Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.164
Filtrar
2.
PLoS One ; 15(8): e0236932, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32745120

RESUMO

Humanity's reliance on clean water and the ecosystem services provided makes identifying efficient and effective ways to assess the ecological condition of streams ever more important. We used high throughput sequencing of the 16S rRNA region to explore relationships between stream microbial communities, environmental attributes, and assessments of stream ecological condition. Bacteria and archaea in microbial community samples collected from the water column and from stream sediments during spring and summer were used to replicate standard assessments of ecological condition performed with benthic macroinvertebrate collections via the Benthic Index of Biotic Integrity (BIBI). Microbe-based condition assessments were generated at different levels of taxonomic resolution from phylum to OTU (Operational Taxonomic Units) in order to understand appropriate levels of taxonomic aggregation. Stream sediment microbial communities from both spring and summer were much better than the water column at replicating BIBI condition assessment results. Accuracies were as high as 100% on training data used to build the models and up to 80% on validation data used to assess predictions. Assessments using all OTUs usually had the highest accuracy on training data, but were lower on validation data due to overfitting. In contrast, assessments at the order-level had similar performance accuracy for validation data, and a reduced subset of orders also performed well, suggesting the method could be generalized to other watersheds. Subsets of the important orders responded similarly to environmental gradients compared to the entire community, where strong shifts in community structure occurred for known aquatic stressors such as pH, dissolved organic carbon, and nitrate nitrogen. The results suggest the stream microbes may be useful for assessing the ecological condition of streams and especially useful for stream restorations where many eukaryotic taxa have been eliminated due to prior degradation and are unable to recolonize.


Assuntos
Monitorização de Parâmetros Ecológicos/métodos , Microbiota/genética , Rios/microbiologia , Archaea/classificação , Archaea/genética , Archaea/isolamento & purificação , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Ecossistema , Monitoramento Ambiental/métodos , Sedimentos Geológicos/microbiologia , Sequenciamento de Nucleotídeos em Larga Escala , Metagenômica , RNA Ribossômico 16S/genética
3.
PLoS One ; 15(8): e0234839, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32853201

RESUMO

Distinct lineages of Gammaproteobacteria clade Woeseiales are globally distributed in marine sediments, based on metagenomic and 16S rRNA gene analysis. Yet little is known about why they are dominant or their ecological role in Arctic fjord sediments, where glacial retreat is rapidly imposing change. This study combined 16S rRNA gene analysis, metagenome-assembled genomes (MAGs), and genome-resolved metatranscriptomics uncovered the in situ abundance and transcriptional activity of Woeseiales with burial in four shallow sediment sites of Kongsfjorden and Van Keulenfjorden of Svalbard (79°N). We present five novel Woeseiales MAGs and show transcriptional evidence for metabolic plasticity during burial, including sulfur oxidation with reverse dissimilatory sulfite reductase (dsrAB) down to 4 cm depth and nitrite reduction down to 6 cm depth. A single stress protein, spore protein SP21 (hspA), had a tenfold higher mRNA abundance than any other transcript, and was a hundredfold higher on average than other transcripts. At three out of the four sites, SP21 transcript abundance increased with depth, while total mRNA abundance and richness decreased, indicating a shift in investment from metabolism and other cellular processes to build-up of spore protein SP21. The SP21 gene in MAGs was often flanked by genes involved in membrane-associated stress response. The ability of Woeseiales to shift from sulfur oxidation to nitrite reduction with burial into marine sediments with decreasing access to overlying oxic bottom waters, as well as enter into a dormant state dominated by SP21, may account for its ubiquity and high abundance in marine sediments worldwide, including those of the rapidly shifting Arctic.


Assuntos
Gammaproteobacteria/genética , Sedimentos Geológicos/microbiologia , Regiões Árticas , Proteínas de Bactérias/genética , Estuários , Gammaproteobacteria/classificação , Gammaproteobacteria/metabolismo , Genoma Bacteriano , Proteínas de Choque Térmico/genética , Metagenoma , Filogenia , RNA Ribossômico 16S/genética , Água do Mar/microbiologia , Svalbard , Transcriptoma
4.
Nat Commun ; 11(1): 3941, 2020 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-32770005

RESUMO

Anaerobic oxidation of methane (AOM) mediated by anaerobic methanotrophic archaea (ANME) is the primary process that provides energy to cold seep ecosystems by converting methane into inorganic carbon. Notably, cold seep ecosystems are dominated by highly divergent heterotrophic microorganisms. The role of the AOM process in supporting heterotrophic population remains unknown. We investigate the acetogenic capacity of ANME-2a in a simulated cold seep ecosystem using high-pressure biotechnology, where both AOM activity and acetate production are detected. The production of acetate from methane is confirmed by isotope-labeling experiments. A complete archaeal acetogenesis pathway is identified in the ANME-2a genome, and apparent acetogenic activity of the key enzymes ADP-forming acetate-CoA ligase and acetyl-CoA synthetase is demonstrated. Here, we propose a modified model of carbon cycling in cold seeps: during AOM process, methane can be converted into organic carbon, such as acetate, which further fuels the heterotrophic community in the ecosystem.


Assuntos
Acetatos/metabolismo , Archaea/enzimologia , Proteínas de Bactérias/metabolismo , Coenzima A Ligases/metabolismo , Metano/metabolismo , Anaerobiose , Archaea/genética , Proteínas de Bactérias/genética , Ciclo do Carbono/fisiologia , Coenzima A Ligases/genética , Genoma Arqueal , Sedimentos Geológicos/microbiologia , Redes e Vias Metabólicas/genética , Oxirredução , Água do Mar/microbiologia
5.
PLoS One ; 15(8): e0237211, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32760132

RESUMO

Understanding the dynamics of microphytobenthos biomass and photosynthetic performances in intertidal ecosystems will help advance our understanding of how trophic networks function in order to optimize ecological management and restoration projects. The main objective of this study was to investigate microphytobenthic biomass and photosynthetic performances as a function of the sedimentary and environmental variabilities in the range of intertidal habitats in the downstream Seine estuary (Normandy, France). Our results highlight higher biomass associated with more stratified biofilms and better photosynthetic performances in areas characterized by a sand/mud mixture (40-60% of mud) compared to pure sand or pure mud environments. This type of sediment probably offers an efficient trade-off between the favorable characteristics of the two types of sediments (sand and mud) with respect to light penetration and nutrient accessibility. Moreover, the large quantities of exopolysaccharides produced in sand/mud mixtures emphasizes the functional role played by microphytobenthos in promoting sediment stability against erosion. This allows us to show that despite the strong increase in sand content of the downstream Seine estuary, intertidal flats are still productive since microphytobenthic biomass, photosynthetic performances and exopolysaccharides secretion are highest in sand-mud mixtures. This study also underlines the impact of ecosystem modifications due to human disturbance and climate change on the dynamics of key primary producers in estuaries.


Assuntos
Biomassa , Cianobactérias/fisiologia , Estuários , Microalgas/fisiologia , Biofilmes , Sedimentos Geológicos/microbiologia , Fotossíntese
6.
Int J Syst Evol Microbiol ; 70(7): 4280-4284, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32618558

RESUMO

A taxonomic study was carried out on strain PA15-N-34T, which was isolated from deep-sea sediment of Pacific Ocean. The bacterium was Gram-stain-positive, oxidase- and catalase-positive and rod-shaped. Growth was observed at salinity of 0-15.0% NaCl and at temperatures of 10-45 °C. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain PA15-N-34T belonged to the genus Alcanivorax, with the highest sequence similarity to Alcanivorax profundi MTEO17T (97.7 %), followed by Alcanivorax nanhaiticus 19 m-6T (97.3 %) and 12 other species of the genus Alcanivorax (93.4 %-97.0 %). The average nucleotide identity and DNA-DNA hybridization values between strain PA15-N-34T and type strains of the genus Alcanivorax were 71.46-81.78% and 18.7-25.2 %, respectively. The principal fatty acids (>10 %) were summed feature 8 (C18 : 1 ω7c and/or C18 : 1 ω6c; 31.2 %), C16 : 0 (25.0 %) and summed feature 3 (14.6 %). The DNA G+C content was 57.15 mol%. The polar lipids were phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, four unidentified aminolipids and three unidentified lipids. The novel strain can be differentiated from its closest type strain by a negative test for urease and the presence of diphosphatidylglycerol and aminolipid. The combined genotypic and phenotypic data show that strain PA15-N-34T represents a novel species within the genus Alcanivorax, for which the name Alcanivorax sediminis sp. nov. is proposed, with the type strain PA15-N-34T (=MCCC 1A14738T=KCTC 72163T).


Assuntos
Alcanivoraceae/classificação , Sedimentos Geológicos/microbiologia , Filogenia , Água do Mar/microbiologia , Alcanivoraceae/isolamento & purificação , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Hibridização de Ácido Nucleico , Oceano Pacífico , Fosfolipídeos/química , RNA Ribossômico 16S/genética , Salinidade , Análise de Sequência de DNA , Temperatura
7.
PLoS One ; 15(7): e0235225, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32649660

RESUMO

Freshwater wetlands of the temperate north are exposed to a range of pollutants that may alter their function, including nitrogen (N)-rich agricultural and urban runoff, seawater intrusion, and road salt contamination, though it is largely unknown how these drivers of change interact with the vegetation to affect wetland carbon (C) fluxes and microbial communities. We implemented a full factorial mesocosm (378.5 L tanks) experiment investigating C-related responses to three common wetland plants of eastern North America (Phragmites australis, Spartina pectinata, Typha latifolia), and four water quality treatments (fresh water control, N, road salt, sea salt). During the 2017 growing season, we quantified carbon dioxide (CO2) and methane (CH4) fluxes, above- and below-ground biomass, root porosity, light penetration, pore water chemistry (NH4+, NO3-, SO4-2, Cl-, DOC), soil C mineralization, as well as sediment microbial communities via 16S rRNA gene sequencing. Relative to freshwater controls, N enrichment stimulated plant biomass, which in turn increased CO2 uptake and reduced light penetration, especially in Spartina stands. Root porosity was not affected by water quality, but was positively correlated with CH4 emissions, suggesting that plants can be important conduits for CH4 from anoxic sediment to the atmosphere. Sediment microbial composition was largely unaffected by N addition, whereas salt amendments induced structural shifts, reduced sediment community diversity, and reduced C mineralization rates, presumably due to osmotic stress. Methane emissions were suppressed by sea salt, but not road salt, providing evidence for the additional chemical control (SO4-2 availability) on this microbial-mediated process. Thus, N may have stimulated plant activity while salting treatments preferentially enriched specific microbial populations. Together our findings underpin the utility of combining plant and microbial responses, and highlight the need for more integrative studies to predict the consequences of a changing environment on freshwater wetlands.


Assuntos
Microbiota/fisiologia , Nitrogênio/química , Plantas/metabolismo , Cloreto de Sódio/química , Solo/química , Ciclo do Carbono , Connecticut , Água Doce/química , Sedimentos Geológicos/microbiologia , Nitrogênio/análise , Cloreto de Sódio/análise , Microbiologia do Solo , Qualidade da Água , Áreas Alagadas
8.
Gene ; 758: 144951, 2020 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-32683080

RESUMO

Antibiotic resistance is one of the major health concerns of the present century. The direct discharge of urban sewage, hospital effluents, and pharmaceutical wastes increases the concentration of antibiotics in riverine ecosystems. This provides selection pressure for the development of novel antibiotic-resistant strains. In this study, metagenomics approach was employed a for constructing a comprehensive profile of the Antibiotic Resistance Genes (ARGs) identified in the sediments of the Yamuna River. A total of 139 ARGs were identified from 39 microbial species. Abundance analysis revealed that, aminoglycoside, beta-lactam, macrolide, and tetracycline resistance genes were highly abundant in the sediment samples obtained from the Yamuna River. The evolutionary relationships among the ARGs were studied by phylogenetic analyses, which revealed that, the identified resistome comprised eight clusters. Network analysis was performed for investigating the broad-spectrum profiles of the ARGs and their enrichment in different biological functions and pathways. Protein-protein interaction (PPI) analyses revealed that, 76, 36, 18, and 5 Gene Ontology (GO)-terms were significantly enriched in Biological process, Molecular Function, Cellular Component, and KEGG Pathways analysis, respectively. The present study elucidates the ecology of microbial antibiotic resistance in the riverine ecosystem of the Yamuna River and provides novel insights into the environmental hotspots that are amenable to the emergence of ARGs in the contaminated riverine hydrosphere.


Assuntos
Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Farmacorresistência Bacteriana Múltipla/genética , Sedimentos Geológicos/microbiologia , Poluentes Químicos da Água/análise , Agricultura , Bactérias/genética , Bactérias/isolamento & purificação , Ecossistema , Genes Bacterianos/genética , Índia , Metagenoma/genética , Metagenômica , Testes de Sensibilidade Microbiana , Filogenia , Uso Excessivo de Medicamentos Prescritos/efeitos adversos , Rios/microbiologia
9.
Nat Commun ; 11(1): 3626, 2020 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-32724059

RESUMO

Sparse microbial populations persist from seafloor to basement in the slowly accumulating oxic sediment of the oligotrophic South Pacific Gyre (SPG). The physiological status of these communities, including their substrate metabolism, is previously unconstrained. Here we show that diverse aerobic members of communities in SPG sediments (4.3‒101.5 Ma) are capable of readily incorporating carbon and nitrogen substrates and dividing. Most of the 6986 individual cells analyzed with nanometer-scale secondary ion mass spectrometry (NanoSIMS) actively incorporated isotope-labeled substrates. Many cells responded rapidly to incubation conditions, increasing total numbers by 4 orders of magnitude and taking up labeled carbon and nitrogen within 68 days after incubation. The response was generally faster (on average, 3.09 times) for nitrogen incorporation than for carbon incorporation. In contrast, anaerobic microbes were only minimally revived from this oxic sediment. Our results suggest that microbial communities widely distributed in organic-poor abyssal sediment consist mainly of aerobes that retain their metabolic potential under extremely low-energy conditions for up to 101.5 Ma.


Assuntos
Bactérias Aeróbias/isolamento & purificação , Sedimentos Geológicos/microbiologia , Microbiota/fisiologia , Bactérias Aeróbias/fisiologia , Isótopos de Carbono/análise , Fósseis/microbiologia , Isótopos de Nitrogênio/análise , Datação Radiométrica , Espectrometria de Massa de Íon Secundário
10.
PLoS One ; 15(7): e0236006, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32649724

RESUMO

Halophiles are relatively unexplored as potential sources of novel species. However, little is known about the culturable bacterial diversity thrive in hypersaline lakes. In this work, a total of 343 bacteria from sediment samples of Aiding Lake, China, were isolated using nine different media supplemented with 5% or 15% (w/v) NaCl. The number of species and genera of bacteria recovered from the different media varied, indicating the need to optimize the isolation conditions. The results showed an unexpected level of bacterial diversity, with four phyla (Actinobacteria, Firmicutes, Proteobacteria, and Rhodothermaeota), fourteen orders (Actinopolysporales, Alteromonadales, Bacillales, Balneolales, Chromatiales, Glycomycetales, Jiangellales, Micrococcales, Micromonosporales, Oceanospirillales, Pseudonocardiales, Rhizobiales, Streptomycetales, and Streptosporangiales), including 17 families, 43 genera (including two novel genera), and 71 species (including four novel species). The predominant phyla included Actinobacteria and Firmicutes and the predominant genera included Actinopolyspora, Gracilibacillus, Halomonas, Nocardiopsis, and Streptomyces. To our knowledge, this is the first time that members of phylum Rhodothermaeota were identified in sediment samples from a salt lake.


Assuntos
Bactérias/isolamento & purificação , Sedimentos Geológicos/microbiologia , Bactérias/classificação , Bactérias/efeitos dos fármacos , Bactérias/genética , Biodiversidade , China , Lagos , Filogenia , RNA Ribossômico 16S/classificação , RNA Ribossômico 16S/genética , Cloreto de Sódio/farmacologia
11.
Int J Syst Evol Microbiol ; 70(8): 4661-4667, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32687463

RESUMO

A novel Gram-stain-positive bacterium, designated CFH 91151T, was isolated from sediment collected from a saline lake in Yuncheng, Shanxi Province, PR China. Cells of strain CFH 91151T were rod-or v-shaped, aerobic, non-motile, non-spore-forming and halotolerant. Results of 16S rRNA gene sequence analysis revealed that strain CFH 91151T was closely related to Isoptericola variabilis MX5T and Isoptericola nanjingensis H17T (98.7 and 98.4% sequence similarity, respectively). The strain grew at 4-45 °C, pH 5.0-9.0 and with 0-14.0 % (w/v) NaCl. Cells were positive for catalase, nitrate was not used and H2S was not produced. Major cellular fatty acids were anteiso-C15 : 0 (62.76 %), anteiso-C17 : 0 (12.09 %) and iso-C15 : 0 (9.46 %). The major polar lipids were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylinositol, two unidentified phospholipids and three unidentified glycolipids. The menaquinone was MK-9 (H4). The genome size was 4.10 Mbp with a G+C content of 72.4 mol%. The average amino acid identity (ANI) and in silico DNA-DNA hybridization (DDH) values between CFH 91151T and the other species of the genus Isoptericola were found to be low (ANIm <87.19 %, ANIb <84.38 % and DDH <29.30 %). Based on physiological properties, chemotaxonomic characteristics and low ANI and DDH results, strain CFH 91151T is considered to represent a novel species, for which the name Isoptericola halalbus sp. nov. is proposed. The type strain is CFH 91151T (=DSM 105976T=KCTC 49061T).


Assuntos
Actinobacteria/classificação , Sedimentos Geológicos/microbiologia , Lagos/microbiologia , Filogenia , Águas Salinas , Actinobacteria/isolamento & purificação , Técnicas de Tipagem Bacteriana , Composição de Bases , China , DNA Bacteriano/genética , Ácidos Graxos/química , Glicolipídeos/química , Hibridização de Ácido Nucleico , Fosfolipídeos/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Vitamina K 2/análogos & derivados
12.
Int J Syst Evol Microbiol ; 70(8): 4691-4697, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32697185

RESUMO

Strain MEBiC09520T, which was isolated from a tidal sediment in Incheon, Korea, is a pale yellow, rod-shaped bacterium, cells of which are 0.4-0.5 µm in width and 1.5-2 µm in length. Strain MEBiC09520T shared 95.17 and 92.57% 16S rRNA gene sequence similarity with Emcibacter nanhaiensis and E. congregatus, respectively. It grew optimally at pH 6.0, at 55 °C and with 2.5-3.5% (w/v) NaCl. Its polar lipid components included phosphatidylethanolamine (PE), diphosphatidylglycerol (DPG), phosphatidylglycerol (PG), an unidentified phospholipid (PL), three unidentified aminolipids (ALs) and two unidentified lipids (L). The fatty acids C16:0, C19:0 cyclo ω8c, C14:0 2-OH and summed feature 8 (C18:1ω7c and/or C18:1ω6c) were predominantly present in its cell wall. Strain MEBiC09520T was thermophilic, while E. nanhaiensis and E. congregatus were mesophilic. Although E. nanhaiensis showed no nitrate reduction activity, MEBiC09520T and E. congregatus showed a positive reaction. These strains differed in carbohydrate utilization. In particular, E. congregatus was able to thrive on various carbohydrate substrates as compared to the other strains. The average nucleotide identity value was 69.92% between strain MEBiC09520T and E. congregatus ZYLT, 70.38% between E. congregatus ZYLT and E. nanhaiensis HTCJW17T, and 72.83% between strain MEBiC09520 and E. nanhaiensis HTCJW17T. Considering these differences, strain MEBiC09520T (=KCCM 43320T=MCCC 1K03920T) is suggested to represent and novel species of a new genus, Luteithermobacter gelatinilyticus gen. nov., sp. nov., and E. congregatus should be reclassified as Paremcibacter congregatus gen. nov., comb. nov.


Assuntos
Alphaproteobacteria/classificação , Sedimentos Geológicos/microbiologia , Filogenia , Água do Mar/microbiologia , Alphaproteobacteria/isolamento & purificação , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Fosfolipídeos/química , Pigmentação , RNA Ribossômico 16S/genética , República da Coreia , Análise de Sequência de DNA
13.
Int J Syst Evol Microbiol ; 70(8): 4668-4682, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32701422

RESUMO

Ten representative actinobacterial strains isolated from marine sediments collected worldwide were studied to determine their taxonomic status. The strains were previously identified as members of the genus Salinispora and shared >99 % 16S rRNA gene sequence similarity to the three currently recognized Salinispora species. Comparative genomic analyses resulted in the delineation of six new species based on average nucleotide identity and digital DNA-DNA hybridization values below 95 and 70 %, respectively. The species status of the six new groups was supported by a core-genome phylogeny reconstructed from 2106 orthologs detected in 118 publicly available Salinispora genomes. Chemotaxonomic and physiological studies were used to complete the phenotypic characterization of the strains. The fatty acid profiles contained the major components iso-C16 : 0, C15 : 0, iso-17 : 0 and anteiso C17 : 0. Galactose and xylose were common in all whole-sugar patterns but differences were found between the six groups of strains. Polar lipid compositions were also unique for each species. Distinguishable physiological and biochemical characteristics were also recorded. The names proposed are Salinispora cortesiana sp. nov., CNY-202T (=DSM 108615T=CECT 9739T); Salinispora fenicalii sp. nov., CNT-569T (=DSM 108614T=CECT 9740T); Salinispora goodfellowii sp. nov., CNY-666T (=DSM 108616T=CECT 9738T); Salinispora mooreana sp. nov., CNT-150T (=DSM 45549T=CECT 9741T); Salinispora oceanensis sp. nov., CNT-138T (=DSM 45547T=CECT 9742T); and Salinispora vitiensis sp. nov., CNT-148T (=DSM 45548T=CECT 9743T).


Assuntos
Sedimentos Geológicos/microbiologia , Micromonosporaceae/classificação , Filogenia , Água do Mar/microbiologia , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Hibridização de Ácido Nucleico , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
14.
Int J Syst Evol Microbiol ; 70(8): 4816-4821, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32706333

RESUMO

A marine bacterial strain, designated GM2-18T, was isolated from mangrove sediment sampled at Luoyang River estuary, Quanzhou, PR China. Cells were Gram-stain-negative, slightly curved long rod-shaped and facultatively anaerobic with no flagellum. Catalase activity was found to be weak-positive and oxidase-positive. It had no ability to degrade or hydrolyse substrates including skimmed milk, cellulose, starch and Tweens (40, 60 and 80). The 16S rRNA gene sequence of strain GM2-18T had maximum similarity values to 'Draconibacterium filum' F2T, Draconibacterium sediminis JN14CK-3T and Draconibacterium orientale FH5T of 98.0, 97.8 and 97.4 %, respectively. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain GM2-18T was affiliated to the genus Draconibacterium and formed a clade with an uncultured bacterium clone identified from mangrove environment. Average nucleotide identity values and DNA-DNA hybridization estimates of strain GM2-18T compared to its Draconibacterium relatives strongly supported that it belonged to a new species. The respiratory quinone was menaquinone MK-7. The major fatty acids (>10 %) consisted of iso-C15 : 0, anteiso-C15 : 0 and C17 : 1 ω6c. The polar lipids were phosphatidylethanolamine, a phospholipid and several unidentified lipids. The genomic size of strain GM2-18T was 5.9 Mb and the G+C content was 40.8 mol%. Gene prediction and annotation of strain GM2-18T indicated that there was a nitrogen-fixing gene cluster encoding nitrogenase molybdenum-iron protein and related proteins responsible for nitrogen fixation. Based on the above characteristics, strain GM2-18T represents a novel species within the genus Draconibacterium. Thus, Draconibacterium mangrovi sp. nov. is proposed with type strain GM2-18T (=MCCC 1K04382T=KCTC 72879T), isolated from mangrove sediment.


Assuntos
Bacteroidetes/classificação , Estuários , Sedimentos Geológicos/microbiologia , Filogenia , Técnicas de Tipagem Bacteriana , Bacteroidetes/isolamento & purificação , Composição de Bases , China , DNA Bacteriano/genética , Ácidos Graxos/química , Hibridização de Ácido Nucleico , Fosfolipídeos/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Vitamina K 2/análogos & derivados , Vitamina K 2/química
15.
Int J Syst Evol Microbiol ; 70(8): 4555-4561, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32721276

RESUMO

A yellowish-brown-coloured bacterium, designated strain JGD-17T, was isolated from a tidal flat of Janggu-do, Garorim bay, Taean-gun, Chungcheongbuk-do, Republic of Korea. Cells were Gram-stain-negative, aerobic, non-flagellated and long-rod-shaped. Growth was observed at 20-45 °C (optimum, 25-30 °C), at pH 6.0-10.0 (9.0) and with 1-5 % (w/v) NaCl (1-3 %). Results of 16S rRNA gene sequence analysis indicated that strain JGD-17T was closely related to Muricauda nanhaiensis SM1704T (96.1 %), Muricauda olearia CL-SS4T (95.0 %), Muricauda beolgyonensis BB-My12T (94.9 %), Muricauda marina H19-56T (94.7 %) and Muricauda indica 3PC125-7T (94.5 %). The ranges of values for the average nucleotide identity and digital DNA-DNA hybridization analyses with related strains were 71.3-74.1 % and 16.9-18.2 %. The genomic DNA G+C content was 41.1 mol%. Phylogenetic analysis using the neighbour-joining method showed that strain JGD-17T formed a clade with Muricauda nanhaiensis SM1704T, Muricauda lutaonensis CC-HSB-11T, Muricauda lutea CSW06T and Muricauda pacifica SM027T. The major fatty acids were iso-C15 : 0 (26.9 %), iso-C15 : 1 G (19.5 %) and iso-C17 : 0 3-OH (12.7 %). The predominant respiratory quinone was menaquinone-6. The polar lipids were phosphatidylethanolamine, an unidentified aminolipid, an unidentified phospholipid and two unidentified lipids. On the basis of phylogenetic, phenotypic and chemotaxonomic characteristics, strain JGD-17T represents a novel species within the genus Muricauda, for which the name Muricauda ochracea sp. nov. is proposed. The type strain is JGD-17T (=KCTC 72732T=KACC 21486T=JCM 33817T).


Assuntos
Flavobacteriaceae/classificação , Sedimentos Geológicos/microbiologia , Filogenia , Água do Mar/microbiologia , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Flavobacteriaceae/isolamento & purificação , Hibridização de Ácido Nucleico , RNA Ribossômico 16S/genética , República da Coreia , Análise de Sequência de DNA , Vitamina K 2/análogos & derivados , Vitamina K 2/química
16.
Arch Microbiol ; 202(9): 2437-2451, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32607726

RESUMO

A total of 15 samples of thalassotherapy products, distributed in Tunisia in their intact and final state of production, was analyzed to determine their microbiological safety status. The result shows the absence of pathogenic bacteria (Staphylococcus aureus, Candida albicans, Salmonella, Pseudomonas aeruginosa and coliforms). The incidence of contamination by Gram-positive Bacilli (mesophelic bacteria, aerobic and anaerobic spore forming bacteria, anaerobic sulphite-reducing bacteria) was found to be higher in products composed by mud and extract of alga. The biochemical and molecular identification of the major contaminant show that Bacilli were the most covered from 75% of the thalassotherapy products. Mineral analysis (organic matter, Fe, Mg, Ca, Na d K, Al, Si and Ti) shows strong composition on Aluminum and Silica. Cytotoxicity study of six thalassotherapy products and three essential oil extracts (Menthol, Clove and Eucalyptus) did not show any cytotoxic effect. Furthermore, antibacterial acitivity of 5 essentila oils, against 30 isolates of the genus Bacillus and 10 reference strains, has been characterized showing an interesting bactericidal potential of the extract of menthol and Eucalyptus.


Assuntos
Climatoterapia/normas , Qualidade de Produtos para o Consumidor , Sedimentos Geológicos/microbiologia , Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Bactérias/isolamento & purificação , Testes de Sensibilidade Microbiana , Óleos Voláteis/farmacologia , Extratos Vegetais/farmacologia , Óleos Vegetais/farmacologia , Tunísia
17.
Int J Syst Evol Microbiol ; 70(6): 3839-3844, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32496184

RESUMO

A Gram-stain-negative bacterium, designated strain 501str8T, was isolated from a sediment sample collected from the East Pacific Ocean. 16S rRNA gene sequence analysis revealed that strain 501str8T belonged to the genus Muricauda, with closely related type strains Muricauda aquimarina SW-63T (98.5 %), Muricauda lutimaris SMK-108T (98.3 %) and Muricauda ruestringensis B1T (97.9 %). Up-to-date bacterial core gene set analysis revealed that strain 501str8T represented one independent lineage with M. aquimarina SW-63T. The average nucleotide identity values of strain 501str8T with M. aquimarina SW-63T and M. lutimaris SMK-108T were 80.2 and 81.3 %, respectively. In silico DNA-DNA hybridization values between strain 501str8T and M. aquimarina SW-63T and M. lutimaris SMK-108T were 22.8 and 32.9 %, respectively. The predominant isoprenoid quinone was menaquinone-6, and iso-C15 : 0, iso-C17 : 0 3-OH and iso-C15 : 1 G were the dominant cellular fatty acids. The G+C content of the genomic DNA was 42.8 mol%. Differential phylogenetic distinctiveness and chemotaxonomic differences, together with the phenotypic properties observed in this study, revealed that strain 501str8T could be differentiated from closely related species. Therefore, we propose that strain 501str8T represents a novel species of the genus Muricauda, for which the name Muricauda oceani sp. nov. is suggested. The type strain is 501str8T (=JCM 33902T=MCCC 1K04567T).


Assuntos
Flavobacteriaceae/classificação , Sedimentos Geológicos/microbiologia , Filogenia , Água do Mar/microbiologia , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Flavobacteriaceae/isolamento & purificação , Hibridização de Ácido Nucleico , Oceano Pacífico , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Vitamina K 2/análogos & derivados , Vitamina K 2/química
18.
Int J Syst Evol Microbiol ; 70(6): 3899-3904, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32496185

RESUMO

A moderately halophilic bacterium, designated strain KX18D6T, was isolated from the tube of the polychaete Paralvinella hessleri collected from a hydrothermal field located in the Okinawa Trough. Strain KX18D6T was Gram-stain-negative, rod-shaped, facultatively anaerobic, motile, oxidase- and catalase-positive, and grew optimally at 30-35 °C, pH 7.0 and in the presence of 3-5 % (w/v) NaCl. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain KX18D6T grouped with the members of the genus Salinimonas, including Salinimonas chungwhensis BH030046T (97.7 % sequence similarity), Salinimonas lutimaris DPSR-4T (97.2 %) and Salinimonas sediminis N102T (96.4 %). Genome sequencing of strain KX18D6T revealed a genome size of 4.16 Mb and a DNA G+C content of 47.3 mol%. Genomic average nucleotide identity (orthoANI) values of strain KX18D6T with S. chungwhensis DSM 16280T, S. lutimaris KCTC 23464T and S. sediminis N102T were 76.2, 73.1 and 73.2 %, respectively, while the in silico DNA-DNA hybridization (GGDC) values for strain KX18D6T with these strains were 25.3, 17.7 and 18.0 %, respectively. The major fatty acids were summed feature 3 (C16 : 1 ω7c/C16 : 1 ω6c), C16 : 0 and summed feature 8 (C18 : 1 ω7c/C18 : 1 ω6c). The predominant respiratory quinone was ubiquinone 8, and the predominant polar lipids were phosphatidylethanolamine and phosphatidylglycerol. On the basis of comparative analysis of phylogenetic, phylogenomic, phenotypic and chemotaxonomic characteristics, strain KX18D6T (=KCTC 72464T=MCCC 1K03884T) is clearly distinguishable from the type strains of species of the genus Salinimonas and is considered to represent a novel species of the genus Salinimonas, for which the name Salinimonas iocasae sp. nov. is proposed.


Assuntos
Alteromonadaceae/classificação , Fontes Hidrotermais/microbiologia , Filogenia , Alteromonadaceae/isolamento & purificação , Animais , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Sedimentos Geológicos/microbiologia , Hibridização de Ácido Nucleico , Oceano Pacífico , Fosfolipídeos/química , Poliquetos , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Ubiquinona/química
19.
Int J Syst Evol Microbiol ; 70(6): 3872-3877, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32511087

RESUMO

A Gram-stain-negative, aerobic, non-spore-forming, motile by single polar flagellum and ovoid or rod-shaped bacterial strain, designated JBTF-M18T, was isolated from tidal-flat sediment collected from the Yellow Sea, Republic of Korea. The neighbour-joining phylogenetic tree of 16S rRNA gene sequences showed that strain JBTF-M18T fell within the clade comprising the type strains of Shewanella species. Strain JBTF-M18T exhibited 16S rRNA gene sequence similarity values of 97.1-98.8 % to the type strains of S. loihica, S. aquimarina, S. waksmanii and S. marisflavi and of less than 96.9 % to the type strains of the other Shewanella species. The average nucleotide identity and digital DNA-DNA hybridization values between strain JBTF-M18T and the type strains of S. waksmanii and S. loihica were 72.0 and 89.5% and 18.9 and 38.1 %, respectively. DNA-DNA relatedness values between strain JBTF-M18T and the type strains of S. aquimarina and S. marisflavi were 14 and 19 %, respectively. The DNA G+C content of strain JBTF-M18T from genomic sequence data was 52.9 %. Strain JBTF-M18Tcontained MK-6 as the predominant menaquinone and Q-7 and Q-8 as the predominant ubiquinones. It had iso-C15 : 0, summed feature 3 (C16 : 1 ω7c and/or C16 : 1 ω6c) and C16 : 0 as the major fatty acids. The major polar lipids of strain JBTF-M18T were phosphatidylethanolamine and phosphatidylglycerol. Distinguished phenotypic properties, along with the phylogenetic and genetic distinctiveness, revealed that strain JBTF-M18T is separated from recognized Shewanella species. On the basis of the data presented, strain JBTF-M18T is considered to represent a novel species of the genus Shewanella, for which the name Shewanella insulae sp. nov. is proposed. The type strain is JBTF-M18T (=KACC 19869T=NBRC 113583T).


Assuntos
Sedimentos Geológicos/microbiologia , Filogenia , Água do Mar/microbiologia , Shewanella/classificação , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Hibridização de Ácido Nucleico , Fosfatidiletanolaminas/química , Fosfatidilgliceróis/química , RNA Ribossômico 16S/genética , República da Coreia , Análise de Sequência de DNA , Shewanella/isolamento & purificação
20.
Int J Syst Evol Microbiol ; 70(6): 3809-3815, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32496177

RESUMO

A Gram-stain-negative, short rod-shaped, yellow bacterium (strain LMO-1T) was isolated from deep-sea sediment of the Mariana Trench, Challenger Deep. Phylogenetic analysis based on the 16S rRNA gene sequence showed that strain LMO-1T belonged to genus Sphingomonas, with the highest sequence similarity to Sphingomonas formosensis CC-Nfb-2T (96.3 %), followed by Sphingomonas prati W18RDT (96.1 %), Sphingomonas arantia 6PT (96.0 %) and Sphingomonas montana W16RDT (95.9 %). The predominant polar lipids were phosphatidylethanolamine, sphingoglycolipid, phosphatidylglycerol and phosphatidylcholine. The main cellular fatty acids were summed feature 8 (C18 : 1 ω7c and/or C18 : 1 ω6c), C16 : 0 and C14 : 0 2-OH. The major polyamine was sym-homospermidine and the predominant isoprenoid quinone was ubiquinone-10. The genome DNA G+C content of strain LMO-1T was 69.2 mol%. The average nucleotide identity and DNA-DNA hybridization values between strain LMO-1T and CC-Nfb-2T were 75.9 and 20.5 %, respectively. Based on these data, LMO-1T should be classified as representing a novel species of the genus Sphingomonas, for which the name Sphingomonas profundi sp. nov. is proposed. The type strain is LMO-1T (=MCCC 1K04066T=JCM 33666T).


Assuntos
Sedimentos Geológicos/microbiologia , Filogenia , Água do Mar/microbiologia , Sphingomonas/classificação , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Hibridização de Ácido Nucleico , Oceano Pacífico , Fosfolipídeos/química , Pigmentação , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Espermidina/análogos & derivados , Espermidina/química , Sphingomonas/isolamento & purificação , Ubiquinona/análogos & derivados , Ubiquinona/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA