Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 899
Filtrar
1.
Nature ; 603(7901): 427-433, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35296847

RESUMO

Plants cover a large fraction of the Earth's land mass despite most species having limited to no mobility. To transport their propagules, many plants have evolved mechanisms to disperse their seeds using the wind1-4. A dandelion seed, for example, has a bristly filament structure that decreases its terminal velocity and helps orient the seed as it wafts to the ground5. Inspired by this, we demonstrate wind dispersal of battery-free wireless sensing devices. Our millimetre-scale devices weigh 30 milligrams and are designed on a flexible substrate using programmable, off-the-shelf parts to enable scalability and flexibility for various sensing and computing applications. The system is powered using lightweight solar cells and an energy harvesting circuit that is robust to low and variable light conditions, and has a backscatter communication link that enables data transmission. To achieve the wide-area dispersal and upright landing that is necessary for solar power harvesting, we developed dandelion-inspired, thin-film porous structures that achieve a terminal velocity of 0.87 ± 0.02 metres per second and aerodynamic stability with a probability of upright landing of over 95%. Our results in outdoor environments demonstrate that these devices can travel 50-100 metres in gentle to moderate breeze. Finally, in natural systems, variance in individual seed morphology causes some seeds to fall closer and others to travel farther. We adopt a similar approach and show how we can modulate the porosity and diameter of the structures to achieve dispersal variation across devices.


Assuntos
Taraxacum , Vento , Porosidade , Sementes/anatomia & histologia
2.
BMC Plant Biol ; 22(1): 113, 2022 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-35279080

RESUMO

BACKGROUND: Many seed plants produce winged diaspores that use wind to disperse their seeds. The morphology of these diaspores is directly related to the seed dispersal potential. The majority of winged diaspores have flat wings and only seeds; however, some angiosperms, such as Firmiana produce winged fruit with a different morphology, whose seed dispersal mechanisms are not yet fully understood. In this study, we observed the fruit development of F. simplex and determined the morphological characteristics of mature fruit and their effects on the flight performance of the fruit. RESULTS: We found that the pericarp of F. simplex dehisced early and continued to unfold and expand during fruit development until ripening, finally formed a spoon-shaped wing with multiple alternate seeds on each edge. The wing caused mature fruit to spin stably during descent to provide a low terminal velocity, which was correlated with the wing loading and the distribution of seeds on the pericarp. When the curvature distribution of the pericarp surface substantially changed, the aerodynamic characteristics of fruit during descent altered, resulting in the inability of the fruit to spin. CONCLUSIONS: Our results suggest that the curved shape and alternate seed distribution are necessary for the winged diaspore of F. simplex to stabilize spinning during wind dispersal. These unique morphological characteristics are related to the early cracking of fruits during development, which may be an adaptation for the wind dispersal of seeds.


Assuntos
Frutas/anatomia & histologia , Frutas/crescimento & desenvolvimento , Malvaceae/anatomia & histologia , Malvaceae/crescimento & desenvolvimento , Dispersão de Sementes , Sementes/anatomia & histologia , Sementes/crescimento & desenvolvimento , China , Fenótipo , Vento
3.
G3 (Bethesda) ; 12(4)2022 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-35218340

RESUMO

Seed weight and size are important yield components. Thus, selecting for large seeds has been a key objective in crop domestication and breeding. In common bean, seed shape is also important since it influences industrial processing and plays a vital role in determining the choices of consumers and farmers. In this study, we performed genome-wide association studies on a core collection of common bean accessions to dissect the genetic architecture and identify genomic regions associated with seed morphological traits related to weight, size, and shape. Phenotypic data were collected by high-throughput image-based approaches, and utilized to test associations with 10,362 single-nucleotide polymorphism markers using multilocus mixed models. We searched within genome-associated regions for candidate genes putatively involved in seed phenotypic variation. The collection exhibited high variability for the entire set of seed traits, and the Andean gene pool was found to produce larger, heavier seeds than the Mesoamerican gene pool. Strong pairwise correlations were verified for most seed traits. Genome-wide association studies identified marker-trait associations accounting for a considerable amount of phenotypic variation in length, width, projected area, perimeter, and circularity in 4 distinct genomic regions. Promising candidate genes were identified, e.g. those encoding an AT-hook motif nuclear-localized protein 8, type 2C protein phosphatases, and a protein Mei2-like 4 isoform, known to be associated with seed size and weight regulation. Moreover, the genes that were pinpointed are also good candidates for functional analysis to validate their influence on seed shape and size in common bean and other related crops.


Assuntos
Estudo de Associação Genômica Ampla , Phaseolus , Genótipo , Phaseolus/genética , Fenótipo , Melhoramento Vegetal , Polimorfismo de Nucleotídeo Único , Sementes/anatomia & histologia , Sementes/genética
4.
Plant Mol Biol ; 108(4-5): 379-398, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34671919

RESUMO

KEY MESSAGE: High levels of two major starch synthases, SSIIa and GBSSI, in ss3a ss4b double mutant rice alter the starch structure but fail to recover the polygonal starch granule morphology. The endosperm starch granule is polygonal in wild-type rice but spherical in double mutant japonica rice lacking genes encoding two of the five major Starch synthase (SS) isozymes expressed in endosperm, SSIIIa and SSIVb. Japonica rice naturally has low levels of SSIIa and Granule-bound SSI (GBSSI). Therefore, introduction of active SSIIa allele and/or high-expressing GBSSI allele from indica rice into the japonica rice mutant lacking SS isozymes can help elucidate the compensatory roles of SS isozymes in starch biosynthesis. In this study, we crossed the ss3a ss4a double mutant japonica rice with the indica rice to generate three new rice lines with high and/or low SSIIa and GBSSI levels, and examined their starch structure, physicochemical properties, and levels of other starch biosynthetic enzymes. Lines with high SSIIa levels showed more SSI and SSIIa bound to starch granule, reduced levels of short amylopectin chains (7 ≤ DP ≤ 12), increased levels of amylopectin chains with DP > 13, and consequently higher gelatinization temperature. Lines with high GBSSI levels showed an increase in amylose content. The ADP-glucose content of the crude extract was high in lines with low or high SSIIa and low GBSSI levels, but was low in lines with high GBSSI. Addition of high SSIIa and GBSSI altered the starch structure and physicochemical properties but did not affect the starch granule morphology, confirming that SSIIIa and SSIVb are key enzymes affecting starch granule morphology in rice. The relationship among SS isozymes and its effect on the amount of substrate (ADP-glucose) is discussed.


Assuntos
Oryza/enzimologia , Sintase do Amido/metabolismo , Amido/metabolismo , Configuração de Carboidratos , Cruzamentos Genéticos , Pleiotropia Genética , Glucose-1-Fosfato Adenililtransferase/metabolismo , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Mutação , Oryza/química , Oryza/genética , Melhoramento Vegetal , Sementes/anatomia & histologia , Amido/química , Sintase do Amido/química , Sintase do Amido/genética
5.
Theor Appl Genet ; 135(1): 257-271, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34647130

RESUMO

KEY MESSAGE: Six major QTLs for wheat grain size and weight were identified on chromosomes 4A, 4B, 5A and 6A across multiple environments, and were validated in different genetic backgrounds. Grain size and weight are crucial components of wheat yield. Dissection of their genetic control is thus essential for the improvement of yield potential in wheat breeding. We used a doubled haploid (DH) population to detect quantitative trait loci (QTLs) for grain width (GW), grain length (GL), and thousand grain weight (TGW) in five environments. Six major QTLs, QGw.cib-4B.2, QGl.cib-4A, QGl.cib-5A.1, QGl.cib-6A, QTgw.cib-4B, and QTgw.cib-5A, were consistently identified in at least three individual environments and in best linear unbiased prediction (BLUP) datasets, and explained 5.65-34.06% of phenotypic variation. QGw.cib-4B.2, QTgw.cib-4B, QGl.cib-5A.1 and QGl.cib-6A had no effect on grain number per spike (GNS). In addition to QGl.cib-4A, the other major QTLs were further validated by using Kompetitive Allele Specific PCR (KASP) markers in different genetic backgrounds. Moreover, significant interactions between the three major GL QTLs and two major TGW QTLs were observed. Comparison analysis showed that QGl.cib-5A.1 and QGl.cib-6A are likely new loci. Notably, QGw.cib-4B.2 and QTgw.cib-4B were co-located on chromosome 4B and improved TGW by increasing only GW, unlike nearby or overlapped loci reported previously. Three genes associated with grain development within the QGw.cib-4B.2/QTgw.cib-4B interval were identified by searches on sequence similarity, spatial expression patterns, and orthologs. The major QTLs and KASP markers reported here will be useful for elucidating the genetic architecture of grain size and weight and for developing new wheat cultivars with high and stable yield.


Assuntos
Cromossomos de Plantas , Genes de Plantas , Locos de Características Quantitativas , Sementes/anatomia & histologia , Triticum/genética , Mapeamento Cromossômico , Grão Comestível/anatomia & histologia , Marcadores Genéticos , Variação Genética , Fenótipo , Sementes/genética
6.
Theor Appl Genet ; 135(1): 107-124, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34643761

RESUMO

KEY MESSAGE: QTL controlling vigour and related traits were identified in a chickpea RIL population and validated in diverse sets of germplasm. Robust KASP markers were developed for marker-assisted selection. To understand the genetic constitution of vigour in chickpea (Cicer arietinum L.), genomic data from a bi-parental population and multiple diversity panels were used to identify QTL, sequence-level haplotypes and genetic markers associated with vigour-related traits in Australian environments. Using 182 Recombinant Inbred Lines (RILs) derived from a cross between two desi varieties, Rupali and Genesis836, vigour QTL independent of flowering time were identified on chromosomes (Ca) 1, 3 and 4 with genotypic variance explained (GVE) ranging from 7.1 to 28.8%. Haplotype analysis, association analysis and graphical genotyping of whole-genome re-sequencing data of two diversity panels consisting of Australian and Indian genotypes and an ICRISAT Chickpea Reference Set revealed a deletion in the FTa1-FTa2-FTc gene cluster of Ca3 significantly associated with vigour and flowering time. Across the RIL population and diversity panels, the impact of the deletion was consistent for vigour but not flowering time. Vigour-related QTL on Ca4 co-located with a QTL for seed size in Rupali/Genesis836 (GVE = 61.3%). Using SNPs from this region, we developed and validated gene-based KASP markers across different panels. Two markers were developed for a gene on Ca1, myo -inositol monophosphatase (CaIMP), previously proposed to control seed size, seed germination and seedling growth in chickpea. While associated with vigour in the diversity panels, neither the markers nor broader haplotype linked to CaIMP was polymorphic in Rupali/Genesis836. Importantly, vigour appears to be controlled by different sets of QTL across time and with components which are independent from phenology.


Assuntos
Cicer/genética , Genoma de Planta , Cicer/crescimento & desenvolvimento , Estudos de Associação Genética , Marcadores Genéticos , Herança Multifatorial , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Sementes/anatomia & histologia , Sementes/genética
7.
Theor Appl Genet ; 135(1): 51-64, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34689213

RESUMO

KEY MESSAGE: qGSN5, a novel quantitative trait locus coordinating grain size and grain number in rice, was fine-mapped to an 85.60-kb region. GS3 may be a suppressor of qGSN5. Grain size and grain number are two factors that directly determine rice grain yield; however, the underlying genetic mechanisms are complicated and remain largely unclear. In this study, a chromosome segment substitution line (CSSL), CSSL28, which showed increased grain size and decreased grain number per panicle, was identified in a set of CSSLs derived from a cross between 93-11 (recipient) and Nipponbare (donor). Four substitution segments were identified in CSSL28, and the substitution segment located on chromosome 5 was responsible for the phenotypes of CSSL28. Thus, we defined this quantitative trait locus (QTL) as grain size and grain number 5 (qGSN5). Cytological and quantitative PCR analysis showed that qGSN5 regulates the development of the spikelet hull by affecting cell proliferation. Genetic analysis showed that qGSN5 is a semi-dominant locus regulating grain size and grain number. Through map-based cloning and overlapping substitution segment analysis, qGSN5 was finally delimited to an 85.60-kb region. Based on sequence and quantitative PCR analysis, Os05g47510, which encodes a P-type pentatricopeptide repeat protein, is the most likely candidate gene for qGSN5. Pyramiding analysis showed that the effect of qGSN5 was significantly lower in the presence of a functional GS3 gene, indicating that GS3 may be a suppressor of qGSN5. In addition, we found that qGSN5 could improve the grain shape of hybrid rice. Together, our results lay the foundation for cloning a novel QTL coordinating grain size and grain number in rice and provide a good genetic material for long-grain hybrid rice breeding.


Assuntos
Genes de Plantas , Oryza/genética , Locos de Características Quantitativas , Sementes/genética , Mapeamento Cromossômico , Cromossomos de Plantas , Grão Comestível/genética , Estudos de Associação Genética , Fenótipo , Sementes/anatomia & histologia
8.
Microsc Res Tech ; 85(5): 1671-1684, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-34913535

RESUMO

Biodiesel is a promising, bio-based, renewable, nontoxic, environment friendly, and alternative fuel for petroleum derived fuels which helps to reduce dependency on conventional fossil fuels. In this study, six novel, nonedible seed oil producing feedstock were explored for their potential for sustainable production of biodiesel. It is very important to correctly identify oil yielding plant species. Scanning electron microscopy (SEM) was used as reliable tool for authentic identification of oil yielding seeds. Macromorphological characters of seeds were studied with light microscopy (LM). Outcomes of LM of seeds exposed distinctive variation in seed size from 16.3 to 3.2 mm in length and 12.4 to 0.9 mm in width, shape varied from oval to triangular, and color from black to light brown. Oil content of nonedible seed ranged from 25 to 30% (w/w). Free fatty acid content of seed oil varied from 0.32 to 2.5 mg KOH/g. Moreover, ultra structural study of seeds via SEM showed variation in surface sculpturing, cell arrangement, cell shape, periclinal wall shape, margins, protuberances, and anticlinal wall shape. Surface sculpturing varied from rugged, reticulate, varrucose, papillate, and striate. Periclinal wall arrangements confirmed variation from rough, wavy, raised, depressed, smooth, and elevated whereas, anticlinal walls pattern showed variation from profuse undulating, smooth, raised, grooved, deep, curved, and depressed. It was concluded that SEM could be a latent and advanced technique in unveiling hidden micromorphological characters of nonedible oil yielding seeds which delivers valuable information to researchers and indigenous people for precise and authentic identification and recognition.


Assuntos
Biocombustíveis , Sementes , Humanos , Microscopia Eletrônica de Varredura , Óleos Vegetais , Sementes/anatomia & histologia
9.
PLoS One ; 16(12): e0261593, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34936685

RESUMO

To realize real-time and accurate performance monitoring of large- and medium-sized seed metering devices, a performance monitoring system was designed for seed metering devices based on LED visible photoelectric sensing technology and a pulse width recognition algorithm. Through an analysis of the of sensing component pointing characteristics and seed motion characteristics, the layout of the sensing components and critical photoelectric sensing system components was optimized. Single-grain seed metering devices were employed as monitoring objects, and the pulse width thresholds for Ekangmian-10 cotton seeds and Zhengdan-958 corn seeds were determined through pulse width threshold calibration experiments employed at different seed metering plate rotational speeds. According to the seeding quantity monitoring experiments, when the seed metering plate rotational speed ranged from 28.31~35.71 rev/min, the accuracy reached 98.41% for Ekangmian-10 cotton seeds. When the seed metering plate rotational speed ranged from 13.78~19.39 rev/min, the seeding quantity monitoring accuracy reached 98.19% for Zhengdan-958 corn seeds. Performance monitoring experiments revealed that the qualified seeding quantity monitoring accuracy of cotton precision seed metering devices, missed seeding quantity monitoring accuracy, and reseeding quantity monitoring accuracy could reach 98.75%, 94.06%, and 91.30%, respectively, within a seeding speed range of 8~9 km/h. This system meets the requirements of real-time performance monitoring of large- and medium-sized precision seed metering devices, which helps to improve the operational performance of seeding machines.


Assuntos
Produção Agrícola , Sementes/crescimento & desenvolvimento , Zea mays/crescimento & desenvolvimento , Algoritmos , Produção Agrícola/instrumentação , Desenho de Equipamento , Sementes/anatomia & histologia , Zea mays/anatomia & histologia
10.
Bioengineered ; 12(2): 9341-9355, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34951555

RESUMO

Drought is one of the most important abiotic stressors that affect crop yield. Therefore, the aim of the present study was to investigate correlations between germination-stage drought tolerance and the microscopic testa (i.e., seed coat) characteristics (color and papilla morphology) and imbibition abilities of 35 rapeseed (Brassica napus L.) accessions. After 2 h imbibition, seed water uptake (fresh weight increase) was significantly positively correlated with testa hue (HHSB), brightness (BHSB,), blue (BRGB), and lightness (L*), with correlation coefficients of 0.38, 0.34, 0.53, and 0.36, respectively, and significantly negatively correlated with saturation (SHSB), greenness-redness (a*), blueness-yellowness (b*), magenta (M), and yellow components (Y), with correlation coefficients of -0.53, -0.40, -0.53, -0.39, and -0.55, respectively. Furthermore, 5-h seed water uptake was significantly positively correlated with number of papillae (No.P), mean papillae area (APA), the papillae area ratio (PAR), gray value of red channel of papillae, with correlation coefficients of 33, 0.36, 0.43, and 0.43, respectively. Under drought conditions, genotypes with more rapid water absorption exhibited higher germination rates and stronger drought tolerance, and the germination rate and drought tolerance of black-seeded accessions were highest, followed by red-seeded accessions and then yellow-seeded accessions, which exhibited the lowest germination rate and drought tolerance. Germination rate was significantly negatively correlated with BRGB, HHSB, L*, Dg, and Db and significantly positively correlated with SHSB and Y, regardless of drought conditions. At the germination stage, DbTP was negatively correlated with drought tolerance.


Assuntos
Adaptação Fisiológica , Brassica napus/anatomia & histologia , Brassica napus/fisiologia , Secas , Germinação , Pigmentação , Sementes/anatomia & histologia , Água/metabolismo , Ecótipo , Condutividade Elétrica , Análise de Componente Principal
11.
BMC Plant Biol ; 21(1): 603, 2021 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-34922450

RESUMO

BACKGROUND: Seeds of Paeonia ostii have been proposed as a source of raw material for the production of edible oil; however, lack of information about the developmental biology of the seeds hampers our ability to use them. Our aim was to investigate development of the seed coat, endosperm and embryo of P. ostii in relation to timing of accumulation of nutrient reserves from pollination to seed maturity. Ovules and developing seeds of P. ostii were collected at various stages of development from zygote to maturity. Seed fresh mass, dry mass, germination, moisture, soluble sugars, starch, protein and oil content were determined. Ontogeny of seeds including embryo, endosperm and seed coat were analyzed histologically. RESULTS: The ovule of P. ostii is anatropous, crassinucellate and bitegmic. The zygote begins to divide at about 5 days after pollination (DAP), and the division is not accompanied by cell wall formation. By 25 DAP, the proembryo begins to cellularize. Thereafter, several embryo primordia appear at the surface of the cellularized proembryo, but only one matures. Endosperm development follows the typical nuclear type. The seed coat is derived from the outer integument. During seed development, soluble sugars, starch and crude fat content increased and then decreased, with maximum contents at 60, 80 and 100 DAP, respectively. Protein content was relatively low compared with soluble sugars and crude fat, but it increased throughout seed development. CONCLUSIONS: During seed development in P. ostii, the seed coat acts as a temporary storage tissue. Embryo development of P. ostii can be divided into two stages: a coenocytic proembryo from zygote (n + n) that degenerates and a somatic embryo from peripheral cells of the proembryo (2n → 2n). This pattern of embryogeny differs from that of all other angiosperms, but it is similar to that of gymnosperms.


Assuntos
Paeonia/embriologia , Sementes/crescimento & desenvolvimento , Gorduras/metabolismo , Germinação , Paeonia/anatomia & histologia , Desenvolvimento Vegetal , Sementes/anatomia & histologia , Amido/metabolismo , Açúcares/metabolismo
12.
BMC Plant Biol ; 21(1): 524, 2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34758742

RESUMO

BACKGROUND: Grain size is thought to be a major component of yield in many plant species. Here we set out to understand if knowledge from other cereals such as rice could translate to increased yield gains in wheat and lead to increased nitrogen use efficiency. Previous findings that the overexpression of OsBG1 in rice increased yields while increasing seed size suggest translating gains from rice to other cereals may help to increase yields. RESULTS: The orthologous genes of OsBG1 were identified in wheat. One homoeologous wheat gene was cloned and overexpressed in wheat to understand its role in controlling seed size. Potential alteration in the nutritional profile of the grains were also analyzed in wheat overexpressing TaBG1. It was found that increased TaBG1-A expression could indeed lead to larger seed size but was linked to a reduction in seed number per plant leading to no significant overall increase in yield. Other important components of yield such as biomass or tillering did not change significantly with increased TaBG1-A expression. The nutritional profile of the grain was altered, with a significant decrease in the Zn levels in the grain associated with increased seed size, but Fe and Mn concentrations were unchanged. Protein content of the wheat grain also fell under moderate N fertilization levels but not under deficient or adequate levels of N. CONCLUSIONS: TaBG1 does control seed size in wheat but increasing the seed size per se does not increase yield and may come at the cost of lower concentrations of essential elements as well as potentially lower protein content. Nevertheless, TaBG1 could be a useful target for further breeding efforts in combination with other genes for increased biomass.


Assuntos
Genes de Plantas , Sementes/genética , Triticum/genética , Biomassa , Grão Comestível/química , Grão Comestível/genética , Grão Comestível/metabolismo , Nitrogênio/metabolismo , Valor Nutritivo/genética , Plantas Geneticamente Modificadas , Sementes/anatomia & histologia , Sementes/química , Sementes/metabolismo , Triticum/anatomia & histologia , Triticum/química , Triticum/metabolismo
13.
Sci Rep ; 11(1): 22785, 2021 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-34815450

RESUMO

In this research, two common apple seed cultivars Viz: 'Golden Delicious' (GD) and 'Red Delicious' (RD) of Northern Himalayan region were characterized for physical, techno-functional, microstructure, thermal, and rheological properties. Seeds showed a significant difference in width, arithmetic, and geometric mean diameters, volume, and surface area. Proximate analysis results revealed that seed flours have high oil content (> 20%) and are potentially rich sources of protein (> 40%). Color analysis of flours indicated their satisfactory whiter color with higher brightness values (L* ˃ 75), resulting from the reduced particle size which allows greater light penetration and relatively lower a* (< 1.5) and b* (< 11) values. Techno-functional attributes including water/oil absorption capacity, emulsifying capacity, and emulsion stability were significantly higher in RD than GD flour. There was also a significant difference in the average particle size of seed flours. Flour micrographs indicated the presence of oval/spherical-shaped starch granules embedded in dense protein matrix while, Differential Scanning calorimeter (DSC) revealed exothermic transition enthalpies for seed flours. Additionally, seed flours depicted high elastic modulus (G'), suggesting their suitability for modifying food texture. It was concluded that apple seeds exhibit significant potential for use in formulating protein-enriched foods while contributing to reducing industrial wastage.


Assuntos
Farinha/análise , Malus/anatomia & histologia , Malus/fisiologia , Reologia , Sementes/anatomia & histologia , Sementes/fisiologia , Fenômenos Químicos , Malus/química , Tamanho da Partícula , Óleos Vegetais/análise , Proteínas de Plantas/análise , Sementes/química
14.
Sci Rep ; 11(1): 20953, 2021 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-34697303

RESUMO

The geometric and color features of agricultural material along with related physical properties are critical to characterize and express its physical quality. The experiments were conducted to classify the physical characteristics like size, shape, color and texture and then workout the relationship between manual observations and using image processing techniques for weight and volume of the four wheat refractions i.e. sound, damaged, shriveled and broken grains of wheat variety PBW 725. A flatbed scanner was used to acquire the images and digital image processing method was used to process the images and output of image analysis was compared with the actual measurements data using digital vernier caliper. A linear relationship was observed between the axial dimensions of refractions between manual measurement and image processing method with R2 in the range of 0.798-0.947. The individual kernel weight and thousand grain weight of the refractions were observed to be in the range of 0.021-0.045 and 12.56-46.32 g respectively. Another linear relationship was found between individual kernel weight and projected area estimated using image processing methodology with R2 in the range of 0.841-0.920. The sphericity of the refractions varied in the range of 0.52-0.71. Analyses of the captured images suggest ellipsoid shape with convex geometry while the same observation was recorded by physical measurements also. A linear relationship was observed between the volume of refractions derived from measured dimensions and calculated from image with R2 in the range of 0.845-0.945. Various color and grey level co-variance matrix texture features were extracted from acquired images using the open-source Python programming language and OpenCV library which can exploit different machine and deep learning algorithms to properly classify these refractions.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Triticum/anatomia & histologia , Triticum/crescimento & desenvolvimento , Algoritmos , Produtos Agrícolas/anatomia & histologia , Produtos Agrícolas/classificação , Produtos Agrícolas/crescimento & desenvolvimento , Aprendizado de Máquina , Sementes/anatomia & histologia , Sementes/classificação , Sementes/crescimento & desenvolvimento , Triticum/classificação
16.
Plant Physiol ; 186(4): 2239-2252, 2021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-34618106

RESUMO

Grain characteristics, including kernel length, kernel width, and thousand kernel weight, are critical component traits for grain yield. Manual measurements and counting are expensive, forming the bottleneck for dissecting these traits' genetic architectures toward ultimate yield improvement. High-throughput phenotyping methods have been developed by analyzing images of kernels. However, segmenting kernels from the image background and noise artifacts or from other kernels positioned in close proximity remain as challenges. In this study, we developed a software package, named GridFree, to overcome these challenges. GridFree uses an unsupervised machine learning approach, K-Means, to segment kernels from the background by using principal component analysis on both raw image channels and their color indices. GridFree incorporates users' experiences as a dynamic criterion to set thresholds for a divide-and-combine strategy that effectively segments adjacent kernels. When adjacent multiple kernels are incorrectly segmented as a single object, they form an outlier on the distribution plot of kernel area, length, and width. GridFree uses the dynamic threshold settings for splitting and merging. In addition to counting, GridFree measures kernel length, width, and area with the option of scaling with a reference object. Evaluations against existing software programs demonstrated that GridFree had the smallest error on counting seeds for multiple crop species. GridFree was implemented in Python with a friendly graphical user interface to allow users to easily visualize the outcomes and make decisions, which ultimately eliminates time-consuming and repetitive manual labor. GridFree is freely available at the GridFree website (https://zzlab.net/GridFree).


Assuntos
Botânica/métodos , Produção Agrícola/métodos , Grão Comestível/anatomia & histologia , Processamento de Imagem Assistida por Computador/instrumentação , Software , Botânica/instrumentação , Produção Agrícola/instrumentação , Sementes/anatomia & histologia
17.
Int J Mol Sci ; 22(18)2021 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-34576106

RESUMO

We investigated low-temperature plasma effects on two Brassicaceae seeds (A. thaliana and C. sativa) using dielectric barrier discharge in air. Comparisons of plasma treatments on seeds showed distinct responses on germination rate and speed. Optimal treatment time giving optimal germination is 15 min for A. thaliana with 85% increase compared to control after 48 h of germination and 1 min for C. sativa with 75% increase compared to control after 32 h of germination. Such germination increases are associated with morphological changes shown by SEM of seed surface. For better understanding at the biochemical level, seed surfaces were analyzed using gas chromatography-mass spectrometry which underlined changes of lipidic composition. For both treated seeds, there is a decrease of saturated (palmitic and stearic) fatty acids while treated C. sativa showed a decrease of unsaturated (oleic and linoleic) acids and treated A. thaliana an increase of unsaturated ones. Such lipid changes, specifically a decrease of hydrophobic saturated fatty acids, are coherent with the other analyses (SEM, water uptake and contact angle). Moreover, an increase in A. thaliana of unsaturated acids (very reactive) probably neutralizes plasma RONS effects thus needing longer plasma exposure time (15 min) to reach optimal germination. For C. sativa, 1 min is enough because unsaturated linoleic acid becomes lower in treated C. sativa (1.2 × 107) compared to treated A. thaliana (3.7 × 107).


Assuntos
Ar , Arabidopsis/fisiologia , Brassicaceae/fisiologia , Eletricidade , Gases em Plasma/farmacologia , Sementes/efeitos dos fármacos , Arabidopsis/efeitos dos fármacos , Arabidopsis/ultraestrutura , Brassicaceae/efeitos dos fármacos , Brassicaceae/ultraestrutura , Ácidos Graxos/metabolismo , Germinação/efeitos dos fármacos , Lipidômica , Permeabilidade , Sementes/anatomia & histologia , Sementes/ultraestrutura , Fatores de Tempo , Água , Molhabilidade
18.
BMC Plant Biol ; 21(1): 417, 2021 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-34507551

RESUMO

BACKGROUND: The future productivity of wheat (T. aestivum L.) as the most grown crop worldwide is of utmost importance for global food security. Thousand kernel weight (TKW) in wheat is closely associated with grain architecture-related traits, e.g. kernel length (KL), kernel width (KW), kernel area (KA), kernel diameter ratio (KDR), and factor form density (FFD). Discovering the genetic architecture of natural variation in these traits, identifying QTL and candidate genes are the main aims of this study. Therefore, grain architecture-related traits in 261 worldwide winter accessions over three field-year experiments were evaluated. RESULTS: Genome-wide association analysis using 90K SNP array in FarmCPU model revealed several interesting genomic regions including 17 significant SNPs passing false discovery rate threshold and strongly associated with the studied traits. Four of associated SNPs were physically located inside candidate genes within LD interval e.g. BobWhite_c5872_589 (602,710,399 bp) found to be inside TraesCS6A01G383800 (602,699,767-602,711,726 bp). Further analysis reveals the four novel candidate genes potentially involved in more than one grain architecture-related traits with a pleiotropic effects e.g. TraesCS6A01G383800 gene on 6A encoding oxidoreductase activity was associated with TKW and KA. The allelic variation at the associated SNPs showed significant differences betweeen the accessions carying the wild and mutated alleles e.g. accessions carying C allele of BobWhite_c5872_589, TraesCS6A01G383800 had significantly higher TKW than the accessions carying T allele. Interestingly, these genes were highly expressed in the grain-tissues, demonstrating their pivotal role in controlling the grain architecture. CONCLUSIONS: These results are valuable for identifying regions associated with kernel weight and dimensions and potentially help breeders in improving kernel weight and architecture-related traits in order to increase wheat yield potential and end-use quality.


Assuntos
Genótipo , Fenótipo , Polimorfismo de Nucleotídeo Único , Sementes/anatomia & histologia , Sementes/genética , Triticum/anatomia & histologia , Triticum/genética , Grão Comestível/anatomia & histologia , Grão Comestível/genética , Variação Genética , Genoma de Planta , Estudo de Associação Genômica Ampla , Locos de Características Quantitativas
19.
J Genet ; 1002021.
Artigo em Inglês | MEDLINE | ID: mdl-34553697

RESUMO

The Waxy locus of rice is a highly polymorphic region embedded with microsatellite repeats in the 5'UTR leader intron 1 region, 23-bp duplication (wx motif) in exon 2, SNPs in exons 4, 6 and 10, p-Sine-r2 element in intron 1 and TnR-1 element in inton 13. Of the 80 polymorphic sites detected on the Wx gene, 24 are located in p-Sine-r2 and TnR-1 elements, revealing a higher substitution rate of bases in these two regions. All the cultivars with chalky endosperm had the 5'-AGTTATA-3' haplotype in intron 1 and 'A' to 'G' substitution at ?497 in exon 4. The AAC of starch from grains of all the accessions showed strong correlation (r=0.967) with GBSS-I activity in the grains. Based on the polymorphic sites of the Waxy locus and the GBSS-I activities, six allelic variants were defined which included wx, Wxop, Wxb, Wxin, Wxa2 and Wxa1, respectively, corresponded to glutinous, very low, low, intermediate, highII and highI amylose classes. Phylogenetic tree developed from alignment matrix of nucleotide sequences of the Waxy locus identified wx, Wxb and Wxin alleles with japonica lineage of Oryza sativa and the Wxop, Wxa2 and Wxa1 with indica lineage.


Assuntos
Alelos , Amilose/metabolismo , Domesticação , Oryza/genética , Amido/metabolismo , Sequência de Bases , Regulação da Expressão Gênica de Plantas , Loci Gênicos , Repetições de Microssatélites/genética , Modelos Moleculares , Motivos de Nucleotídeos/genética , Oryza/enzimologia , Filogenia , Polimorfismo Genético , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Sementes/anatomia & histologia , Sementes/genética , Sintase do Amido/química , Sintase do Amido/genética , Sintase do Amido/metabolismo
20.
BMC Plant Biol ; 21(1): 418, 2021 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-34517837

RESUMO

BACKGROUND: Bread wheat (Triticum aestivum L.) is one of the most widely consumed cereal crops, but its complex genome makes it difficult to investigate the genetic effect on important agronomic traits. Genome-wide association (GWA) analysis is a useful method to identify genetic loci controlling complex phenotypic traits. With the RNA-sequencing based gene expression analysis, putative candidate genes governing important agronomic trait can be suggested and also molecular markers can be developed. RESULTS: We observed major quantitative agronomic traits of wheat; the winter survival rate (WSR), days to heading (DTH), days to maturity (DTM), stem length (SL), spike length (SPL), awn length (AL), liter weight (LW), thousand kernel weight (TKW), and the number of seeds per spike (SPS), of 287 wheat accessions from diverse country origins. A significant correlation was observed between the observed traits, and the wheat genotypes were divided into three subpopulations according to the population structure analysis. The best linear unbiased prediction (BLUP) values of the genotypic effect for each trait under different environments were predicted, and these were used for GWA analysis based on a mixed linear model (MLM). A total of 254 highly significant marker-trait associations (MTAs) were identified, and 28 candidate genes closely located to the significant markers were predicted by searching the wheat reference genome and RNAseq data. Further, it was shown that the phenotypic traits were significantly affected by the accumulation of favorable or unfavorable alleles. CONCLUSIONS: From this study, newly identified MTA and putative agronomically useful genes will help to study molecular mechanism of each phenotypic trait. Further, the agronomically favorable alleles found in this study can be used to develop wheats with superior agronomic traits.


Assuntos
Genótipo , Fenótipo , Locos de Características Quantitativas , Sementes/anatomia & histologia , Sementes/genética , Triticum/anatomia & histologia , Triticum/genética , Grão Comestível/anatomia & histologia , Grão Comestível/genética , Variação Genética , Genoma de Planta , Estudo de Associação Genômica Ampla
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...