Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.157
Filtrar
1.
Int J Mol Sci ; 22(11)2021 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-34200414

RESUMO

Numerous environmental and endogenous factors affect the level of genetic diversity in natural populations. Genetic variability is the cornerstone of evolution and adaptation of species. However, currently, more and more plant species and local varieties (landraces) are on the brink of extinction due to anthropopression and climate change. Their preservation is imperative for the sake of future breeding programs. Gene banks have been created worldwide to conserve different plant species of cultural and economic importance. Many of them apply cryopreservation, a conservation method in which ultra-low temperatures (-135 °C to -196 °C) are used for long-term storage of tissue samples, with little risk of variation occurrence. Cells can be successfully cryopreserved in liquid nitrogen (LN) when the adverse effect of ice crystal formation and growth is mitigated by the removal of water and the formation of the so-called biological glass (vitrification). This state can be achieved in several ways. The involvement of key cold-regulated genes and proteins in the acquisition of cold tolerance in plant tissues may additionally improve the survival of LN-stored explants. The present review explains the importance of cryostorage in agronomy and presents an overview of the recent works accomplished with this strategy. The most widely used cryopreservation techniques, classic and modern cryoprotective agents, and some protocols applied in crops are considered to understand which parameters provide the establishment of high quality and broadly applicable cryopreservation. Attention is also focused on the issues of genetic integrity and functional genomics in plant cryobiology.


Assuntos
Produtos Agrícolas/crescimento & desenvolvimento , Criopreservação/métodos , Crioprotetores/farmacologia , Melhoramento Vegetal , Brotos de Planta/crescimento & desenvolvimento , Sementes/crescimento & desenvolvimento , Vitrificação , Protoplastos
2.
Int J Mol Sci ; 22(13)2021 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-34209672

RESUMO

Gene editing by use of clustered regularly interspaced short palindromic repeats (CRISPR) has become a powerful tool for crop improvement. However, a common bottleneck in the application of this approach to grain crops, including rice (Oryza sativa), is efficient vector delivery and calli regeneration, which can be hampered by genotype-dependent requirements for plant regeneration. Here, methods for Agrobacterium-mediated and biolistic transformation and regeneration of indica rice were optimized using CRISPR-Cas9 gene-editing of the submergence tolerance regulator SUBMERGENCE 1A-1 gene of the cultivar Ciherang-Sub1. Callus induction and plantlet regeneration methods were optimized for embryogenic calli derived from immature embryos and mature seed-derived calli. Optimized regeneration (95%) and maximal editing efficiency (100%) were obtained from the immature embryo-derived calli. Phenotyping of T1 seeds derived from the edited T0 plants under submergence stress demonstrated inferior phenotype compared to their controls, which phenotypically validates the disruption of SUB1A-1 function. The methods pave the way for rapid CRISPR-Cas9 gene editing of recalcitrant indica rice cultivars.


Assuntos
Genes de Plantas , Oryza/fisiologia , Regeneração , Transformação Genética , Sistemas CRISPR-Cas , Proteínas de Ligação ao Cálcio/genética , Edição de Genes , Fenótipo , Desenvolvimento Vegetal/genética , Plantas Geneticamente Modificadas , Reprodutibilidade dos Testes , Sementes/genética , Sementes/crescimento & desenvolvimento
3.
Int J Mol Sci ; 22(11)2021 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-34199720

RESUMO

The underground reserve (root) has been an uncharted research territory with its untapped genetic variation yet to be exploited. Identifying ideal traits and breeding new rice varieties with efficient root system architecture (RSA) has great potential to increase resource-use efficiency and grain yield, especially under direct-seeded rice, by adapting to aerobic soil conditions. In this review, we tried to mine the available research information on the direct-seeded rice (DSR) root system to highlight the requirements of different root traits such as root architecture, length, number, density, thickness, diameter, and angle that play a pivotal role in determining the uptake of nutrients and moisture at different stages of plant growth. RSA also faces several stresses, due to excess or deficiency of moisture and nutrients, low or high temperature, or saline conditions. To counteract these hindrances, adaptation in response to stress becomes essential. Candidate genes such as early root growth enhancer PSTOL1, surface rooting QTL qSOR1, deep rooting gene DRO1, and numerous transporters for their respective nutrients and stress-responsive factors have been identified and validated under different circumstances. Identifying the desired QTLs and transporters underlying these traits and then designing an ideal root architecture can help in developing a suitable DSR cultivar and aid in further advancement in this direction.


Assuntos
Adaptação Fisiológica/fisiologia , Oryza/fisiologia , Raízes de Plantas/anatomia & histologia , Raízes de Plantas/fisiologia , Sementes/fisiologia , Germinação/fisiologia , Oryza/genética , Oryza/crescimento & desenvolvimento , Locos de Características Quantitativas/genética , Sementes/genética , Sementes/crescimento & desenvolvimento
4.
BMC Plant Biol ; 21(1): 305, 2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-34193036

RESUMO

BACKGROUND: Natural variations derived from both evolutionary selection and genetic recombination, presume to have important functions to respond to various abiotic stresses, which could be used to improve drought tolerance via genomic selection. RESULTS: In the present study, the NAC-encoding gene of ZmNAC080308 was cloned and sequenced in 199 inbred lines in maize. Phylogenetic analysis showed that ZmNAC080308 is closely clusteredinto the same group with other well-known NAC genes responding to improve drought tolerance. In total, 86 SNPs and 47 InDels were identified in the generic region of ZmNAC080308, 19 of these variations were associated with GY (grain yield) in different environments. Nine variations in the 5'-UTR region of ZmNAC080308 are closely linked, they might regulate the gene expression and respond to improve GY under drought condition via Sp1-mediated transactivation. Two haplotypes (Hap1 and Hap2) identified in the, 5'-UTR region using the nine variations, and Hap2 containing insertion variants, exhibited 15.47 % higher GY under drought stress condition. Further, a functional marker was developed to predict the drought stress tolerance in a US maize inbred line panel. Lines carrying Hap2 exhibited > 10 % higher GY than those carrying Hap1 under drought stress condition. In Arabidopsis, overexpression ZmNAC080308 enhanced drought tolerance. CONCLUSIONS: ZmNAC080308 is an important gene responding to drought tolerance, a functional marker is developed for improving maize drought tolerance by selecting this gene.


Assuntos
Secas , Variação Genética , Proteínas de Plantas/genética , Sementes/crescimento & desenvolvimento , Estresse Fisiológico/genética , Zea mays/genética , Zea mays/fisiologia , Regiões 5' não Traduzidas/genética , Sequência de Aminoácidos , Arabidopsis/genética , Núcleo Celular/metabolismo , Regulação da Expressão Gênica de Plantas , Marcadores Genéticos , Genótipo , Desequilíbrio de Ligação/genética , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Polimorfismo de Nucleotídeo Único/genética , Plântula/metabolismo , Frações Subcelulares/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
5.
Int J Mol Sci ; 22(13)2021 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-34206400

RESUMO

Seeds of common bean (Phaseolus vulgaris L.), of the Etna variety, were treated with low-pressure oxygen plasma sustained by an inductively coupled radiofrequency discharge in the H-mode for a few seconds. The high-intensity treatment improved seed health in regard to fungal contamination. Additionally, it increased the wettability of the bean seeds by altering surface chemistry, as established by X-ray photoelectron spectroscopy, and increasing surface roughness, as seen with a scanning electron microscope. The water contact angle at the seed surface dropped to immeasurably low values after a second of plasma treatment. Hydrophobic recovery within a month returned those values to no more than half of the original water contact angle, even for beans treated for the shortest time (0.5 s). Increased wettability resulted in accelerated water uptake. The treatment increased the bean radicle length, which is useful for seedling establishment in the field. These findings confirm that even a brief plasma treatment is a useful technique for the disinfection and stimulation of radicle growth. The technique is scalable to large systems due to the short treatment times.


Assuntos
Germinação/efeitos dos fármacos , Phaseolus/efeitos dos fármacos , Phaseolus/crescimento & desenvolvimento , Gases em Plasma/farmacologia , Sementes/efeitos dos fármacos , Sementes/crescimento & desenvolvimento , Espectroscopia Fotoeletrônica , Desenvolvimento Vegetal/efeitos dos fármacos , Sementes/ultraestrutura , Propriedades de Superfície , Água , Molhabilidade
6.
Nat Commun ; 12(1): 3963, 2021 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-34172749

RESUMO

The endosperm provides nutrients and growth regulators to the embryo during seed development. LEAFY COTYLEDON1 (LEC1) has long been known to be essential for embryo maturation. LEC1 is expressed in both the embryo and the endosperm; however, the functional relevance of the endosperm-expressed LEC1 for seed development is unclear. Here, we provide genetic and transgenic evidence demonstrating that endosperm-expressed LEC1 is necessary and sufficient for embryo maturation. We show that endosperm-synthesized LEC1 is capable of orchestrating full seed maturation in the absence of embryo-expressed LEC1. Inversely, without LEC1 expression in the endosperm, embryo development arrests even in the presence of functional LEC1 alleles in the embryo. We further reveal that LEC1 expression in the endosperm begins at the zygote stage and the LEC1 protein is then trafficked to the embryo to activate processes of seed maturation. Our findings thus establish a key role for endosperm in regulating embryo development.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas Estimuladoras de Ligação a CCAAT/genética , Endosperma/genética , Endosperma/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Haploidia , Plantas Geneticamente Modificadas , Sementes/genética , Sementes/crescimento & desenvolvimento
7.
Food Chem ; 362: 130206, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34082289

RESUMO

Legumes are the main sources of folates which are not synthesized in the human body. The five folate species: 5-methyl tetrahydrofolate, tetrahydrofolate, pteroyl glutamate, 5-formyl tetrahydrofolate and 10-formyl tetrahydrofolate were quantitatively determined in legumes seeds and sprouts by a newly developed and validated high performance thin layer chromatography method. High resolution plate imaging hyphenated to mass spectrometry was exploited for fingerprint analysis of tested samples. Results indicated that germination of all seeds resulted in a 2.5-4 fold increase in the content of total folates as well as the individual vitamers. The total amount of folate reached a maximum on the fifth day in the case of black-eyed peas (861 µg/100 g Fresh Weight), white beans (755 µg/100 g FW) and brown lentils (681 µg/100 g FW). 5-CH3-H4 folate was found to be the most dominating folate species reaching its maximum content in day 5 sprouts of black-eyed peas (490 µg/100 g FW).


Assuntos
Cromatografia em Camada Delgada/métodos , Fabaceae/química , Ácido Fólico/análise , Espectrometria de Massas/métodos , Sementes/química , Fabaceae/crescimento & desenvolvimento , Análise de Alimentos/métodos , Análise de Alimentos/estatística & dados numéricos , Germinação , Processamento de Imagem Assistida por Computador , Lens (Planta)/química , Leucovorina/análogos & derivados , Leucovorina/análise , Imagem Molecular/métodos , Análise Multivariada , Reprodutibilidade dos Testes , Sementes/crescimento & desenvolvimento , Tetra-Hidrofolatos/análise
8.
Plant Sci ; 309: 110913, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34134840

RESUMO

Abscisic acid (ABA) is an important regulator of plant growth, development, and biotic and abiotic stress responses. Ubiquitination plays important roles in regulating ABA signaling. E3 ligase, a key member in ubiquitination, actively participates in the regulation of biosynthesis, de-repression, and activation of ABA response and degradation of signaling components. In this study, we found that that overexpression of wheat E3 ligase TaPUB1 decreased the sensitivity of wheat seedlings to ABA, whereas TaPUB1-RNA interference (TaPUB1-RNAi) lines increased wheat sensitivity to ABA during germination, root growth, and stomatal opening. TaPUB1 influenced the expression of several ABA-responsive genes, and also interacted with TaPYL4 and TaABI5, which are involved in ABA signal transduction, and promoted their degradation. Additionally, we observed that TaPUB1-OE lines resulted in lower single-split grain numbers, larger seed size, and higher thousand kernel weight, when compared with the WT lines. Contrasting results were obtained for TaPUB1-RNAi lines. It suggests that TaPUB1 acts as a negative regulator in the ABA signaling pathway by interacting with TaPYL4 and TaABI5, subsequently affecting seed development in wheat. In addition, the enhanced abiotic tolerance of overexpression lines due to enhanced photosynthesis and root development may be related to the degradation of TaABI5 by TaPUB1.


Assuntos
Ácido Abscísico/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Transdução de Sinais , Triticum/genética , Germinação , Fotossíntese , Plântula/genética , Plântula/crescimento & desenvolvimento , Plântula/fisiologia , Sementes/genética , Sementes/crescimento & desenvolvimento , Sementes/fisiologia , Estresse Fisiológico , Triticum/crescimento & desenvolvimento , Triticum/fisiologia , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
9.
Food Chem ; 361: 130177, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34077883

RESUMO

Carotenoid content in maize sprouts can be increased by NaCl stress, although high NaCl concentrations negatively impact plant growth. The effects of exogenous methyl jasmonate (MeJA) on contents of carotenoid and antioxidant capacity of yellow maize sprouts under NaCl stress were investigated. Our results showed that treatments of NaCl both alone and combined with MeJA enhanced the carotenoid accumulation in maize sprouts. Moreover, the carotenoid biosynthesis related genes showed different expression patterns under addition of MeJA treatment. Additionally, the combined treatment led to significantly higher content of most carotenoids profiles and the addition of MeJA could alleviate the harmful effect caused by NaCl stress. Furthermore, the combined treatment improved antioxidant enzyme activities and radical scavenging capacity. The results implied that MeJA is kind of effective plant growth regulator for enhancing carotenoid accumulation in maize sprouts by up-regulating the expression levels of key genes involved in carotenoid biosynthetic pathway.


Assuntos
Acetatos/farmacologia , Carotenoides/metabolismo , Ciclopentanos/farmacologia , Oxilipinas/farmacologia , Reguladores de Crescimento de Plantas/farmacologia , Cloreto de Sódio/farmacologia , Zea mays/efeitos dos fármacos , Antioxidantes/metabolismo , Enzimas/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Estresse Salino , Plântula/efeitos dos fármacos , Sementes/efeitos dos fármacos , Sementes/crescimento & desenvolvimento , Zea mays/fisiologia
10.
Int J Mol Sci ; 22(9)2021 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-34064353

RESUMO

The lipid bilayer matrix of the thylakoid membrane of cyanobacteria and chloroplasts of plants and algae is mainly composed of uncharged galactolipids, but also contains anionic lipids sulfoquinovosyldiacylglycerol (SQDG) and phosphatidylglycerol (PG) as major constituents. The necessity of PG for photosynthesis is evident in all photosynthetic organisms examined to date, whereas the requirement of SQDG varies with species. In plants, although PG and SQDG are also found in non-photosynthetic plastids, their importance for the growth and functions of non-photosynthetic organs remains unclear. In addition, plants synthesize another anionic lipid glucuronosyldiacylglycerol (GlcADG) during phosphorus starvation, but its role in plant cells is not elucidated yet. To understand the functional relationships among PG, SQDG, and GlcADG, we characterized several Arabidopsis thaliana mutants defective in biosynthesis of these lipids. The mutants completely lacking both PG and SQDG biosynthesis in plastids showed developmental defects of roots, hypocotyls, and embryos in addition to leaves, which suggests that these lipids are pleiotropically required for the development of both photosynthetic and non-photosynthetic organs. Furthermore, our analysis revealed that SQDG, but not GlcADG, is essential for complementing the role of PG, particularly in photosynthesis under PG-deficient conditions such as phosphorus starvation.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/metabolismo , Cloroplastos/metabolismo , Diglicerídeos/metabolismo , Glicolipídeos/metabolismo , Fosfatidilgliceróis/metabolismo , Arabidopsis/citologia , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/metabolismo , Cloroplastos/genética , Cianobactérias/genética , Cianobactérias/metabolismo , Galactolipídeos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Hipocótilo/citologia , Hipocótilo/crescimento & desenvolvimento , Hipocótilo/metabolismo , Mutação , Células Vegetais/metabolismo , Folhas de Planta/citologia , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Raízes de Plantas/citologia , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Sementes/citologia , Sementes/crescimento & desenvolvimento , Sementes/metabolismo
11.
Gene ; 793: 145749, 2021 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-34077776

RESUMO

Maize ZmGS5 was reported to be positively associated with kernel-related traits, however, its regulatory mechanism on plant development and seed size remains unknown. In this study, ZmGS5 was demonstrated to be widely expressed in various maize tissues with the highest expression level in developing embryos, indicating its critical roles in early kernel development process. The ZmGS5 protein was subcellularly localized to both the nucleus and cytoplasm. Transgenic Arabidopsis plants overexpressing ZmGS5 under the control of either the constitutive maize Ubiquitin1 promotor or native ZmGS5 promoter resulted in increased plant size, biomass, seed size and weight, although no significant difference was observed between transgenic lines harboring the two constructs. In contrast, the antisense-ZmGS5 transgene resulted in opposite phenotypes. Our cytological data suggested that ZmGS5 enlarged petal size through enhancing cell expansion. Quantitative RT-PCR analysis indicated that ZmGS5 might enhance cell expansion and grain filling by upregulating expression levels of particular EXPA or SWEET genes. Collectively, these findings help us further understand the biological function and regulatory mechanism of ZmGS5 in improving organ size and seed weight, which imply its great potential for high-yield breeding in the future.


Assuntos
Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Sementes/genética , Transgenes , Zea mays/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Contagem de Células , Núcleo Celular/metabolismo , Núcleo Celular/ultraestrutura , Citoplasma/metabolismo , Citoplasma/ultraestrutura , Humanos , Tamanho do Órgão , Melhoramento Vegetal/métodos , Células Vegetais/metabolismo , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Sementes/anatomia & histologia , Sementes/crescimento & desenvolvimento , Sementes/metabolismo , Ubiquitina/genética , Ubiquitina/metabolismo , Zea mays/crescimento & desenvolvimento , Zea mays/metabolismo
12.
Plant Cell Rep ; 40(7): 1215-1228, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34028583

RESUMO

KEY MESSAGE: Among the 113 lipases present in rice genome, bran and endosperm-specific lipases were identified and lipase activity for one of the selected lipase gene is demonstrated in yeast. Rice bran is nutritionally superior than endosperm as it has major reservoirs of various minerals, vitamins, essential mineral oils and other bioactive compounds, however it is often under-utilized as a food product due to bran instability after milling. Various hydrolytic enzymes, such as lipases, present in bran causes degradation of the lipids present and are responsible for the bran instability. Here, in this study, we have systematically analyzed the 113 lipase genes present in rice genome, and identified 21 seed-specific lipases. By analyzing the expression of these genes in different seed tissues during seed development, we have identified three bran-specific and three endosperm-specific lipases, and one lipase which expresses in both bran and endosperm tissues. Further analysis of these genes during seed maturation and seed germination revealed that their expression increases during seed maturation and decreases during seed germination. Finally, we have shown the lipase activity for one of the selected genes, LOC_Os05g30900, in heterologous system yeast. The bran-specific lipases identified in this study would be very valuable for engineering designer rice varieties having increased bran stability in post-milling.


Assuntos
Lipase/genética , Lipase/metabolismo , Oryza/enzimologia , Simulação por Computador , Perfilação da Expressão Gênica , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Germinação , Oryza/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Sementes/enzimologia , Sementes/genética , Sementes/crescimento & desenvolvimento , Leveduras/genética , Leveduras/metabolismo
13.
BMC Plant Biol ; 21(1): 233, 2021 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-34034675

RESUMO

BACKGROUND: Lanthanum (La) is a rare earth element that can influence plant growth and development. However, the effect of La on growth, yield formation and 2-acetyl-1-pyrroline (2-AP, a key compound responsible for the aroma of rice) biosynthesis in aromatic rice (Oryza sativa L. subsp. japonica Kato) has not been reported. Therefore, the present study investigated the effects of La on growth, photosynthesis, yield formation and 2-AP biosynthesis in aromatic rice through three experiments. RESULTS: Two pot experiments and a two-year field trial were conducted with different rates of La application (20-120 LaCl3 mg kg-1 and 12 kg ha-1 LaCl3), and treatments without La application were used as controls. The results showed that the application of LaCl3 at 80 and 100 mg kg-1 and at 12 kg ha-1 greatly increased the 2-AP content (by 6.45-43.03%) in aromatic rice seedlings and mature grains compared with the control. The La treatments also increased the chlorophyll content, net photosynthetic rate and total aboveground biomass of rice seedlings. Higher antioxidant enzyme (superoxide, peroxidase, and catalase) activity was detected in the La treatments than in the control. The La treatments also increased the grain yield, grain number per panicle and seed-setting rate of aromatic rice relative to the control. Moreover, the grain proline and γ-aminobutyric acid contents and the activity of betaine aldehyde dehydrogenase significantly decreased under the La treatment. The application of La to soil enhanced the activity of proline dehydrogenase by 20.62-56.95%. CONCLUSIONS: La improved the growth, yield formation and 2-AP content of aromatic rice and enhanced 2-AP biosynthesis by increasing the conversion of proline to 2-AP and decreasing the conversion of GABald to GABA.


Assuntos
Antioxidantes/metabolismo , Lantânio/farmacologia , Oryza/fisiologia , Proteínas de Plantas/metabolismo , Pirróis/metabolismo , Clorofila/metabolismo , Grão Comestível , Oryza/genética , Oryza/crescimento & desenvolvimento , Fotossíntese , Proteínas de Plantas/genética , Prolina/metabolismo , Prolina Oxidase/genética , Prolina Oxidase/metabolismo , Sementes/genética , Sementes/crescimento & desenvolvimento , Sementes/fisiologia
14.
Mol Genet Genomics ; 296(4): 953-970, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34009475

RESUMO

Flavonoids belong to polyphenolic compounds, which are widely distributed in plants and have rich functions. Euryale ferox Salisb is an important medicinal and edible homologous plant, and flavonoids are its main functional substances. However, the biosynthesis mechanism of flavonoids in E. ferox is still poorly understood. To explore the dynamic changes of flavonoid biosynthesis during the development of E. ferox seeds, the targeted flavonoid metabolome was determined. A total of 129 kinds of flavonoid metabolites were characterized in the seeds of E. ferox, including 11 flavanones, 8 dihydroflavanols, 16 flavanols, 29 flavones, 3 isoflavones, 12 anthocyanins, 29 flavonols, 6 flavonoid carbonosides, 3 chalcones and 13 proanthocyanidins. The relative content of flavonoid metabolites accumulated continuously during the development of E. ferox seeds, and reached the highest at T30. In transcriptome, the expression of key genes in the flavonoid pathway, such as PAL, CHS, F3H, FLS, ANS, was highest in T30, which was consistent with the trend of metabolites. Six candidate transcription factors (R2R3MYBs and bHLHs) may affect the biosynthesis of flavonoids by regulating the expression of structural genes. Furthermore, transcriptome analysis and exogenous ABA and SA treatment demonstrated that ABA (PYR1, PP2Cs, SnRK2s) and SA (NPR1) are involved in the positive regulation of flavonoid biosynthesis. This study clarified the differential changes of flavonoid metabolites during the development of E. ferox seeds, confirmed that ABA and SA promote the synthesis of flavonoids, and found key candidate genes that are involved in the regulation of ABA and SA in the positive regulation of flavonoid biosynthesis.


Assuntos
Flavonoides/biossíntese , Redes e Vias Metabólicas/genética , Nymphaeaceae , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Metaboloma/genética , Metabolômica , Nymphaeaceae/genética , Nymphaeaceae/crescimento & desenvolvimento , Nymphaeaceae/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Medicinais/genética , Plantas Medicinais/crescimento & desenvolvimento , Plantas Medicinais/metabolismo , Sementes/genética , Sementes/crescimento & desenvolvimento , Sementes/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcriptoma
15.
Nat Commun ; 12(1): 3167, 2021 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-34039966

RESUMO

Ubiquitous use of electronic devices has led to an unprecedented increase in related waste as well as the worldwide depletion of reserves of key chemical elements required in their manufacturing. The use of biodegradable and abundant organic (carbon-based) electronic materials can contribute to alleviate the environmental impact of the electronic industry. The pigment eumelanin is a bio-sourced candidate for environmentally benign (green) organic electronics. The biodegradation of eumelanin extracted from cuttlefish ink is studied both at 25 °C (mesophilic conditions) and 58 °C (thermophilic conditions) following ASTM D5338 and comparatively evaluated with the biodegradation of two synthetic organic electronic materials, namely copper (II) phthalocyanine (Cu-Pc) and polyphenylene sulfide (PPS). Eumelanin biodegradation reaches 4.1% (25 °C) in 97 days and 37% (58 °C) in 98 days, and residual material is found to be without phytotoxic effects. The two synthetic materials, Cu-Pc and PPS, do not biodegrade; Cu-Pc brings about the inhibition of microbial respiration in the compost. PPS appears to be potentially phytotoxic. Finally, some considerations regarding the biodegradation test as well as the disambiguation of "biodegradability" and "bioresorbability" are highlighted.


Assuntos
Biodegradação Ambiental , Equipamentos e Provisões Elétricas , Química Verde/métodos , Poluentes do Solo/química , Animais , Compostagem , Decapodiformes/química , Indóis/química , Lolium/efeitos dos fármacos , Lolium/crescimento & desenvolvimento , Melaninas/química , Melaninas/isolamento & purificação , Microbiota/efeitos dos fármacos , Compostos Organometálicos/química , Polímeros/química , Sementes/efeitos dos fármacos , Sementes/crescimento & desenvolvimento , Microbiologia do Solo , Poluentes do Solo/toxicidade
16.
Plant Sci ; 308: 110901, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34034862

RESUMO

Nitrogen is an essential macronutrient for plants and regulates many aspects of plant growth and development. Nitrate is one of the major forms of nitrogen in plants. However, the role of nitrate uptake and allocation in seed development is not fully understood. Here, we identified the maize (Zea mays) small-kernel mutant zmnpf7.9 and characterized the candidate gene, ZmNPF7.9, which was the same gene as nitrate transport 1.5 (NRT1.5) in maize. This gene is specifically expressed in the basal endosperm transfer layer cells of maize endosperm. Dysfunction of ZmNPF7.9 resulted in delayed endosperm development, abnormal starch deposition and decreased hundred-grain weight. Functional analysis of cRNA-injected Xenopus oocytes showed that ZmNPF7.9 is a low-affinity, pH-dependent bidirectional nitrate transporter. Moreover, the amount of nitrate in mature seeds of the zmnpf7.9 mutant was reduced. These suggest that ZmNPF7.9 is involved in delivering nitrate from maternal tissues to the developing endosperm. Moreover, most of the key genes associated with glycolysis/gluconeogenesis, carbon fixation, carbon metabolism and biosynthesis of amino acids pathways in the zmnpf7.9 mutant were significantly down-regulated. Thus, our results demonstrate that ZmNPF7.9 plays a specific role in seed development and grain weight by regulating nutrition transport and metabolism, which might provide useful information for maize genetic improvement.


Assuntos
Proteínas de Transporte de Ânions/genética , Proteínas de Plantas/genética , Sementes/crescimento & desenvolvimento , Zea mays/crescimento & desenvolvimento , Zea mays/genética , Proteínas de Transporte de Ânions/metabolismo , Endosperma/crescimento & desenvolvimento , Proteínas de Plantas/metabolismo , Amido/metabolismo , Zea mays/metabolismo
17.
Plant Sci ; 308: 110908, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34034865

RESUMO

Chloroplast biogenesis and development regulation have long been a focus of research; however, the underlying mechanisms of these processes have not yet been fully elucidated. Pentatricopeptide repeat (PPR) proteins have been shown to play key roles in chloroplast development. Here, we identified a novel P-type PPR protein, Early Chloroplast Development 2 (ECD2), and the ecd2 mutant resulted in embryo lethality. The RNAi lines of ECD2 showed varying degrees of albino cotyledons and abnormal chloroplast development, but true leaves were similar to the wild-type. Further analysis revealed that ECD2 was responsible for chloroplast gene expression and group II intron splicing of several genes. Transcriptome analysis combined with quantitative real-time PCR showed that ECD2 was associated with the expression of ribosomal genes and accumulation of chloroplast ribosomes. Overall, our results indicate that ECD2 is critically important for early chloroplast development in cotyledon.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Arabidopsis/genética , Cloroplastos/metabolismo , Cotilédone/crescimento & desenvolvimento , Folhas de Planta/crescimento & desenvolvimento , Arabidopsis/metabolismo , Cotilédone/genética , Mutação , Folhas de Planta/genética , Sementes/genética , Sementes/crescimento & desenvolvimento
18.
Int J Biol Macromol ; 181: 1207-1223, 2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-33971233

RESUMO

The basic leucine zipper (bZIP) family is one of the largest families of transcription factors (TFs) in plants and is responsible for various functions, including regulating development and responses to abiotic/biotic stresses. However, the roles of bZIPs in the regulation of responses to drought stress and salinity stress remain poorly understood in Jatropha curcas L., a biodiesel crop. In the present study, 50 JcbZIP genes were identified and classified into ten groups. Cis-element analysis indicated that JcbZIP genes are associated with abiotic stress. Gene expression patterns and quantitative real-time PCR (qRT-PCR) showed that four JcbZIP genes (JcbZIPs 34, 36, 49 and 50) are key resistance-related genes under both drought and salinity stress conditions. On the basis of the results of cis-element and phylogenetic analyses, JcbZIP49 and JcbZIP50 are likely involved in responses to drought and salinity stress; moreover, JcbZIP34 and JcbZIP36 might also play important roles in seed development and response to abiotic stress. These findings advance our understanding of the comprehensive characteristics of JcbZIP genes and provide new insights for functional validation in the further.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica/genética , Secas , Jatropha/genética , Estresse Salino/genética , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas/genética , Genoma de Planta/genética , Jatropha/crescimento & desenvolvimento , Filogenia , Proteínas de Plantas/genética , Sementes/crescimento & desenvolvimento , Estresse Fisiológico/genética
19.
Int J Mol Sci ; 22(6)2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33804275

RESUMO

Fumarylacetoacetate hydrolase (FAH) proteins form a superfamily found in Archaea, Bacteria, and Eukaryota. However, few fumarylacetoacetate hydrolase domain (FAHD)-containing proteins have been studied in Metazoa and their role in plants remains elusive. Sequence alignments revealed high homology between two Arabidopsis thaliana FAHD-containing proteins and human FAHD1 (hFAHD1) implicated in mitochondrial dysfunction-associated senescence. Transcripts of the closest hFAHD1 orthologue in Arabidopsis (AtFAHD1a) peak during seed maturation drying, which influences seed longevity and dormancy. Here, a homology study was conducted to assess if AtFAHD1a contributes to seed longevity and vigour. We found that an A. thaliana T-DNA insertional line (Atfahd1a-1) had extended seed longevity and shallower thermo-dormancy. Compared to the wild type, metabolite profiling of dry Atfahd1a-1 seeds showed that the concentrations of several amino acids, some reducing monosaccharides, and δ-tocopherol dropped, whereas the concentrations of dehydroascorbate, its catabolic intermediate threonic acid, and ascorbate accumulated. Furthermore, the redox state of the glutathione disulphide/glutathione couple shifted towards a more reducing state in dry mature Atfahd1a-1 seeds, suggesting that AtFAHD1a affects antioxidant redox poise during seed development. In summary, AtFAHD1a appears to be involved in seed redox regulation and to affect seed quality traits such as seed thermo-dormancy and longevity.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Hidrolases/genética , Dormência de Plantas/genética , Arabidopsis/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas/genética , Germinação/genética , Humanos , Longevidade/genética , Oxirredução , Sementes/genética , Sementes/crescimento & desenvolvimento
20.
BMC Plant Biol ; 21(1): 181, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33858333

RESUMO

BACKGROUND: The investigation of molecular mechanisms involved in lipid metabolism plays a critical role for the genetic engineering of safflower (Carthamus tinctorius L.) to increase the oil accumulation level or to change the oil composition. Although transcript sequences are currently available for the leaves and flowers of safflower, a wide range scan of temporal transcripts at different stages of seed development has not been conducted for safflower. RESULTS: In this study, temporal transcriptome sequencing was executed at 10, 14, 18, and 22 days after flowering (DAF) to uncover the molecular networks concerned in the biosynthesis of unsaturated fatty acids (USFAs). The results revealed that the biosynthesis of fatty acids is a dominant cellular process from 10 to 14 DAF, while degradation mainly happens after 18 DAF. Significant expression changes of two genes, stearoyl-[acyl-carrier-protein] 9-desaturase gene (SAD) from 10 to 14 DAF and oleate desaturase (FAD2-1) from 14 to 18 DAF, were detected at the transcriptomic levels, and the temporal expression patterns revealed by the transcriptomic analysis were confirmed using quantitative real-time PCR experiments. In addition, 13 candidate transcription factors (TFs) involved in regulating the expression level of the FAD2-1 gene were identified. CONCLUSIONS: These results create a link between fatty acid biosynthesis and gene expression at different developmental stages of the seeds, provide insight into the underlying lipid metabolism, and meanwhile lay an important foundation for the genetic engineering of safflower varieties. We have identified novel candidate genes, including TFs, that are worthy of further exploration.


Assuntos
Carthamus tinctorius/genética , Genes de Plantas , Óleos Vegetais/metabolismo , Proteínas de Plantas/genética , Transcriptoma , Carthamus tinctorius/metabolismo , Perfilação da Expressão Gênica , Proteínas de Plantas/metabolismo , Sementes/crescimento & desenvolvimento , Sementes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...