Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 478.380
Filtrar
1.
Zool Res ; 42(5): 637-649, 2021 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-34472225

RESUMO

The insect brain is the central part of the neurosecretory system, which controls morphology, physiology, and behavior during the insect's lifecycle. Lepidoptera are holometabolous insects, and their brains develop during the larval period and metamorphosis into the adult form. As the only fully domesticated insect, the Lepidoptera silkworm Bombyx mori experienced changes in larval brain morphology and certain behaviors during the domestication process. Hormonal regulation in insects is a key factor in multiple processes. However, how juvenile hormone (JH) signals regulate brain development in Lepidoptera species, especially in the larval stage, remains elusive. We recently identified the JH receptor Methoprene tolerant 1 ( Met1) as a putative domestication gene. How artificial selection on Met1 impacts brain and behavioral domestication is another important issue addressing Darwin's theory on domestication. Here, CRISPR/Cas9-mediated knockout of Bombyx Met1 caused developmental retardation in the brain, unlike precocious pupation of the cuticle. At the whole transcriptome level, the ecdysteroid (20-hydroxyecdysone, 20E) signaling and downstream pathways were overactivated in the mutant cuticle but not in the brain. Pathways related to cell proliferation and specialization processes, such as extracellular matrix (ECM)-receptor interaction and tyrosine metabolism pathways, were suppressed in the brain. Molecular evolutionary analysis and in vitro assay identified an amino acid replacement located in a novel motif under positive selection in B. mori, which decreased transcriptional binding activity. The B. mori MET1 protein showed a changed structure and dynamic features, as well as a weakened co-expression gene network, compared with B. mandarina. Based on comparative transcriptomic analyses, we proposed a pathway downstream of JH signaling (i.e., tyrosine metabolism pathway) that likely contributed to silkworm larval brain development and domestication and highlighted the importance of the biogenic amine system in larval evolution during silkworm domestication.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Bombyx/metabolismo , Proteínas de Insetos/metabolismo , Hormônios Juvenis/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Bombyx/crescimento & desenvolvimento , Encéfalo/crescimento & desenvolvimento , Encéfalo/metabolismo , Sistemas CRISPR-Cas , Deleção de Genes , Regulação da Expressão Gênica no Desenvolvimento , Genótipo , Proteínas de Insetos/genética , Tegumento Comum/fisiologia , Larva/crescimento & desenvolvimento , Larva/metabolismo , Filogenia , Conformação Proteica
2.
Enzyme Microb Technol ; 150: 109871, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34489030

RESUMO

The present study sought to identify the structural determinants of aspartic protease structural stability and activity at elevated pH. Various hypotheses have been published regarding the features responsible for the unusual alkaline structural stability of renin, however, few structure-function studies have verified these claims. Using pepsin as a model system, and renin as a template for functional and structural alkaline stability, a rational re-design of pepsin was undertaken to identify residues contributing to the alkaline instability of pepsin-like aspartic proteases in regards to both structure and function. We constructed 13 mutants based on this strategy. Among them, mutants D159 L and D60A led to an increase in activity at elevated pH levels (p ≤ 0.05) and E4V and H53F were shown to retain native-like structure at elevated pH (p ≤ 0.05). Previously suggested carboxyl groups Asp11, Asp118, and Glu13 were individually shown not to be responsible for the structural instability or lack of activity at neutral pH in pepsin. The importance of the ß-barrel to structural stability was highlighted as the majority of the stabilizing residues identified, and 39% of the weakly conserved residues in the N-terminal lobe, were located in ß-sheet strands of the barrel. The results of the present study indicate that alkaline stabilization of pepsin will require reduction of electrostatic repulsions and an improved understanding of the role of the hydrogen bonding network of the characteristic ß-barrel.


Assuntos
Pepsina A , Renina , Sequência de Aminoácidos , Ácido Aspártico Endopeptidases/metabolismo , Ligação de Hidrogênio , Pepsina A/metabolismo
3.
Enzyme Microb Technol ; 150: 109859, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34489049

RESUMO

Exploration of feruloyl esterase (FAE) with the resistance to heat and alkali conditions in biobleaching process to improve the separation efficiency of lignocellulose is the key to achieving green papermaking. Herein, we expressed FAEB of C. thermophilum and obtained a thermostable alkaline FAE that can effectively promote the removal of lignin from pulp. The faeB gene was successfully obtained through genomic Blast strategy and high-efficiency expressed under the control of strong alcohol oxidase promoter in Pichia pastoris. The recombinant CtFAEB has an optimal temperature of 65 °C and pH of 7.0. After treated at 65 °C for 1 h, CtFAEB can still retain 63.21 % of its maximum activity, showing a good thermal stability. In addition, the recombinant CtFAEB has broad pH stability and can retain about 56 % of the maximum activity even at pH 11.0. Compared with the effect of mesophilic FAE, pretreatment with thermostable CtFAEB can promote the delignification by laccase and alkaline hydrogen peroxide from the pulp at 70 °C and pH 9.0. Alignment of the protein sequences of CtFAEB and mesophilic FAE suggested that the percentage of amino acids that easily form alpha helix in CtFAEB increases, which enhances its structural rigidity and thereby improves its thermal stability and alkali tolerance. Our study provides an effective method to obtain thermostable and alkaline FAEs, which will promote its application in biobleaching and other biorefining industries.


Assuntos
Chaetomium , Sequência de Aminoácidos , Hidrolases de Éster Carboxílico/genética , Hidrolases de Éster Carboxílico/metabolismo , Chaetomium/genética , Clonagem Molecular , Concentração de Íons de Hidrogênio , Saccharomycetales
4.
BMC Bioinformatics ; 22(1): 435, 2021 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-34511072

RESUMO

BACKGROUND: Proteins are integral part of all living beings, which are building blocks of many amino acids. To be functionally active, amino acids chain folds up in a complex way to give each protein a unique 3D shape, where a minor error may cause misfolded structure. Genetic disorder diseases i.e. Alzheimer, Parkinson, etc. arise due to misfolding in protein sequences. Thus, identifying patterns of amino acids is important for inferring protein associated genetic diseases. Recent studies in predicting amino acids patterns focused on only simple protein misfolded disease i.e. Chromaffin Tumor, by association rule mining. However, more complex diseases are yet to be attempted. Moreover, association rules obtained by these studies were not verified by usefulness measuring tools. RESULTS: In this work, we analyzed protein sequences associated with complex protein misfolded diseases (i.e. Sickle Cell Anemia, Breast Cancer, Cystic Fibrosis, Nephrogenic Diabetes Insipidus, and Retinitis Pigmentosa 4) by association rule mining technique and objective interestingness measuring tools. Experimental results show the effectiveness of our method. CONCLUSION: Adopting quantitative experimental methods, this work can form more reliable, useful and strong association rules i. e. dominating patterns of amino acid of complex protein misfolded diseases. Thus, in addition to usual applications, the identified patterns can be more useful in discovering medicines for protein misfolded diseases and thereby may open up new opportunities in medical science to handle genetic disorder diseases.


Assuntos
Retinite Pigmentosa , Sequência de Aminoácidos , Aminoácidos , Humanos , Rodopsina
5.
Sheng Wu Gong Cheng Xue Bao ; 37(8): 2836-2844, 2021 Aug 25.
Artigo em Chinês | MEDLINE | ID: mdl-34472301

RESUMO

It has been reported that ODB genes play an important role in homologous recombination-directed DNA repair, suggesting their potential applications in plant breeding. To analyze the expression characteristics of tobacco NtODB gene, the cDNA sequence of NtODB was obtained using in silico cloning technique. The physicochemical properties, signal peptide, and advanced structures of the predicted protein were analyzed using bioinformatics tools. The results showed that the NtODB gene has a 579-bp open reading frame which encodes a protein with 192 amino acid residues. The protein NtODB is predicted to be alkaline and hydrophilic. Real-time quantitative PCR showed that NtODB was constitutively expressed in different tissues. Subcellular localization showed that NtODB was mainly expressed in cell membrane and chloroplast. These results may help us to better understand and elucidate the roles of ODB genes in the homologous recombination-directed DNA repair.


Assuntos
Biologia Computacional , Tabaco , Sequência de Aminoácidos , Sequência de Bases , Clonagem Molecular , Simulação por Computador , DNA Complementar , Filogenia , Melhoramento Vegetal , Tabaco/genética
6.
Sheng Wu Gong Cheng Xue Bao ; 37(8): 2890-2902, 2021 Aug 25.
Artigo em Chinês | MEDLINE | ID: mdl-34472306

RESUMO

The evolution, structure and antigenic epitopes prediction of Rana dybowskii antimicrobial peptide dybowskin-1ST were carried out using bioinformatics software available online. Its antibacterial mechanism and structural properties were analyzed, and its activity was verified by applying wound healing assay in mice and bacteriostatic assay in vitro. This provides the theoretical basis for the improvement of parental peptide and the development of novel derivative peptides. The software MEGA_X were used to conduct homology alignment and to construct a phylogenetic tree. The online software ProtParam, ProtScale, PeptideCutter, signal, TMHMM Server were respectively used to predict the physicochemical parameters, hydrophilia/hydrophobicity, shear sites, signal peptides, and transmembrane domains of dybowskin-1ST. The online software SOPMA, Jpred4, DNAstar Protean were used to predict the secondary structure of dybowskin-1ST, and SWISS-MODEL, I-TASSER were used to predict the tertiary structure. ABCpred and SYFPEITHI were respectively used to predict its B-and T-cell epitopes. The effect of dybowskin-1ST on the wound healing was observed on experimental mice. Kirby-Bauer method and dilution method were used to determine the bacteriostatic activity of dybowskin-1ST. The dybowskin-1ST consists of 59 amino acid residues, of which leucine accounts for 16.9%, with a molecular formula of C318H510N80O93S2. Its theoretical isoelectric point is 5.10 and the charge is -2. The dybowskin-1ST and dybowskin-1CDYa are closely related phylogenetically. The secondary structure of dybowskin-1ST predicted by the three methods were similar, which consisted of α-helix (44.07%), extended strand (16.95%), ß-turns (3.39%), and random coil (35.39%). The prediction of tertiary structure showed that dybowskin-1ST was mainly composed of α-helix, and it was regarded as a hydrophilic protein with signal peptide sequence. Subcellular localization analysis showed that the probability of secreting the mitochondrial targeted peptides was 0.944. Dybowskin-1ST is an extracellular protein with no transmembrane structure region, but contains seven phosphorylation sites, three T-cell epitopes and eight B-cell epitopes. The dybowskin-1ST promoted wound healing and effectively inhibited the growth of Escherichia coli and Staphylococcus aureus. However, it had limited antibacterial activity against fungi and drug-resistant bacteria. Although the structure of dybowskin-1ST is rich in α-helix, the verification experiments showed that its antibacterial ability needs to be enhanced. The reason may be that it is a negatively charged and hydrophilic protein, and amino acid modification with the aim of increasing the number of positive charges and changing the hydrophobicity may be used to obtain derived peptides with enhanced activity.


Assuntos
Ranidae , Sequência de Aminoácidos , Animais , Camundongos , Filogenia , Proteínas Citotóxicas Formadoras de Poros , Estrutura Secundária de Proteína
7.
Nanoscale ; 13(31): 13353-13367, 2021 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-34477741

RESUMO

Despite the significance of surface absorbed proteins in determining the biological identity of nanoparticles (NPs) entering the human body, little is known about the surface corona and factors that shape their formation on dietary particles used as food additives. In this study, food grade NPs of silica and titania and their food additive counterparts (E551 and E171) were interacted with milk proteins or with skimmed milk and the levels of protein adsorption were quantified. Characteristics of proteins correlating with their level of adsorption to NPs were determined using partial least squares regression analysis. Results from individual protein-particle interactions revealed the significance of factors such as zeta potential, hydrophobicity and hydrodynamic size of particles, and protein characteristics such as the number of beta strands, isoelectric points, the number of amino acid units (Ile, Tyr, Ala, Gly, Pro, Asp, and Arg), and phosphorylation sites on their adsorption to particles. Similar regression analysis was performed to identify the characteristics of twenty abundant and enriched proteins (identified using LC-MS/MS analysis) for their association with the surface corona of milk-interacted particles. Contrary to individual protein-particle interactions, protein characteristics such as helices, turns, protein structures, disulfide bonds, the number of amino acid units (Cys, Met, Leu, and Trp), and Fe binding sites were significant for their association with the surface corona of milk interacted particles. This difference in factors identified from individual proteins and milk interacted particles suggested possible interactions of proteins with surface adsorbed biomolecules as revealed by scanning transmission X-ray microscopy and other biochemical assays.


Assuntos
Nanopartículas , Coroa de Proteína , Adsorção , Sequência de Aminoácidos , Cromatografia Líquida , Humanos , Proteoma , Espectrometria de Massas em Tandem
8.
Front Immunol ; 12: 692937, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34497604

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) kills thousands of people worldwide every day, thus necessitating rapid development of countermeasures. Immunoinformatics analyses carried out here in search of immunodominant regions in recently identified SARS-CoV-2 unannotated open reading frames (uORFs) have identified eight linear B-cell, one conformational B-cell, 10 CD4+ T-cell, and 12 CD8+ T-cell promising epitopes. Among them, ORF9b B-cell and T-cell epitopes are the most promising followed by M.ext and ORF3c epitopes. ORF9b40-48 (CD8+ T-cell epitope) is found to be highly immunogenic and antigenic with the highest allele coverage. Furthermore, it has overlap with four potent CD4+ T-cell epitopes. Structure-based B-cell epitope prediction has identified ORF9b61-68 to be immunodominant, which partially overlaps with one of the linear B-cell epitopes (ORF9b65-69). ORF3c CD4+ T-cell epitopes (ORF3c2-16, ORF3c3-17, and ORF3c4-18) and linear B-cell epitope (ORF3c14-22) have also been identified as the candidate epitopes. Similarly, M.ext and 7a.iORF1 (overlap with M and ORF7a) proteins have promising immunogenic regions. By considering the level of antigen expression, four ORF9b and five M.ext epitopes are finally shortlisted as potent epitopes. Mutation analysis has further revealed that the shortlisted potent uORF epitopes are resistant to recurrent mutations. Additionally, four N-protein (expressed by canonical ORF) epitopes are found to be potent. Thus, SARS-CoV-2 uORF B-cell and T-cell epitopes identified here along with canonical ORF epitopes may aid in the design of a promising epitope-based polyvalent vaccine (when connected through appropriate linkers) against SARS-CoV-2. Such a vaccine can act as a bulwark against SARS-CoV-2, especially in the scenario of emergence of variants with recurring mutations in the spike protein.


Assuntos
Antígenos Virais/imunologia , Vacinas contra COVID-19/imunologia , COVID-19/prevenção & controle , Proteínas do Nucleocapsídeo de Coronavírus/imunologia , SARS-CoV-2/imunologia , Sequência de Aminoácidos/genética , Antígenos Virais/genética , COVID-19/imunologia , COVID-19/virologia , Vacinas contra COVID-19/genética , Vacinas contra COVID-19/uso terapêutico , Biologia Computacional , Proteínas do Nucleocapsídeo de Coronavírus/genética , Desenho de Fármacos , Mapeamento de Epitopos , Epitopos de Linfócito B/genética , Epitopos de Linfócito B/imunologia , Epitopos de Linfócito T/genética , Epitopos de Linfócito T/imunologia , Humanos , Fases de Leitura Aberta/genética , Fases de Leitura Aberta/imunologia , SARS-CoV-2/genética , Análise de Sequência de Proteína , Vacinas Combinadas/genética , Vacinas Combinadas/imunologia
9.
Int J Mol Sci ; 22(17)2021 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-34502016

RESUMO

Antisense peptide technology (APT) is based on a useful heuristic algorithm for rational peptide design. It was deduced from empirical observations that peptides consisting of complementary (sense and antisense) amino acids interact with higher probability and affinity than the randomly selected ones. This phenomenon is closely related to the structure of the standard genetic code table, and at the same time, is unrelated to the direction of its codon sequence translation. The concept of complementary peptide interaction is discussed, and its possible applications to diagnostic tests and bioengineering research are summarized. Problems and difficulties that may arise using APT are discussed, and possible solutions are proposed. The methodology was tested on the example of SARS-CoV-2. It is shown that the CABS-dock server accurately predicts the binding of antisense peptides to the SARS-CoV-2 receptor binding domain without requiring predefinition of the binding site. It is concluded that the benefits of APT outweigh the costs of random peptide screening and could lead to considerable savings in time and resources, especially if combined with other computational and immunochemical methods.


Assuntos
Teste Sorológico para COVID-19/métodos , COVID-19/diagnóstico , Peptídeos/metabolismo , Engenharia de Proteínas/métodos , Glicoproteína da Espícula de Coronavírus/isolamento & purificação , Algoritmos , Sequência de Aminoácidos/genética , Sítios de Ligação/genética , COVID-19/sangue , COVID-19/virologia , Humanos , Imunoquímica/métodos , Simulação de Acoplamento Molecular , Peptídeos/genética , Ligação Proteica/genética , SARS-CoV-2/isolamento & purificação , Glicoproteína da Espícula de Coronavírus/metabolismo
10.
Anal Chem ; 93(33): 11364-11369, 2021 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-34379401

RESUMO

The nanopore approach holds the possibility for achieving single-molecule protein sequencing. However, ongoing challenges still remain in the biological nanopore technology, which aims to identify 20 natural amino acids by reading the ionic current difference with the traditional current-sensing model. In this paper, taking aerolysin nanopores as an example, we calculate and compare the current blockage of each of 20 natural amino acids, which are all far from producing a detectable current blockage difference. Then, we propose a modified solution conductivity of σ' in the traditional volume exclusion model for nanopore sensing of a peptide. The σ' value describes the comprehensive result of ion mobility inside a nanopore, which is related to but not limited to nanopore-peptide interactions, and the positions, orientations, and conformations of peptides inside the nanopore. The nanopore experiments of a short peptide (VQIVYK) in wild type and mutant nanopores further demonstrate that the traditional volume exclusion model is not enough to fully explain the current blockage contribution and that many other factors such as enhanced nanopore-peptide interactions could contribute to a dominant part of the current change. This modified sensing model provides insights into the further development of nanopore protein sequencing methods.


Assuntos
Nanoporos , Sequência de Aminoácidos , Peptídeos , Proteínas , Análise de Sequência de Proteína
11.
Nat Commun ; 12(1): 5090, 2021 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-34429421

RESUMO

CRISPR-Cas9 mediated genome editing offers unprecedented opportunities for treating human diseases. There are several reports that demonstrate pre-existing immune responses to Cas9 which may have implications for clinical development of CRISPR-Cas9 mediated gene therapy. Here we use 209 overlapping peptides that span the entire sequence of Staphylococcus aureus Cas9 (SaCas9) and human peripheral blood mononuclear cells (PBMCs) from a cohort of donors with a distribution of Major Histocompatibility Complex (MHC) alleles comparable to that in the North American (NA) population to identify the immunodominant regions of the SaCas9 protein. We also use an MHC Associated Peptide Proteomics (MAPPs) assay to identify SaCas9 peptides presented by MHC Class II (MHC-II) proteins on dendritic cells. Using these two data sets we identify 22 SaCas9 peptides that are both presented by MHC-II proteins and stimulate CD4+ T-cells.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Sistemas CRISPR-Cas , Proliferação de Células/genética , Antígenos de Histocompatibilidade Classe II/metabolismo , Peptídeos/genética , Peptídeos/metabolismo , Sequência de Aminoácidos , Proteína 9 Associada à CRISPR/genética , Citocinas , Edição de Genes , Humanos , Staphylococcus aureus/genética , Linfócitos T/imunologia
12.
Sci Rep ; 11(1): 17234, 2021 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-34446788

RESUMO

Over the past two decades, there has been a great interest in the study of HLA-E-restricted αß T cells during bacterial and viral infections, including recently SARS-CoV-2 infection. Phenotyping of these specific HLA-E-restricted T cells requires new tools such as tetramers for rapid cell staining or sorting, as well as for the identification of new peptides capable to bind to the HLA-E pocket. To this aim, we have developed an optimal photosensitive peptide to generate stable HLA-E/pUV complexes allowing high-throughput production of new HLA-E/peptide complexes by peptide exchange. We characterized the UV exchange by ELISA and improved the peptide exchange readout using size exclusion chromatography. This novel approach for complex quantification is indeed very important to perform tetramerization of MHC/peptide complexes with the high quality required for detection of specific T cells. Our approach allows the rapid screening of peptides capable of binding to the non-classical human HLA-E allele, paving the way for the development of new therapeutic approaches based on the detection of HLA-E-restricted T cells.


Assuntos
Epitopos de Linfócito T/química , Antígenos de Histocompatibilidade Classe I/química , Complexo Principal de Histocompatibilidade/imunologia , Peptídeos/química , Sequência de Aminoácidos , Epitopos de Linfócito T/imunologia , Ensaios de Triagem em Larga Escala , Antígenos de Histocompatibilidade Classe I/imunologia , Humanos , Técnicas Imunológicas , Processos Fotoquímicos , Ligação Proteica , Conformação Proteica , Linfócitos T Citotóxicos/imunologia
13.
Nucleic Acids Res ; 49(15): 8822-8835, 2021 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-34352100

RESUMO

The catalytic subunit of SARS-CoV-2 RNA-dependent RNA polymerase (RdRp) contains two active sites that catalyze nucleotidyl-monophosphate transfer (NMPylation). Mechanistic studies and drug discovery have focused on RNA synthesis by the highly conserved RdRp. The second active site, which resides in a Nidovirus RdRp-Associated Nucleotidyl transferase (NiRAN) domain, is poorly characterized, but both catalytic reactions are essential for viral replication. One study showed that NiRAN transfers NMP to the first residue of RNA-binding protein nsp9; another reported a structure of nsp9 containing two additional N-terminal residues bound to the NiRAN active site but observed NMP transfer to RNA instead. We show that SARS-CoV-2 RdRp NMPylates the native but not the extended nsp9. Substitutions of the invariant NiRAN residues abolish NMPylation, whereas substitution of a catalytic RdRp Asp residue does not. NMPylation can utilize diverse nucleotide triphosphates, including remdesivir triphosphate, is reversible in the presence of pyrophosphate, and is inhibited by nucleotide analogs and bisphosphonates, suggesting a path for rational design of NiRAN inhibitors. We reconcile these and existing findings using a new model in which nsp9 remodels both active sites to alternately support initiation of RNA synthesis by RdRp or subsequent capping of the product RNA by the NiRAN domain.


Assuntos
Nidovirales/enzimologia , Nucleotídeos/metabolismo , Domínios Proteicos , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/metabolismo , RNA Polimerase Dependente de RNA/química , RNA Polimerase Dependente de RNA/metabolismo , SARS-CoV-2/enzimologia , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/metabolismo , Sequência de Aminoácidos , Domínio Catalítico , Coenzimas/metabolismo , RNA-Polimerase RNA-Dependente de Coronavírus/metabolismo , Difosfatos/farmacologia , Difosfonatos/farmacologia , Guanosina Trifosfato/metabolismo , Manganês , Modelos Moleculares , Nidovirales/química , RNA Polimerase Dependente de RNA/antagonistas & inibidores , Uridina Trifosfato/metabolismo
14.
Int J Mol Sci ; 22(15)2021 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-34360882

RESUMO

The human natural killer (HNK-1) carbohydrate plays important roles during nervous system development, regeneration after trauma and synaptic plasticity. Four proteins have been identified as receptors for HNK-1: the laminin adhesion molecule, high-mobility group box 1 and 2 (also called amphoterin) and cadherin 2 (also called N-cadherin). Because of HNK-1's importance, we asked whether additional receptors for HNK-1 exist and whether the four identified proteins share any similarity in their primary structures. A set of 40,000 sequences homologous to the known HNK-1 receptors was selected and used for large-scale sequence alignments and motif searches. Although there are conserved regions and highly conserved sites within each of these protein families, there was no sequence similarity or conserved sequence motifs found to be shared by all families. Since HNK-1 receptors have not been compared regarding binding constants and since it is not known whether the sulfated or non-sulfated part of HKN-1 represents the structurally crucial ligand, the receptors are more heterogeneous in primary structure than anticipated, possibly involving different receptor or ligand regions. We thus conclude that the primary protein structure may not be the sole determinant for a bona fide HNK-1 receptor, rendering receptor structure more complex than originally assumed.


Assuntos
Antígenos CD57/metabolismo , Caderinas/metabolismo , Proteína HMGB1/metabolismo , Proteína HMGB2/metabolismo , Laminina/metabolismo , Oligossacarídeos/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação , Antígenos CD57/química , Caderinas/química , Proteína HMGB1/química , Proteína HMGB2/química , Humanos , Laminina/química , Ligantes , Regeneração Nervosa/fisiologia , Plasticidade Neuronal/fisiologia , Oligossacarídeos/química , Ligação Proteica , Domínios Proteicos
15.
Molecules ; 26(15)2021 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-34361740

RESUMO

There is a challenging need for the development of new alternative nanostructures that can allow the coupling and/or encapsulation of therapeutic/diagnostic molecules while reducing their toxicity and improving their circulation and in-vivo targeting. Among the new materials using natural building blocks, peptides have attracted significant interest because of their simple structure, relative chemical and physical stability, diversity of sequences and forms, their easy functionalization with (bio)molecules and the possibility of synthesizing them in large quantities. A number of them have the ability to self-assemble into nanotubes, -spheres, -vesicles or -rods under mild conditions, which opens up new applications in biology and nanomedicine due to their intrinsic biocompatibility and biodegradability as well as their surface chemical reactivity via amino- and carboxyl groups. In order to obtain nanostructures suitable for biomedical applications, the structure, size, shape and surface chemistry of these nanoplatforms must be optimized. These properties depend directly on the nature and sequence of the amino acids that constitute them. It is therefore essential to control the order in which the amino acids are introduced during the synthesis of short peptide chains and to evaluate their in-vitro and in-vivo physico-chemical properties before testing them for biomedical applications. This review therefore focuses on the synthesis, functionalization and characterization of peptide sequences that can self-assemble to form nanostructures. The synthesis in batch or with new continuous flow and microflow techniques will be described and compared in terms of amino acids sequence, purification processes, functionalization or encapsulation of targeting ligands, imaging probes as well as therapeutic molecules. Their chemical and biological characterization will be presented to evaluate their purity, toxicity, biocompatibility and biodistribution, and some therapeutic properties in vitro and in vivo. Finally, their main applications in the biomedical field will be presented so as to highlight their importance and advantages over classical nanostructures.


Assuntos
Materiais Biocompatíveis/síntese química , Portadores de Fármacos/síntese química , Nanoestruturas/química , Peptídeos/síntese química , Técnicas de Síntese em Fase Sólida/métodos , Sequência de Aminoácidos , Animais , Materiais Biocompatíveis/farmacocinética , Portadores de Fármacos/farmacocinética , Composição de Medicamentos/métodos , Humanos , Nanoestruturas/administração & dosagem , Nanoestruturas/ultraestrutura , Tamanho da Partícula , Peptídeos/farmacocinética , Distribuição Tecidual
16.
Nat Chem Biol ; 17(9): 931-933, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34413526
17.
Nat Commun ; 12(1): 5083, 2021 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-34426577

RESUMO

AMPA receptor (AMPAR) abundance and positioning at excitatory synapses regulates the strength of transmission. Changes in AMPAR localisation can enact synaptic plasticity, allowing long-term information storage, and is therefore tightly controlled. Multiple mechanisms regulating AMPAR synaptic anchoring have been described, but with limited coherence or comparison between reports, our understanding of this process is unclear. Here, combining synaptic recordings from mouse hippocampal slices and super-resolution imaging in dissociated cultures, we compare the contributions of three AMPAR interaction domains controlling transmission at hippocampal CA1 synapses. We show that the AMPAR C-termini play only a modulatory role, whereas the extracellular N-terminal domain (NTD) and PDZ interactions of the auxiliary subunit TARP γ8 are both crucial, and each is sufficient to maintain transmission. Our data support a model in which γ8 accumulates AMPARs at the postsynaptic density, where the NTD further tunes their positioning. This interplay between cytosolic (TARP γ8) and synaptic cleft (NTD) interactions provides versatility to regulate synaptic transmission and plasticity.


Assuntos
Região CA1 Hipocampal/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Receptores de AMPA/metabolismo , Sinapses/metabolismo , Sequência de Aminoácidos , Animais , Corantes Fluorescentes/metabolismo , Imageamento Tridimensional , Camundongos Endogâmicos C57BL , Modelos Neurológicos , Mutação/genética , Plasticidade Neuronal , Neurônios/metabolismo , Ligação Proteica , Domínios Proteicos , Multimerização Proteica , Receptores de AMPA/química , Transmissão Sináptica
18.
J Gen Virol ; 102(8)2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34424155

RESUMO

Infectious bronchitis virus (IBV) is an economically important coronavirus, causing damaging losses to the poultry industry worldwide as the causative agent of infectious bronchitis. The coronavirus spike (S) glycoprotein is a large type I membrane protein protruding from the surface of the virion, which facilitates attachment and entry into host cells. The IBV S protein is cleaved into two subunits, S1 and S2, the latter of which has been identified as a determinant of cellular tropism. Recent studies expressing coronavirus S proteins in mammalian and insect cells have identified a high level of glycosylation on the protein's surface. Here we used IBV propagated in embryonated hens' eggs to explore the glycan profile of viruses derived from infection in cells of the natural host, chickens. We identified multiple glycan types on the surface of the protein and found a strain-specific dependence on complex glycans for recognition of the S2 subunit by a monoclonal antibody in vitro, with no effect on viral replication following the chemical inhibition of complex glycosylation. Virus neutralization by monoclonal or polyclonal antibodies was not affected. Following analysis of predicted glycosylation sites for the S protein of four IBV strains, we confirmed glycosylation at 18 sites by mass spectrometry for the pathogenic laboratory strain M41-CK. Further characterization revealed heterogeneity among the glycans present at six of these sites, indicating a difference in the glycan profile of individual S proteins on the IBV virion. These results demonstrate a non-specific role for complex glycans in IBV replication, with an indication of an involvement in antibody recognition but not neutralisation.


Assuntos
Coronavirus/fisiologia , Polissacarídeos/metabolismo , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/metabolismo , Alcaloides/química , Alcaloides/farmacologia , Sequência de Aminoácidos , Animais , Sítios de Ligação , Células Cultivadas , Cromatografia Líquida , Biologia Computacional/métodos , Coronavirus/efeitos dos fármacos , Infecções por Coronavirus/veterinária , Regulação Viral da Expressão Gênica , Glicosilação/efeitos dos fármacos , Vírus da Bronquite Infecciosa/fisiologia , Modelos Moleculares , Conformação Molecular , Peso Molecular , Testes de Neutralização , Oligossacarídeos/química , Oligossacarídeos/metabolismo , Polissacarídeos/química , Doenças das Aves Domésticas/virologia , Transporte Proteico , Espectrometria de Massas por Ionização por Electrospray , Glicoproteína da Espícula de Coronavírus/genética , Relação Estrutura-Atividade , Replicação Viral/efeitos dos fármacos
19.
Nat Commun ; 12(1): 4848, 2021 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-34381037

RESUMO

There is currently a lack of effective drugs to treat people infected with SARS-CoV-2, the cause of the global COVID-19 pandemic. The SARS-CoV-2 Non-structural protein 13 (NSP13) has been identified as a target for anti-virals due to its high sequence conservation and essential role in viral replication. Structural analysis reveals two "druggable" pockets on NSP13 that are among the most conserved sites in the entire SARS-CoV-2 proteome. Here we present crystal structures of SARS-CoV-2 NSP13 solved in the APO form and in the presence of both phosphate and a non-hydrolysable ATP analog. Comparisons of these structures reveal details of conformational changes that provide insights into the helicase mechanism and possible modes of inhibition. To identify starting points for drug development we have performed a crystallographic fragment screen against NSP13. The screen reveals 65 fragment hits across 52 datasets opening the way to structure guided development of novel antiviral agents.


Assuntos
Metiltransferases/química , RNA Helicases/química , SARS-CoV-2/química , Proteínas não Estruturais Virais/química , Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Apoenzimas/química , Apoenzimas/metabolismo , Sítios de Ligação , Cristalografia por Raios X , Desenho de Fármacos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/metabolismo , Metiltransferases/antagonistas & inibidores , Metiltransferases/metabolismo , Modelos Moleculares , Fosfatos/química , Fosfatos/metabolismo , Conformação Proteica , RNA Helicases/antagonistas & inibidores , RNA Helicases/metabolismo , RNA Viral/química , RNA Viral/metabolismo , SARS-CoV-2/enzimologia , Relação Estrutura-Atividade , Proteínas não Estruturais Virais/antagonistas & inibidores , Proteínas não Estruturais Virais/metabolismo
20.
Nat Commun ; 12(1): 4718, 2021 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-34354069

RESUMO

Phospholipid synthesis and fat storage as triglycerides are regulated by lipin phosphatidic acid phosphatases (PAPs), whose enzymatic PAP function requires association with cellular membranes. Using hydrogen deuterium exchange mass spectrometry, we find mouse lipin 1 binds membranes through an N-terminal amphipathic helix, the Ig-like domain and HAD phosphatase catalytic core, and a middle lipin (M-Lip) domain that is conserved in mammalian and mammalian-like lipins. Crystal structures of the M-Lip domain reveal a previously unrecognized protein fold that dimerizes. The isolated M-Lip domain binds membranes both in vitro and in cells through conserved basic and hydrophobic residues. Deletion of the M-Lip domain in lipin 1 reduces PAP activity, membrane association, and oligomerization, alters subcellular localization, diminishes acceleration of adipocyte differentiation, but does not affect transcriptional co-activation. This establishes the M-Lip domain as a dimeric protein fold that binds membranes and is critical for full functionality of mammalian lipins.


Assuntos
Fosfatidato Fosfatase/química , Células 3T3-L1 , Adipogenia , Sequência de Aminoácidos , Animais , Membrana Celular/metabolismo , Sequência Conservada , Cristalografia por Raios X , Células HEK293 , Humanos , Espectrometria de Massa com Troca Hidrogênio-Deutério , Proteínas de Membrana/química , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Modelos Moleculares , Simulação de Dinâmica Molecular , Fosfatidato Fosfatase/genética , Fosfatidato Fosfatase/metabolismo , Ligação Proteica , Domínios Proteicos , Dobramento de Proteína , Multimerização Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Deleção de Sequência , Homologia de Sequência de Aminoácidos , Transcrição Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...