanistic modeling and the generation of large high-quality datasets, machine learning is becoming an integral part of understanding and engineering living systems. Here we show that mechanistic and machine learning models can be combined to enable accurate genotype-to-phenotype predictions. We use a genome-scale model to pinpoint engineering targets, efficient library construction of metabolic pathway designs, and high-throughput biosensor-enabled screening for training diverse machine learning algorithms. From a single data-generation cycle, this enables successful forward engineering of complex aromatic amino acid metabolism in yeast, with the best machine learning-guided design recommendations improving tryptophan titer and productivity by up to 74 and 43%, respectively, compared to the best designs used for algorithm training. Thus, this study highlights the power of combining mechanistic and machine learning models to effectively direct metabolic engineering efforts.


Assuntos
Aprendizado de Máquina , Engenharia Metabólica/métodos , Saccharomyces cerevisiae/metabolismo , Triptofano/metabolismo , Algoritmos , Aminoácidos/metabolismo , Fenômenos Bioquímicos , Técnicas Biossensoriais , Genótipo , Redes e Vias Metabólicas , Modelos Biológicos , Fenótipo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento
3.
Nat Commun ; 11(1): 4866, 2020 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-32978391

RESUMO

Mitochondria house evolutionarily conserved pathways of carbon and nitrogen metabolism that drive cellular energy production. Mitochondrial bioenergetics is regulated by calcium uptake through the mitochondrial calcium uniporter (MCU), a multi-protein complex whose assembly in the inner mitochondrial membrane is facilitated by the scaffold factor MCUR1. Intriguingly, many fungi that lack MCU contain MCUR1 homologs, suggesting alternate functions. Herein, we characterize Saccharomyces cerevisiae homologs Put6 and Put7 of MCUR1 as regulators of mitochondrial proline metabolism. Put6 and Put7 are tethered to the inner mitochondrial membrane in a large hetero-oligomeric complex, whose abundance is regulated by proline. Loss of this complex perturbs mitochondrial proline homeostasis and cellular redox balance. Yeast cells lacking either Put6 or Put7 exhibit a pronounced defect in proline utilization, which can be corrected by the heterologous expression of human MCUR1. Our work uncovers an unexpected role of MCUR1 homologs in mitochondrial proline metabolism.


Assuntos
Proteínas de Membrana/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Prolina/metabolismo , Saccharomyces cerevisiae/metabolismo , Canais de Cálcio , Regulação Fúngica da Expressão Gênica , Genes Fúngicos/genética , Homeostase , Humanos , Proteínas de Membrana/genética , Redes e Vias Metabólicas/genética , Membranas Mitocondriais/metabolismo , Proteínas Mitocondriais/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Transcriptoma
4.
PLoS Biol ; 18(8): e3000836, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32804946

RESUMO

Pleiotropy-when a single mutation affects multiple traits-is a controversial topic with far-reaching implications. Pleiotropy plays a central role in debates about how complex traits evolve and whether biological systems are modular or are organized such that every gene has the potential to affect many traits. Pleiotropy is also critical to initiatives in evolutionary medicine that seek to trap infectious microbes or tumors by selecting for mutations that encourage growth in some conditions at the expense of others. Research in these fields, and others, would benefit from understanding the extent to which pleiotropy reflects inherent relationships among phenotypes that correlate no matter the perturbation (vertical pleiotropy). Alternatively, pleiotropy may result from genetic changes that impose correlations between otherwise independent traits (horizontal pleiotropy). We distinguish these possibilities by using clonal populations of yeast cells to quantify the inherent relationships between single-cell morphological features. Then, we demonstrate how often these relationships underlie vertical pleiotropy and how often these relationships are modified by genetic variants (quantitative trait loci [QTL]) acting via horizontal pleiotropy. Our comprehensive screen measures thousands of pairwise trait correlations across hundreds of thousands of yeast cells and reveals ample evidence of both vertical and horizontal pleiotropy. Additionally, we observe that the correlations between traits can change with the environment, genetic background, and cell-cycle position. These changing dependencies suggest a nuanced view of pleiotropy: biological systems demonstrate limited pleiotropy in any given context, but across contexts (e.g., across diverse environments and genetic backgrounds) each genetic change has the potential to influence a larger number of traits. Our method suggests that exploiting pleiotropy for applications in evolutionary medicine would benefit from focusing on traits with correlations that are less dependent on context.


Assuntos
Pleiotropia Genética , Modelos Genéticos , Herança Multifatorial , Locos de Características Quantitativas , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Evolução Biológica , Ciclo Celular/genética , Células Clonais , Variação Genética , Ensaios de Triagem em Larga Escala , Mutação , Fenótipo , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Análise de Célula Única
5.
PLoS Biol ; 18(8): e3000757, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32833957

RESUMO

In eukaryotes, conserved mechanisms ensure that cell growth is coordinated with nutrient availability. Overactive growth during nutrient limitation ("nutrient-growth dysregulation") can lead to rapid cell death. Here, we demonstrate that cells can adapt to nutrient-growth dysregulation by evolving major metabolic defects. Specifically, when yeast lysine-auxotrophic mutant lys- encountered lysine limitation, an evolutionarily novel stress, cells suffered nutrient-growth dysregulation. A subpopulation repeatedly evolved to lose the ability to synthesize organosulfurs (lys-orgS-). Organosulfurs, mainly reduced glutathione (GSH) and GSH conjugates, were released by lys- cells during lysine limitation when growth was dysregulated, but not during glucose limitation when growth was regulated. Limiting organosulfurs conferred a frequency-dependent fitness advantage to lys-orgS- by eliciting a proper slow growth program, including autophagy. Thus, nutrient-growth dysregulation is associated with rapid organosulfur release, which enables the selection of organosulfur auxotrophy to better tune cell growth to the metabolic environment. We speculate that evolutionarily novel stresses can trigger atypical release of certain metabolites, setting the stage for the evolution of new ecological interactions.


Assuntos
Adaptação Fisiológica/genética , Lisina/farmacologia , Redes e Vias Metabólicas/efeitos dos fármacos , Nutrientes/farmacologia , Saccharomyces cerevisiae/metabolismo , Autofagia/efeitos dos fármacos , Autofagia/genética , Evolução Biológica , Glucose/metabolismo , Glucose/farmacologia , Lisina/deficiência , Redes e Vias Metabólicas/genética , Nitrogênio/metabolismo , Nitrogênio/farmacologia , Nutrientes/metabolismo , Ribossomos/efeitos dos fármacos , Ribossomos/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Sirolimo/farmacologia , Estresse Fisiológico
6.
PLoS One ; 15(8): e0237540, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32804965

RESUMO

The yeast MAP kinase Hog1 pathway activates transcription of several hundreds genes. Large-scale gene expression and DNA binding assays suggest that most Hog1-induced genes are regulated by the transcriptional activators Msn2/4, Hot1 and Sko1. These studies also revealed the target genes of each activator and the putative binding sites on their promoters. In a previous study we identified a group of genes, which we considered the bona fide targets of Hog1, because they were induced in response to expression of intrinsically active mutant of Hog1, in the absence of any stress. We previously analyzed the promoter of the most highly induced gene, STL1, and noticed that some promoter properties were different from those proposed by large-scale data. We therefore continue to study promoters individually and present here analyses of promoters of more Hog1's targets, RTC3, HSP12, DAK1 and ALD3. We report that RTC3 and HSP12 promoters are robust and are induced, to different degrees, even in cells lacking all four activators. DAK1 and ALD3 promoters are not robust and fully depend on a single activator, DAK1 on Sko1 and ALD3 on Msn2/4. Most of these observations could not be inferred from the large-scale data. Msn2/4 are involved in regulating all four promoters. It was assumed, therefore, that the promoters are spontaneously active in ras2Δ cells, in which Msn2/4 are known to be de-repressed. Intriguingly, the promoters were not active in BY4741ras2Δ cells, but were de-repressed, as expected, in ras2Δ cells of other genetic backgrounds. This study describes two phenomena. One, some Hog1's target promoters are most robust, backupped by many activators. Second, in contrast to most laboratory strains, the widely used BY4741 strain does not induce Msn2/4 activity when the Ras/cAMP cascade is downregulated.


Assuntos
Proteínas de Choque Térmico/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Fatores de Transcrição de Zíper de Leucina Básica/genética , Sítios de Ligação , Proteínas de Ligação a DNA/genética , Regulação Fúngica da Expressão Gênica , Proteínas de Choque Térmico/química , Regiões Promotoras Genéticas , Proteínas Repressoras/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/genética
7.
Nature ; 584(7821): 470-474, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32669712

RESUMO

The rate of cell growth is crucial for bacterial fitness and drives the allocation of bacterial resources, affecting, for example, the expression levels of proteins dedicated to metabolism and biosynthesis1,2. It is unclear, however, what ultimately determines growth rates in different environmental conditions. Moreover, increasing evidence suggests that other objectives are also important3-7, such as the rate of physiological adaptation to changing environments8,9. A common challenge for cells is that these objectives cannot be independently optimized, and maximizing one often reduces another. Many such trade-offs have indeed been hypothesized on the basis of qualitative correlative studies8-11. Here we report a trade-off between steady-state growth rate and physiological adaptability in Escherichia coli, observed when a growing culture is abruptly shifted from a preferred carbon source such as glucose to fermentation products such as acetate. These metabolic transitions, common for enteric bacteria, are often accompanied by multi-hour lags before growth resumes. Metabolomic analysis reveals that long lags result from the depletion of key metabolites that follows the sudden reversal in the central carbon flux owing to the imposed nutrient shifts. A model of sequential flux limitation not only explains the observed trade-off between growth and adaptability, but also allows quantitative predictions regarding the universal occurrence of such tradeoffs, based on the opposing enzyme requirements of glycolysis versus gluconeogenesis. We validate these predictions experimentally for many different nutrient shifts in E. coli, as well as for other respiro-fermentative microorganisms, including Bacillus subtilis and Saccharomyces cerevisiae.


Assuntos
Adaptação Fisiológica , Meio Ambiente , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/metabolismo , Acetatos/metabolismo , Bacillus subtilis/citologia , Bacillus subtilis/crescimento & desenvolvimento , Bacillus subtilis/metabolismo , Divisão Celular , Escherichia coli/enzimologia , Escherichia coli/genética , Fermentação , Gluconeogênese , Glucose/metabolismo , Glicólise , Metabolômica , Modelos Biológicos , Mutação , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo
8.
PLoS Genet ; 16(6): e1008865, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32603360

RESUMO

Fpr1 (FK506-sensitive proline rotamase 1), a protein of the FKBP12 (FK506-binding protein 12 kDa) family in Saccharomyces cerevisiae, is a primary target for the immunosuppressive agents FK506 and rapamycin. Fpr1 inhibits calcineurin and TORC1 (target of rapamycin complex 1) when bound to FK506 and rapamycin, respectively. Although Fpr1 is recognised to play a crucial role in the efficacy of these drugs, its physiological functions remain unclear. In a hmo1Δ (high mobility group family 1-deleted) yeast strain, deletion of FPR1 induced severe growth defects, which could be alleviated by increasing the copy number of RPL25 (ribosome protein of the large subunit 25), suggesting that RPL25 expression was affected in hmo1Δfpr1Δ cells. In the current study, extensive chromatin immunoprecipitation (ChIP) and ChIP-sequencing analyses revealed that Fpr1 associates specifically with the upstream activating sequences of nearly all RPG (ribosomal protein gene) promoters, presumably in a manner dependent on Rap1 (repressor/activator site binding protein 1). Intriguingly, Fpr1 promotes the binding of Fhl1/Ifh1 (forkhead-like 1/interacts with forkhead 1), two key regulators of RPG transcription, to certain RPG promoters independently of and/or cooperatively with Hmo1. Furthermore, mutation analyses of Fpr1 indicated that for transcriptional function on RPG promoters, Fpr1 requires its N-terminal domain and the binding surface for rapamycin, but not peptidyl-prolyl isomerase activity. Notably, Fpr1 orthologues from other species also inhibit TORC1 when bound to rapamycin, but do not regulate transcription in yeast, which suggests that these two functions of Fpr1 are independent of each other.


Assuntos
Proteínas de Grupo de Alta Mobilidade/metabolismo , Peptidilprolil Isomerase/metabolismo , Proteínas Ribossômicas/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Fatores de Transcrição/metabolismo , Calcineurina/metabolismo , Sequenciamento de Cromatina por Imunoprecipitação , Fatores de Transcrição Forkhead/metabolismo , Regulação Fúngica da Expressão Gênica , Genes Fúngicos , Proteínas de Grupo de Alta Mobilidade/genética , Peptidilprolil Isomerase/genética , Regiões Promotoras Genéticas/genética , Ligação Proteica/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/antagonistas & inibidores , Proteínas de Saccharomyces cerevisiae/genética , Sirolimo/farmacologia , Tacrolimo/farmacologia , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/genética , Transcrição Genética
9.
Nat Commun ; 11(1): 3751, 2020 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-32719344

RESUMO

The protein composition and structure of assembling 60S ribosomal subunits undergo numerous changes as pre-ribosomes transition from the nucleolus to the nucleoplasm. This includes stable anchoring of the Rpf2 subcomplex containing 5S rRNA, rpL5, rpL11, Rpf2 and Rrs1, which initially docks onto the flexible domain V of rRNA at earlier stages of assembly. In this work, we tested the function of the C-terminal domain (CTD) of Rpf2 during these anchoring steps, by truncating this extension and assaying effects on middle stages of subunit maturation. The rpf2Δ255-344 mutation affects proper folding of rRNA helices H68-70 during anchoring of the Rpf2 subcomplex. In addition, several assembly factors (AFs) are absent from pre-ribosomes or in altered conformations. Consequently, major remodeling events fail to occur: rotation of the 5S RNP, maturation of the peptidyl transferase center (PTC) and the nascent polypeptide exit tunnel (NPET), and export of assembling subunits to the cytoplasm.


Assuntos
Ribonucleoproteínas/metabolismo , Subunidades Ribossômicas Maiores/metabolismo , Rotação , Saccharomyces cerevisiae/metabolismo , Transporte Ativo do Núcleo Celular , Núcleo Celular/metabolismo , Modelos Moleculares , Proteínas Mutantes/química , Proteínas Mutantes/genética , Mutação/genética , Domínios Proteicos , Dobramento de Proteína , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/ultraestrutura , Subunidades Ribossômicas Maiores/química , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/ultraestrutura , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/ultraestrutura
10.
PLoS One ; 15(6): e0234192, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32479562

RESUMO

Saccharomyces cerevisiae Coq8 is a member of the ancient UbiB atypical protein kinase family. Coq8, and its orthologs UbiB, ABC1, ADCK3, and ADCK4, are required for the biosynthesis of coenzyme Q in yeast, E. coli, A. thaliana, and humans. Each Coq8 ortholog retains nine highly conserved protein kinase-like motifs, yet its functional role in coenzyme Q biosynthesis remains mysterious. Coq8 may function as an ATPase whose activity is stimulated by coenzyme Q intermediates and phospholipids. A key yeast point mutant expressing Coq8-A197V was previously shown to result in a coenzyme Q-less, respiratory deficient phenotype. The A197V substitution occurs in the crucial Ala-rich protein kinase-like motif I of yeast Coq8. Here we show that long-term cultures of mutants expressing Coq8-A197V produce spontaneous revertants with the ability to grow on medium containing a non-fermentable carbon source. Each revertant is shown to harbor a secondary intragenic suppressor mutation within the COQ8 gene. The intragenic suppressors restore the synthesis of coenzyme Q. One class of the suppressors fully restores the levels of coenzyme Q and key Coq polypeptides necessary for the maintenance and integrity of the high-molecular mass CoQ synthome (also termed complex Q), while the other class provides only a partial rescue. Mutants harboring the first class of suppressors grow robustly under respiratory conditions, while mutants containing the second class grow more slowly under these conditions. Our work provides insight into the function of this important yet still enigmatic Coq8 family.


Assuntos
Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Supressão Genética , Ubiquinona/biossíntese , Substituição de Aminoácidos , Asparagina , Meios de Cultura/química , Regulação Fúngica da Expressão Gênica , Conformação Proteica , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Ubiquinona/genética
11.
Nat Commun ; 11(1): 2790, 2020 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-32493904

RESUMO

Age-dependent changes in metabolism can manifest as cellular lipid accumulation, but how this accumulation is regulated or impacts longevity is poorly understood. We find that Saccharomyces cerevisiae accumulate lipid droplets (LDs) during aging. We also find that over-expressing BNA2, the first Biosynthesis of NAD+ (kynurenine) pathway gene, reduces LD accumulation during aging and extends lifespan. Mechanistically, this LD accumulation during aging is not linked to NAD+ levels, but is anti-correlated with metabolites of the shikimate and aromatic amino acid biosynthesis (SA) pathways (upstream of BNA2), which produce tryptophan (the Bna2p substrate). We provide evidence that over-expressed BNA2 skews glycolytic flux from LDs towards the SA-BNA pathways, effectively reducing LDs. Importantly, we find that accumulation of LDs does not shorten lifespan, but does protect aged cells against stress. Our findings reveal how lipid accumulation impacts longevity, and how aging cell metabolism can be rewired to modulate lipid accumulation independently from longevity.


Assuntos
Metabolismo dos Lipídeos , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Vias Biossintéticas , Temperatura Baixa , Gotículas Lipídicas/metabolismo , Metaboloma , NAD/metabolismo , Saccharomyces cerevisiae/citologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Ácido Chiquímico/metabolismo , Estresse Fisiológico
12.
Proc Natl Acad Sci U S A ; 117(22): 12239-12248, 2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32430326

RESUMO

The ability to tolerate and thrive in diverse environments is paramount to all living organisms, and many organisms spend a large part of their lifetime in starvation. Upon acute glucose starvation, yeast cells undergo drastic physiological and metabolic changes and reestablish a constant-although lower-level of energy production within minutes. The molecules that are rapidly metabolized to fuel energy production under these conditions are unknown. Here, we combine metabolomics and genetics to characterize the cells' response to acute glucose depletion and identify pathways that ensure survival during starvation. We show that the ability to respire is essential for maintaining the energy status and to ensure viability during starvation. Measuring the cells' immediate metabolic response, we find that central metabolites drastically deplete and that the intracellular AMP-to-ATP ratio strongly increases within 20 to 30 s. Furthermore, we detect changes in both amino acid and lipid metabolite levels. Consistent with this, both bulk autophagy, a process that frees amino acids, and lipid degradation via ß-oxidation contribute in parallel to energy maintenance upon acute starvation. In addition, both these pathways ensure long-term survival during starvation. Thus, our results identify bulk autophagy and ß-oxidation as important energy providers during acute glucose starvation.


Assuntos
Aminoácidos/metabolismo , Autofagia , Metabolismo Energético , Glucose/deficiência , Metabolismo dos Lipídeos , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/crescimento & desenvolvimento , Trifosfato de Adenosina/metabolismo , Regulação Fúngica da Expressão Gênica , Metabolômica , Oxirredução , Saccharomyces cerevisiae/metabolismo , Inanição
13.
PLoS Genet ; 16(5): e1008801, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32392218

RESUMO

Cryptic genetic variation could arise from, for example, Gene-by-Gene (G-by-G) or Gene-by-Environment (G-by-E) interactions. The underlying molecular mechanisms and how they influence allelic effects and the genetic variance of complex traits is largely unclear. Here, we empirically explored the role of environmentally influenced epistasis on the suppression and release of cryptic variation by reanalysing a dataset of 4,390 haploid yeast segregants phenotyped on 20 different media. The focus was on 130 epistatic loci, each contributing to segregant growth in at least one environment and that together explained most (69-100%) of the narrow sense heritability of growth in the individual environments. We revealed that the epistatic growth network reorganised upon environmental changes to alter the estimated marginal (additive) effects of the individual loci, how multi-locus interactions contributed to individual segregant growth and the level of expressed genetic variance in growth. The estimated additive effects varied most across environments for loci that were highly interactive network hubs in some environments but had few or no interactors in other environments, resulting in changes in total genetic variance across environments. This environmentally dependent epistasis was thus an important mechanism for the suppression and release of cryptic variation in this population. Our findings increase the understanding of the complex genetic mechanisms leading to cryptic variation in populations, providing a basis for future studies on the genetic maintenance of trait robustness and development of genetic models for studying and predicting selection responses for quantitative traits in breeding and evolution.


Assuntos
Biologia Computacional/métodos , Epistasia Genética , Variação Genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Regulação Fúngica da Expressão Gênica , Interação Gene-Ambiente , Genes Fúngicos , Modelos Genéticos , Fenótipo , Locos de Características Quantitativas , Saccharomyces cerevisiae/genética
14.
PLoS Genet ; 16(5): e1008816, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32469862

RESUMO

Alternative lengthening of telomeres (ALT) in human cells is a conserved process that is often activated in telomerase-deficient human cancers. This process exploits components of the recombination machinery to extend telomere ends, thus allowing for increased proliferative potential. Human MUS81 (Mus81 in Saccharomyces cerevisiae) is the catalytic subunit of structure-selective endonucleases involved in recombination and has been implicated in the ALT mechanism. However, it is unclear whether MUS81 activity at the telomere is specific to ALT cells or if it is required for more general aspects of telomere stability. In this study, we use S. cerevisiae to evaluate the contribution of the conserved Mus81-Mms4 endonuclease in telomerase-deficient yeast cells that maintain their telomeres by mechanisms akin to human ALT. Similar to human cells, we find that yeast Mus81 readily localizes to telomeres and its activity is important for viability after initial loss of telomerase. Interestingly, our analysis reveals that yeast Mus81 is not required for the survival of cells undergoing recombination-mediated telomere lengthening, i.e. for ALT itself. Rather we infer from genetic analysis that Mus81-Mms4 facilitates telomere replication during times of telomere instability. Furthermore, combining mus81 mutants with mutants of a yeast telomere replication factor, Rrm3, reveals that the two proteins function in parallel to promote normal growth during times of telomere stress. Combined with previous reports, our data can be interpreted in a consistent model in which both yeast and human MUS81-dependent nucleases participate in the recovery of stalled replication forks within telomeric DNA. Furthermore, this process becomes crucial under conditions of additional replication stress, such as telomere replication in telomerase-deficient cells.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Endonucleases/metabolismo , Endonucleases Flap/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/crescimento & desenvolvimento , Telomerase/deficiência , Replicação do DNA , Proteínas de Ligação a DNA/genética , Endonucleases/genética , Endonucleases Flap/genética , Viabilidade Microbiana , Recombinação Genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Telômero/metabolismo , Homeostase do Telômero
15.
Food Chem ; 326: 126985, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32413764

RESUMO

This study aims to investigate the effects of fermentation on the phenolic components and their bioaccessibility in extruded brown rice (EBR). The saccharified solution of EBR (SS-EBR) depicted higher phenolics when fermented by single or co-culture of Lactobacillusplantarum, Lactobacillus fermentum and Saccharomyces cerevisiae for 24 h at 37 °C. The co-culture fermented SS-EBR more significantly enhanced free, conjugated and bound phenolics and flavonoids with total increment of 93.3% and 61.3%, respectively. Fermentation changed the contents and compositions of phenolics in each fraction with more than 10-fold increase in vanillic acid and quercetin contents. Ferulic, p-cumaric and chlorogenic acids were increased by 83.5%, 52.2% and 113.4%, respectively, while kaempferol and cinnamic acid were found only in fermented SS-EBR. Fermentation also improved the oxygen radical absorption capacity (ORAC) and the bioaccessible phenolics in SS-EBR. Hence, the co-culture fermented SS-EBR, can be utilized as a functional supplement to provide more bioaccessible antioxidants.


Assuntos
Lactobacillus/crescimento & desenvolvimento , Oryza/química , Fenóis/química , Saccharomyces cerevisiae/crescimento & desenvolvimento , Antioxidantes/metabolismo , Técnicas de Cultura Celular por Lotes , Flavonoides/metabolismo , Oryza/metabolismo , Fenóis/metabolismo , Quercetina/metabolismo , Saccharomyces cerevisiae/metabolismo , Ácido Vanílico/metabolismo
16.
Nucleic Acids Res ; 48(11): 6210-6222, 2020 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-32365182

RESUMO

The ribotoxin α-sarcin belongs to a family of ribonucleases that cleave the sarcin/ricin loop (SRL), a critical functional rRNA element within the large ribosomal subunit (60S), thereby abolishing translation. Whether α-sarcin targets the SRL only in mature 60S subunits remains unresolved. Here, we show that, in yeast, α-sarcin can cleave SRLs within late 60S pre-ribosomes containing mature 25S rRNA but not nucleolar/nuclear 60S pre-ribosomes containing 27S pre-rRNA in vivo. Conditional expression of α-sarcin is lethal, but does not impede early pre-rRNA processing, nuclear export and the cytoplasmic maturation of 60S pre-ribosomes. Thus, SRL-cleaved containing late 60S pre-ribosomes seem to escape cytoplasmic proofreading steps. Polysome analyses revealed that SRL-cleaved 60S ribosomal subunits form 80S initiation complexes, but fail to progress to the step of translation elongation. We suggest that the functional integrity of a α-sarcin cleaved SRL might be assessed only during translation.


Assuntos
Endorribonucleases/metabolismo , Proteínas Fúngicas/metabolismo , Subunidades Ribossômicas Maiores de Eucariotos/química , Subunidades Ribossômicas Maiores de Eucariotos/metabolismo , Ricina/metabolismo , Saccharomyces cerevisiae/metabolismo , Transporte Ativo do Núcleo Celular , Nucléolo Celular/efeitos dos fármacos , Nucléolo Celular/metabolismo , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Endorribonucleases/farmacologia , Proteínas Fúngicas/farmacologia , Biossíntese de Proteínas , RNA Ribossômico/metabolismo , Ricina/química , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/crescimento & desenvolvimento
17.
PLoS One ; 15(5): e0233779, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32470059

RESUMO

Trehalose metabolism in yeast has been linked to a variety of phenotypes, including heat resistance, desiccation tolerance, carbon-source utilization, and sporulation. The relationships among the several phenotypes of mutants unable to synthesize trehalose are not understood, even though the pathway is highly conserved. One of these phenotypes is that tps1Δ strains cannot reportedly grow on media containing glucose or fructose, even when another carbon source they can use (e.g. galactose) is present. Here we corroborate the recent observation that a small fraction of yeast tps1Δ cells do grow on glucose, unlike the majority of the population. This is not due to a genetic alteration, but instead resembles the persister phenotype documented in many microorganisms and cancer cells undergoing lethal stress. We extend these observations to show that this phenomenon is glucose-specific, as it does not occur on another highly fermented carbon source, fructose. We further demonstrate that this phenomenon appears to be related to mitochondrial complex III function, but unrelated to inorganic phosphate levels in the cell, as had previously been suggested. Finally, we found that this phenomenon is specific to S288C-derived strains, and is the consequence of a variant in the MKT1 gene.


Assuntos
Glucose/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiologia , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Fermentação , Frutose/metabolismo , Glucosiltransferases/genética , Mutação com Perda de Função , Trealose/biossíntese
18.
Nucleic Acids Res ; 48(11): 5799-5813, 2020 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-32399566

RESUMO

Transcription and pre-mRNA splicing are coupled to promote gene expression and regulation. However, mechanisms by which transcription and splicing influence each other are still under investigation. The ATPase Prp5p is required for pre-spliceosome assembly and splicing proofreading at the branch-point region. From an open UV mutagenesis screen for genetic suppressors of prp5 defects and subsequent targeted testing, we identify components of the TBP-binding module of the Spt-Ada-Gcn5 Acetyltransferase (SAGA) complex, Spt8p and Spt3p. Spt8Δ and spt3Δ rescue the cold-sensitivity of prp5-GAR allele, and prp5 mutants restore growth of spt8Δ and spt3Δ strains on 6-azauracil. By chromatin immunoprecipitation (ChIP), we find that prp5 alleles decrease recruitment of RNA polymerase II (Pol II) to an intron-containing gene, which is rescued by spt8Δ. Further ChIP-seq reveals that global effects on Pol II-binding are mutually rescued by prp5-GAR and spt8Δ. Inhibited splicing caused by prp5-GAR is also restored by spt8Δ. In vitro assays indicate that Prp5p directly interacts with Spt8p, but not Spt3p. We demonstrate that Prp5p's splicing proofreading is modulated by Spt8p and Spt3p. Therefore, this study reveals that interactions between the TBP-binding module of SAGA and the spliceosomal ATPase Prp5p mediate a balance between transcription initiation/elongation and pre-spliceosome assembly.


Assuntos
RNA Helicases DEAD-box/metabolismo , Processamento de RNA , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Genética , Alelos , Genes Fúngicos/genética , Genoma Fúngico/genética , Mutação , Fenótipo , Ligação Proteica , RNA Polimerase II/metabolismo , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/genética , Especificidade por Substrato , Fatores de Transcrição/deficiência , Fatores de Transcrição/genética
19.
PLoS One ; 15(4): e0229315, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32320410

RESUMO

Mutations in the splicing machinery have been implicated in a number of human diseases. Most notably, the U2 small nuclear ribonucleoprotein (snRNP) component SF3b1 has been found to be frequently mutated in blood cancers such as myelodysplastic syndromes (MDS). SF3b1 is a highly conserved HEAT repeat (HR)-containing protein and most of these blood cancer mutations cluster in a hot spot located in HR4-8. Recently, a second mutational hotspot has been identified in SF3b1 located in HR9-12 and is associated with acute myeloid leukemias, bladder urothelial carcinomas, and uterine corpus endometrial carcinomas. The consequences of these mutations on SF3b1 functions during splicing have not yet been tested. We incorporated the corresponding mutations into the yeast homolog of SF3b1 and tested their impact on splicing. We find that all of these HR9-12 mutations can support splicing in yeast, and this suggests that none of them are loss of function alleles in humans. The Hsh155V502F mutation alters splicing of several pre-mRNA reporters containing weak branch sites as well as a genetic interaction with Prp2 and physical interactions with Prp5 and Prp3. The ability of a single allele of Hsh155 to perturb interactions with multiple factors functioning at different stages of the splicing reaction suggests that some SF3b1-mutant disease phenotypes may have a complex origin on the spliceosome.


Assuntos
Mutação/genética , Fosfoproteínas/genética , Precursores de RNA/genética , Fatores de Processamento de RNA/genética , Processamento de RNA/genética , Sequências Repetitivas de Aminoácidos , Ribonucleoproteína Nuclear Pequena U2/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Sequência de Aminoácidos , Sequência Consenso/genética , Epistasia Genética , Humanos , Fosfoproteínas/química , Ligação Proteica , Fatores de Processamento de RNA/química , Ribonucleoproteína Nuclear Pequena U2/química , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/química
20.
Mol Cell ; 78(2): 359-370.e6, 2020 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-32246903

RESUMO

Yeast cells must grow to a critical size before committing to division. It is unknown how size is measured. We find that as cells grow, mRNAs for some cell-cycle activators scale faster than size, increasing in concentration, while mRNAs for some inhibitors scale slower than size, decreasing in concentration. Size-scaled gene expression could cause an increasing ratio of activators to inhibitors with size, triggering cell-cycle entry. Consistent with this, expression of the CLN2 activator from the promoter of the WHI5 inhibitor, or vice versa, interfered with cell size homeostasis, yielding a broader distribution of cell sizes. We suggest that size homeostasis comes from differential scaling of gene expression with size. Differential regulation of gene expression as a function of cell size could affect many cellular processes.


Assuntos
Divisão Celular/genética , Tamanho Celular , Ciclinas/genética , Proteínas de Saccharomyces cerevisiae/genética , Ciclo Celular/genética , Fase G1/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Regulação Fúngica da Expressão Gênica/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA