RESUMO
ETHNOPHARMACOLOGICAL RELEVANCE: Acute-on-chronic liver failure (ACLF) progresses rapidly with a high short-term death rate. Although JianPi LiShi YangGan formula (YGF) has been used to treat ACLF by managing inflammatory responses and reducing endotoxemia, hepatocyte injury, and mortality, the underlying mechanisms remain unclear. AIM OF THE STUDY: This study aims to investigate the potential mechanisms underlying the efficacy and protective benefits of YGF in mice with ACLF. MATERIALS AND METHODS: YGF composition was determined using high-performance liquid chromatography coupled with mass spectrometry. We constructed a mouse model of ACLF using carbon tetrachloride, lipopolysaccharide (LPS), and D-galactosamine (D-Gal), as well as an in vitro model of D-Gal/LPS-induced hepatocyte injury. The therapeutic effects of YGF in ACLF mice were verified using hematoxylin-eosin, Sirius red, and Masson staining, and by measuring serum alanine transaminase (ALT), aspartate transaminase (AST), and inflammatory cytokine levels. Mitochondrial damage in hepatocytes was evaluated using electron microscopy, while superoxide anion levels in liver tissue were investigated using dihydroethidium. Transcriptome analysis, immunohistochemistry, western blotting, and immunofluorescence assays were performed to explore the mechanisms underlying the ameliorative effects of YGF against ACLF. RESULTS: In mice with ACLF, YGF therapy partially decreased serum inflammatory cytokine levels, as well as hepatocyte injury and liver fibrosis. The livers of ACLF mice treated with YGF exhibited decreased mitochondrial damage and reactive oxygen species generation, as well as a decreased number of M1 macrophages and increased number of M2 macrophages. Transcriptome analysis revealed that YGF may regulate biological processes such as autophagy, mitophagy, and PI3K/AKT signaling. In ACLF mice, YGF promoted mitophagy and inhibited PI3K/AKT/mTOR pathway activation in hepatocytes. Meanwhile, the autophagy inhibitor 3M-A reduced the capacity of YGF to induce autophagy and protect against hepatocyte injury in vitro. In contrast, the PI3K agonist 740 Y-P suppressed the ability of YGF to control PI3K/AKT/mTOR pathway activation and induce autophagy. CONCLUSIONS: Together, our findings suggest that YGF mediates autophagy, tight junctions, cytokine generation, and other biological processes. In addition, YGF inhibits hepatic inflammatory responses and ameliorates hepatocyte injury in mice with ACLF. Mechanistically, YGF can promote mitophagy to ameliorate acute-on-chronic liver failure by inhibiting the PI3K/AKT/mTOR pathway.
Assuntos
Insuficiência Hepática Crônica Agudizada , Camundongos , Animais , Insuficiência Hepática Crônica Agudizada/tratamento farmacológico , Insuficiência Hepática Crônica Agudizada/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Lipopolissacarídeos/farmacologia , Fígado , Serina-Treonina Quinases TOR/metabolismo , Citocinas/metabolismoRESUMO
ETHNOPHARMACOLOGICAL RELEVANCE: Ulcerative colitis (UC) is one of non-specific inflammatory bowel disease that mainly affects the colon. Recently, UC has become a significant social and economic problem worldwide. Baitouweng decoction (BD), a traditional Chinese medicine described in the "Treatise on Febrile Diseases", has been used for centuries to treat intestinal diseases. However, its underlying mechanism remains largely unexplored. AIM OF STUDY: In this study, we aimed to investigate the effect of BD on autophagy for repairing the colonic barrier in DSS-induced colitis mice and explored its role in regulating the autophagic signaling pathway AMPK/mTOR. MATERIALS AND METHODS: Mice with colitis were treated with 3% dextran sulfate sodium (DSS) for 7 days. The effectiveness of BD in treating DSS-induced colitis was evaluated through body weight, disease activity index (DAI), colon length, pathological changes, organ index, and proportion of blood cells. Moreover, intestinal epithelial permeability was analyzed by examining FITC-dextran leakage, the bacterial load of mesenteric lymph nodes (MLNs), and bacterial infiltration of colon tissues. Barrier function was evaluated by assessing the number and proportion of colonic goblet cells and the expression of tight junction proteins, including ZO-1, claudin-1, and occludin. Furthermore, the levels of autophagy were assessed by examining the number of autophagosomes and the expression of the autophagy-related proteins LC3, Beclin1, and P62. Additionally, network pharmacology research was conducted to analyze the potential mechanisms underlying the medicinal effects, as indicated by the role of AMPK/mTOR in regulating the autophagic signaling pathway. RESULTS: BD improved colitis symptoms in mice by restoring body weight and colon length and reducing inflammatory cell infiltration. Additionally, BD decreased the diffusion of FITC-dextran and bacterial translocation in MLNs, as well as bacterial infiltration of the colonic mucosa. The number and proportion of colonic goblet cells, the expression of ZO-1, Claudin-1, and Occludin, and the levels of autophagy were also increased by BD. Network pharmacology analysis suggested that BD might affect intestinal autophagy through the AMPK signaling pathway, which was confirmed by the activation of AMPK phosphorylation and the downregulation of mTOR expression following BD treatment. CONCLUSION: Our study demonstrated that BD repaired the intestinal epithelial barrier in DSS-induced colitis mice by activating AMPK phosphorylation and inhibiting mTOR expression to promote autophagy.
Assuntos
Colite Ulcerativa , Colite , Camundongos , Animais , Proteínas Quinases Ativadas por AMP/metabolismo , Ocludina/metabolismo , Claudina-1/metabolismo , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/metabolismo , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/patologia , Colo , Serina-Treonina Quinases TOR/metabolismo , Mucosa Intestinal , Autofagia , Peso Corporal , Sulfato de Dextrana/toxicidade , Modelos Animais de Doenças , Camundongos Endogâmicos C57BLRESUMO
ETHNOPHARMACOLOGICAL RELEVANCE: Fructus Gardeniae, with the effects of discharging fire, eliminating vexation, reducing fever and causing diuresis, and cooling blood to remove apthogentic heat, could be used to treat Parkinson's disease (PD). Geniposide, as the main active ingredient of Fructus Gardeniae, has been shown to have neuroprotective effects in several rodent models. Rotenone, a commonly used neurotoxin, induced PD model progresses slowly, but simulates the pathological changes of PD's slow progression. AIM OF THE STUDY: Herein, we mainly investigated the neuroprotective effects of geniposide on rotenone-induced mouse model of PD and the underlined mechanism. MATERIALS AND METHODS: C57BL/6 mice were treated with rotenone (30 mg/kg, p. o.) daily for 60 days. Geniposide (25 and 50 mg/kg, p. o.) were administered at alterative day 30 min before rotenone. On day 60, the challenging beam, spontaneous activity, and adhesive removal tests were performed to evaluate the motor activity. Dopamine, DOPAC and HVA levels were detected by UPLC-MS/MS methods. Dopaminergic neurodegeneration was assessed using immunohistochemistry staining. ROS production, MDA level and GSH: GSSG ratio were measured to analyze oxidative stress. Cleavage of PARP and caspase-3 were detected to assess neuronal apoptosis. The expression of Nrf2 and mTOR signaling were detected using Western blot. RESULTS: Geniposide improved motor dysfunction, restored neurotransmitters levels, and attenuated dopaminergic neurodegeneration induced by rotenone in mice. Geniposide suppressed rotenone-induced neuronal oxidative damage associated with Nrf2 signaling, and neuronal apoptosis involving mTOR pathway. CONCLUSIONS: Geniposide may exert a neuroprotective effect in a mouse model of PD by rotenone, and this effect might be relevant to Nrf2 associated antioxidant signaling and mTOR involved anti-apoptosis pathway.
Assuntos
Fármacos Neuroprotetores , Síndromes Neurotóxicas , Doença de Parkinson , Camundongos , Animais , Doença de Parkinson/tratamento farmacológico , Rotenona/toxicidade , Fator 2 Relacionado a NF-E2/metabolismo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Cromatografia Líquida , Camundongos Endogâmicos C57BL , Espectrometria de Massas em Tandem , Serina-Treonina Quinases TOR/metabolismo , Estresse OxidativoRESUMO
ETHNOPHARMACOLOGICAL RELEVANCE: Acute lung injury is a kind of clinical emergency severe syndrome which might trigger acute respiratory distress syndrome. Jingfang Granules () is a traditional Chinese medicine which has been proven to improve acute lung injury induced by bleomycin through inhibiting recruitment and overactive of inflammation. However, the potential mechanisms are still not well evaluated. AIM OF STUDY: The aim of this study was to evaluate the protective function of Jingfang Granules on bleomycin caused acute lung injury and further discuss the potential pharmacological mechanisms. MATERIALS AND METHODS: C57BL/6J mice were intratracheal injected bleomycin to induce model with acute lung injury. The protective impact of Jingfang Granules on acute lung injury and lung fibrosis triggered by bleomycin were evaluated through detecting mice body weight, lung appearance, lung index, and histopathology. The potential pharmacological mechanism of Jingfang Granules in treating acute lung injury was further elucidated by the methods of network pharmacology, proteomics, metabolomics, as well as western blot. Additionally, the network pharmacology analysis and molecular docking technology were integrated to investigate the targets of Jingfang Granules improving acute lung injury. RESULTS: Our results indicated that Jingfang Granules effectively protected mice from acute lung injury induced by bleomycin, which was confirmed by higher body weight, lower pulmonary edema and lung index, and improved pathology and fibrosis of lung tissue compared to model group. Proteomics, western blot, and metabolomics were integrated and the results confirmed that Jingfang Granules regulated the Glycolysis/Gluconogenesis and Pyruvate metabolism through downregulating the PI3K/Akt/mTOR signaling pathway. The network pharmacology analysis and molecular docking technology results showed that the targets of Jingfang Granules for treating acute lung injury were enriched in the PI3K/Akt signaling pathway, which included 7 target proteins such as MAPK1, MAPK3, JAK2, HRAS, EGFR, PIK3R1, and PIK3CA. CONCLUSION: This study indicates that Jingfang Granules displays a markedly protective effect on acute lung injury caused by bleomycin through downregulating PI3K/Akt/mTOR signaling pathway, which in turn regulates Glycolysis/Gluconogenesis and Pyruvate metabolism.
Assuntos
Lesão Pulmonar Aguda , Proteínas Proto-Oncogênicas c-akt , Camundongos , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Bleomicina/toxicidade , Simulação de Acoplamento Molecular , Camundongos Endogâmicos C57BL , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/metabolismo , Piruvatos/efeitos adversosRESUMO
ETHNOPHARMACOLOGICAL RELEVANCE: Jiawei-Xiaoyao pill (JWX), a traditional Chinese medicine, was recorded in ancient Chinese medicine pharmacopoeia using for treatment of various diseases, including mood disorders. Current mainstream antidepressants have a disadvantage in delayed onset of action. The rapid antidepressant potential of JWX and the underlying mechanisms remain unclear. AIM OF THE STUDY: We aimed to assess the rapid antidepressant potential of JWX, within the prescription dose range, and the distinct underlying neuroplasticity signaling mechanism. MATERIALS AND METHODS: The rapid antidepressant response of JWX were determined using various behavioral paradigms, and in a corticosterone (CORT)-induced depression model in mice. The molecular neuroplasticity signaling and the expression of BDNF in the hippocampus was evaluated using immunoblotting and immunostaining. The contribution of specific signaling was investigated using pharmacological interventions. RESULTS: A single dose of JWX induced rapid and persistent antidepressant effects in both the normal and chronic CORT-exposed mice. The phosphorylation of CaMKII, mTOR, ERK and the expressions of BDNF, synapsin1 and PSD95 increased at 30 min post JWX. JWX restored the expression of BDNF in the hippocampal dentate gyrus reduced by CORT-exposure. The rapid antidepressant effect and upregulation of BDNF expression by JWX was blunted by a mTOR antagonist, rapamycin, or a CaMKII antagonist, KN-93. CaMKII signaling blockade blunted mTOR signaling activated by JWX, but not vice versa. CONCLUSION: JWX elicits a rapid antidepressant effect, via quickly stimulating CaMKII signaling, subsequently activating mTOR-BDNF signaling pathway, and thus enhancing hippocampal neuroplasticity.
Assuntos
Fator Neurotrófico Derivado do Encéfalo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina , Camundongos , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Depressão/tratamento farmacológico , Depressão/metabolismo , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Antidepressivos/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , HipocampoRESUMO
ETHNOPHARMACOLOGICAL RELEVANCE: Jianpi Yangzheng decoction (JPYZ) possesses a potential anti-tumor activity in gastric cancer. However, potential effect of JPYZ on regulating tumor-associated macrophage (TAM)-derived exosomes to affect gastric cancer is still unclear. AIM OF STUDY: We aimed to clarify the role of tumor-associated macrophage derived exosomes (TAM-exos) in invasive and metastasis of gastric cancer and the mechanism of JPYZ regulate TAM-exos against gastric cancer. MATERIALS AND METHODS: Flow cytometry was performed to demonstrate whether JPYZ involved in TAM polarization. After JPYZ treatment, TAM conditioned medium (TAM-CM)/TAM-exos were co-cultured with gastric cancer cells and were detected by wound healing and transwell assay. Transcriptome sequencing and bioinformatics analysis predicted the exosomal miRNA after JPYZ intervention in TAM. miRNA mimic and inhibitor were used to verify the effect of miRNA in exosomes on gastric cancer cells. Q-PCR and luciferase reporter assay were employed to clarify the targeting relationship between miRNA and target gene. Western blot assay detected the expression levels of epithelial-mesenchymal transition (EMT) markers and related signaling pathways proteins. RESULTS: We firstly demonstrated that TAM-CM intervened by JPYZ significantly inhibited the invasion and migration of gastric cancer. Furthermore, exosomes in TAM supernatants play a key role in migration of gastric cancer. Meanwhile, transcriptome sequencing and q-PCR revealed that miR-513b-5p expression was significantly reduced in TAM-exos intervened by JPYZ. And miR-513b-5p in TAM aggravated TAM-exos mediated invasion and migration of gastric cancer cells, the inhibitor of miR-513b-5p reversed TAM-exos mediated promotion. Bioinformatics analysis and luciferase reporter assay confirmed that PTEN was a direct target of miR-513b-5p in gastric cancer. MiR-513b-5p inhibited PTEN to activate AKT/mTOR signaling pathway thus promoting gastric cancer invasion and metastasis in vivo and in vitro. Importantly, JPYZ inhibited TAM derived exosomal miR-513b-5p, and alleviated AKT/mTOR activation by PTEN depended manner in gastric cancer. CONCLUSION: TAM-exos containing miR-513b-5p lead to gastric cancer invasion and migration. Our findings clarify a novel TAM-exos mechanism of JPYZ for inhibiting gastric cancer progression.
Assuntos
MicroRNAs , Neoplasias Gástricas , Humanos , Macrófagos Associados a Tumor/metabolismo , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Proteínas Proto-Oncogênicas c-akt , MicroRNAs/genética , MicroRNAs/metabolismo , Serina-Treonina Quinases TOR/genética , Proliferação de CélulasRESUMO
Increasing risks of incidental and occupational exposures to two-dimensional transition metal dichalcogenides (2D TMDCs) due to their broad application in various areas raised their public health concerns. While the composition-dependent cytotoxicity of 2D TMDCs has been well-recognized, how the outer chalcogenide atoms and inner transition metal atoms differentially contribute to their perturbation on cell homeostasis at non-lethal doses remains to be identified. In the present work, we compared the autophagy induction and related mechanisms in response to WS2, NbS2, WSe2 and NbSe2 nanosheets exposures in MH-S murine alveolar macrophages. All these 2D TMDCs had comparable physicochemical properties, overall cytotoxicity and capability in triggering autophagy in MH-S cells, but showed outer chalcogen-dependent subcellular localization and activation of autophagy pathways. Specifically, WS2 and NbS2 nanosheets adhered on the cell surface and internalized in the lysosomes, and triggered mTOR-dependent activation of autophagy. Meanwhile, WSe2 and NbSe2 nanosheets had extensive distribution in cytoplasm of MH-S cells and induced autophagy in an mTOR-independent manner. Furthermore, the 2D TMDCs-induced perturbation on autophagy aggravated the cytotoxicity of respirable benzo[a]pyrene. These findings provide a deeper insight into the potential health risk of environmental 2D TMDCs from the perspective of homeostasis perturbation.
Assuntos
Calcogênios , Macrófagos Alveolares , Animais , Camundongos , Autofagia , Benzo(a)pireno , Serina-Treonina Quinases TORRESUMO
ETHNOPHARMACOLOGICAL RELEVANCE: Wuzi Yanzong Prescription (WZ), a classic traditional Chinese medicine formula, has the properties of kidney nourishing and essence strengthening, and it is widely used to treat male infertility with a long history. Sertoli cells are injured with aging, resulting in testicular dysfunction, and WZ effectively rejuvenates the age-related decline of testicular function. However, whether the therapeutic effects of WZ on aging-related testicular dysfunction are dependent on the restoration of Sertoli cell function remains unclear. AIM OF THE STUDY: In a mouse model of natural aging, we explored the protective effects of WZ and its potential mechanisms. MATERIALS AND METHODS: Fifteen-month-old C57BL/6 mice were randomized to receive either standard diet or WZ (2 and 8 g/kg) for 3 months. Meanwhile, 10 1-month-old mice were considered the adult control group and received standard diet for 3 months. The testis and epididymis were rapidly collected, and the sperm quality, testicular histology, Sertoli cell numbers, tight junction (TJ) ultrastructure, and blood-testis barrier-associated protein expression and localization were assessed. RESULTS: WZ significantly increased sperm concentration and sperm viability, improved the degenerative histomorphology and elevated the seminiferous epithelium height. Furthermore, WZ increased the number of Sertoli cells, restored the ultrastructure of the Sertoli cell TJ, and upregulated the expression of TJ-associated proteins (zonula occludens-1 and Claudin11), ectoplasm specialized-associated proteins (N-Cadherin, E-Cadherin and ß-Catenin), and gap junction-associated protein (connexin 43), but did not affect the expression of Occludin and cytoskeletal protein (Vimentin). In addition, WZ did not change the localization of zonula occludens-1 and ß-Catenin in aged testis. Moreover, WZ increased the expression of autophagy-associated proteins (light chain 3 beta and autophagy related 5) and decreased the expression of p62, phosphorylated mammalian target of rapamycin, and phosphorylated AKT in Sertoli cells. Finally, we found that WZ attenuated mTOR complex 1 (mTORC1) activity and upregulated mTORC2 activity, as evidenced by inhibition of the expression of the regulatory-associated protein of mTOR, phosphorylated p70 S6K, and phosphorylated ribosomal protein s6 and enhancement of the expression of Rictor in the Sertoli cells of aging mice. CONCLUSIONS: WZ improves the injury of Sertoli cells by restoring AKT/mTOR-mediated autophagy and the mTORC1-mTROC2 balance in Sertoli cells during aging. Our findings provide a new mechanism of WZ in the treatment of aging-induced testicular dysfunction.
Assuntos
Proteínas Proto-Oncogênicas c-akt , Células de Sertoli , Masculino , Camundongos , Animais , Células de Sertoli/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , beta Catenina/metabolismo , Camundongos Endogâmicos C57BL , Sêmen , Envelhecimento , Testículo , Serina-Treonina Quinases TOR/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/farmacologia , Autofagia , Mamíferos/metabolismoRESUMO
Hypertrophic scar (HS) is a fibrotic skin condition and characterized by abnormal proliferation of myofibroblasts and accumulation of extracellular matrix. Melatonin, an endogenous hormone, can alleviate fibrosis in multiple models of diseases. This study examined the effect of melatonin on fibrosis in primary fibroblasts from human HS (HSFs) and a rabbit ear model and potential mechanisms. Melatonin treatment significantly decreased the migration and contraction capacity, collagen and α-smooth muscle actin (α-SMA) production in HSFs. RNA-sequencing and bioinformatic analyses indicated that melatonin modulated the expression of genes involved in autophagy and oxidative stress. Mechanistically, melatonin treatment attenuated the AKT/mTOR activation through affecting the binding of MT2 receptor with PI3K to enhance autophagy, decreasing fibrogenic factor production in HSFs. Moreover, melatonin treatment inhibited HS formation in rabbit ears by enhancing autophagy. The anti-fibrotic effects of melatonin were abrogated by treatment with an autophagy inhibitor (3-methyladenine, 3-MA), an Akt activator (SC79), or an MT2 selective antagonist (4-phenyl-2propionamidotetralin, 4-P-PDOT). Therefore, melatonin may be a potential drug for prevention and treatment of HS.
Assuntos
Cicatriz Hipertrófica , Melatonina , Animais , Humanos , Coelhos , Autofagia , Cicatriz Hipertrófica/tratamento farmacológico , Cicatriz Hipertrófica/metabolismo , Cicatriz Hipertrófica/patologia , Fibroblastos/metabolismo , Fibrose , Melatonina/uso terapêutico , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor MT2 de Melatonina/metabolismo , Receptor MT2 de Melatonina/uso terapêutico , Serina-Treonina Quinases TOR/metabolismoRESUMO
ETHNOPHARMACOLOGICAL RELEVANCE: The traditional medicinal application of Lycium barbarum is centered on the improvement of eyesight, as well as the nourishment of liver and kidney functions. Lycium barbarum polysaccharide (LBP), serving as the principal active constituent of Lycium barbarum, has been identified as the main contributor to these beneficial effects. Previous studies have indicated that Lycium barbarum polysaccharide exhibits a renoprotective effect against lead-induced injury, but its mechanism and efficacy remain unclear. AIM OF THE STUDY: The objective of this study was to examine the effectiveness of LBP in preventing lead-induced renal injury and investigate both the toxic mechanism of lead-induced renal injury and the efficacy mechanism of LBP against it, with a focus on the PI3K/AKT/mTOR signaling pathway. MATERIALS AND METHODS: The drug effect and mechanism of LBP on lead-induced kidney injury were investigated by administering positive drugs and LBP to mice with established lead-induced kidney injury. RESULTS: The renal function of mice with lead-induced renal injury was significantly restored, renal tissue lesions and renal mitochondrial damage were delayed, a disorder of hematological parameters induced by lead was improved, the increase of lead-induced renal index was reduced, and the body weight of mice with lead-induced renal injury was increased by the LBP intervention, as revealed by the results of pharmacodynamic experiments. Based on PI3K /AKT /mTOR signaling pathway, the toxic mechanism of lead-induced kidney injury and the pharmacodynamic mechanism of LBP against lead-induced kidney injury were studied. The results showed that lead could activate the TLR4 receptor, and then activate PI3K /AKT /mTOR signaling pathway, inhibit autophagy of kidney tissue cells, and enhance apoptosis of kidney tissue cells to induce kidney injury; LBP inhibits the activation of TLR4 receptor, which in turn inhibits the PI3K/AKT/mTOR signaling pathway, enhances the autophagy of kidney tissue cells, reduces the apoptosis of kidney tissues, and delays lead-induced kidney injury.
Assuntos
Medicamentos de Ervas Chinesas , Lycium , Camundongos , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Receptor 4 Toll-Like , Transdução de Sinais , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Serina-Treonina Quinases TOR/metabolismo , Rim/metabolismo , Lycium/metabolismoRESUMO
ETHNOPHARMACOLOGICAL RELEVANCE: Black mulberry (Morus nigra L.) is an ancient dual-use plant resource for medicine and food. It is widely used in Uyghur folklore for hypoglycemic treatment and is a folkloric plant medicine with regional characteristics. However, the mechanism of Morus nigra L. treatment in diabetes mellitus has not been fully understood, especially from the perspective of hepatic lipid accumulation is less reported. OBJECTIVE OF THIS STUDY: This study was to explore the potential of Morus nigra L. fruit ethyl acetate extract (MNF-EA) to reduce blood sugar levels by preventing the production of hepatic lipogenesis and to provide more evidence for the use of MNF-EA as an adjuvant therapy for type 2 diabetes mellitus (T2DM). MATERIALS AND METHODS: In this study, the chemical composition of MNF-EA was first analyzed and characterized using UPLC-Q-TOF-MS technique. A series of in vitro studies were performed with HepG2-IR cells and oleic acid (OA)-induced HepG2 cells, including MTT assay, glucose uptake assay, oil red O staining and Western blot analysis. The STZ-HFD co-induced T2DM mice were employed for in vivo research, including physical indices, biochemical analysis, histopathological examination, and Western blot analysis. RESULTS: The 19 compounds in MNF-EA were identified by UPLC-Q-TOF-MS technique. Insulin resistance (IR) and lipid droplet accumulation in HepG2 cells were greatly improved by MNF-EA treatment, which had no appreciable side effects at the dosage used. In T2DM mice, MNF-EA decreased fasting blood glucose (FBG), saved body weight, and significantly improved oral glucose tolerance (OGTT) and IR status. In addition, MNF-EA treatment also improved lipid metabolism disorders and liver function in T2DM mice. Histopathological sections showed that MNF-EA treatment reduced hepatic steatosis. Mechanistic studies suggest that MNF-EA acted through the AMPK/mTOR pathway. CONCLUSIONS: These results suggest that MNF-EA has great potential to reverse the metabolic abnormalities associated with T2DM by regulating the AMPK/mTOR signaling pathway. Therefore, we believe that MNF is a promising medicinal and food-homologous agent to improve T2DM.
Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Morus , Camundongos , Animais , Diabetes Mellitus Tipo 2/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Adipogenia , Glicemia , Frutas/metabolismo , Fígado , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismoRESUMO
ETHNOPHARMACOLOGICAL RELEVANCE: Traditional Chinese medicine has gained significant attention in recent years owing to its multi-component, multi-target, and multi-pathway advantages in treating various diseases. Forsythiae Fructus, derived from the dried fruit of Forsythia suspensa (Thunb.) Vahl, is one such traditional Chinese medicine with numerous in vivo and ex vivo therapeutic effects, including anti-inflammatory, antibacterial, and antiviral properties. Forsythiae Fructus contains more than 200 chemical constituents, with forsythiaside, forsythiaside A, forsythiaside B, isoforsythiaside, forsythin, and phillyrin being the most active ingredients. Forsythiae Fructus exerts neuroprotective effects by modulating various pathways, including oxidative stress, anti-inflammation, NF-κB signaling, 2-AG, Nrf2 signaling, acetylcholinesterase, PI3K-Akt signaling, ferroptosis, gut-brain axis, TLR4 signaling, endoplasmic reticulum stress, PI3K/Akt/mTOR signaling, and PPARγ signaling pathway. AIM OF THE STUDY: This review aims to highlight the potential therapeutic effects of Forsythiae Fructus on the central nervous system and summarize the current knowledge on the active ingredients of Forsythiae Fructus and their effects on different pathways involved in neuroprotection. MATERIALS AND METHODS: In this review, we conducted a comprehensive search of databases (PubMed, Google Scholar, Web of Science, China Knowledge Resource Integrated, local dissertations and books) up until June 2023 using key terms such as Forsythia suspensa, Forsythiae Fructus, forsythiaside, isoforsythiaside, forsythin, phillyrin, Alzheimer's disease, Parkinson's disease, ischemic stroke, intracerebral hemorrhage, traumatic brain injury, aging, and herpes simplex virus encephalitis. RESULTS: Our findings indicate that Forsythiae Fructus and its active ingredients own therapeutic effects on the central nervous system by modulating various pathways, including oxidative stress, anti-inflammation, NF-κB signaling, 2-AG, Nrf2 signaling, acetylcholinesterase, PI3K-Akt signaling, ferroptosis, the gut-brain axis, TLR4 signaling, endoplasmic reticulum stress, PI3K/Akt/mTOR signaling, and PPARγ signaling pathway. CONCLUSION: Forsythiae Fructus and its active ingredients have demonstrated promising neuroprotective properties. Future in vivo and clinical studies of Forsythiae Fructus and its active ingredients should be conducted to establish precise dosage and standard guidelines for a more effective application in the treatment of neurological disorders.
Assuntos
Acetilcolinesterase , NF-kappa B , Frutas/química , Fator 2 Relacionado a NF-E2/metabolismo , PPAR gama , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Receptor 4 Toll-Like , Sistema Nervoso Central/metabolismo , Serina-Treonina Quinases TORRESUMO
BACKGROUND: The mammalian role of the rapamycin (mTOR) pathway is the practical nutrient-sensitive regulation of animal growth and plays a central role in physiology, metabolism, and common diseases. The mTOR is activated in response to nutrients, growth factors, and cellular energy. The mTOR pathway activates in various cellular processes and human cancer diseases. Dysfunction of mTOR signal transduction is associated with metabolic disorders, cancer for instance. OBJECTIVE: In recent years, significant achievements envisaged in developing targeted drugs for cancer. The global impact of cancer continues to grow. However, the focus of disease-modifying therapies remains elusive. The mTOR is a significant target in cancer to be considered for mTOR inhibitors, even though the costs are high. Despite many mTOR inhibitors, potent, selective inhibitors for mTOR are still limited. Therefore, in this review, the mTOR structure and protein-ligand interactions of utmost importance to provide the basis for molecular modelling and structure-based drug design are discussed. CONCLUSION: This review introduces the mTOR, its crystal structure, and the latest research on mTOR.Besides, the role of mTOR in cancer, its function, and its regulation are reviewed. In addition, the mechanistic role of mTOR signalling networks in cancer and interaction with drugs that inhibit the development of mTOR and crystal structures of mTOR and its complexes are explored. Finally, the current status and prospects of mTOR-targeted therapy are addressed.
Assuntos
Inibidores de MTOR , Neoplasias , Animais , Humanos , Transdução de Sinais , Serina-Treonina Quinases TOR , Sistemas de Liberação de Medicamentos , Desenho de Fármacos , Mamíferos , Neoplasias/tratamento farmacológicoRESUMO
PURPOSE: To investigate whether Tafluprost could promote optic nerve regeneration in mice after optic nerve crush (ONC) and determine the underlying molecular mechanism. METHODS: Tafluprost was injected into the vitreous body immediately after ONC. The level of Zn2+ in the inner plexiform layer (IPL) of the retina was stained using autometallography (AMG). The number of survival retinal ganglion cells (RGCs) was determined via dual staining with RGC markers Tuj1 and RBPMS. Individual axons that regenerated to 0.25, 0.5, 0.75 and 1 mm were manually counted in the whole-mount optic nerve labeled by cholera toxin B fragment (CTB). Immunofluorescence and Western blot were performed to detect protein expression levels. Pattern electroretinogram was used to evaluate RGCs function. RESULTS: Tafluprost promoted RGC survival in a dose-dependent manner with an optimal concentration of 1 µM. Tafluprost significantly decreased ZnT-3 expression and Zn2+ accumulation in the IPL of retina. Tafluprost stimulated intense axonal regeneration and maintained RGCs function compared to control. Mechanistically, Tafluprost and Zn2+ elimination treatment (TPEN or ZnT-3 deletion) can activate the mTOR pathway with an improved percentage of pS6+ RGCs in the retina. However, rapamycin, a specific inhibitor of the mTOR1, inhibited the activation of the mTOR pathway and abolished the regenerative effect mediated by Tafluprost. Tafluprost also inhibited the upregulation of p62, LC3 and Beclin-1, attenuated the overactivation of microglia/macrophages and downregulated the expression of TNFα and IL-1ß. CONCLUSIONS: Our results suggest that Tafluprost promoted axon regeneration via regulation of the Zn2+-mTOR pathway, and provide novel research directions for glaucomatous optic nerve injury mechanisms.
Assuntos
Axônios , Traumatismos do Nervo Óptico , Camundongos , Animais , Axônios/fisiologia , Regeneração Nervosa , Nervo Óptico/metabolismo , Traumatismos do Nervo Óptico/tratamento farmacológico , Traumatismos do Nervo Óptico/metabolismo , Serina-Treonina Quinases TOR , Zinco/farmacologia , Compressão NervosaRESUMO
BACKGROUND AND OBJECTIVES: Initially developed as immunosuppressive agents, mammalian target of rapamycin (mTOR) inhibitors are currently used widely in the management of vascular malformations and tumors. The incidence of infectious complications in the vascular anomalies (VA) population is not well defined. The goal of this systematic review was to better define the types and severity of reported infectious complications in patients with VAs treated with mTOR inhibition. METHODS: This was a systematic review conducted following PRISMA guidelines evaluating all research articles focused on infectious complications in patients with VAs treated with sirolimus or everolimus. Thirty articles including 1182 total patients and 316 infections (in 291 unique patients) were ultimately included. RESULTS: The majority of infections were viral upper respiratory (n = 137, 54%), followed by pneumonia (n = 53, 20%), and cutaneous infections (n = 20, 8%). There were six total infection-related fatalities, which all occurred in patients younger than 2 years. Two cases of Pneumocystis jirovecii pneumonia (PJP) were reported. These were infants with kaposiform hemangioendothelioma (KHE) who were also treated with steroids and did not receive PJP prophylaxis. Almost one-third (n = 96, 32%) of infectious complications were graded 3-4 according to Common Terminology Criteria for Adverse Events (CTCAE) criteria. Details of patient age, subtype of VA, and timing of infection were lacking from many reports. CONCLUSIONS: Most infectious complications reported in patients with VA on mTOR inhibitors were viral respiratory infections and non-severe. Bacteremia, infectious fatalities, and PJP are exceedingly rare. Future studies are needed to clarify the spectrum of infectious risks in VA patients and to provide guidance for infection prevention.
Assuntos
Pneumonia por Pneumocystis , Malformações Vasculares , Lactente , Humanos , Sirolimo/efeitos adversos , Imunossupressores/uso terapêutico , Everolimo/uso terapêutico , Pneumonia por Pneumocystis/tratamento farmacológico , Malformações Vasculares/tratamento farmacológico , Serina-Treonina Quinases TORRESUMO
ETHNOPHARMACOLOGICAL RELEVANCE: Sargentodoxa cuneata (Sargentodoxa cuneata (Oliv.) Rehder & E.H.Wilson, DXT)-Patrinia villosa(Patrinia villosa (Thunb.) Dufr, BJC) constitutes a commonly employed herb pair in Chinese medicine for colorectal cancer (CRC) treatment. Modern pharmacological investigations have revealed the anticancer activities of both Sargentodoxa cuneata and Patrinia villosa. Nevertheless, comprehensive studies are required to discern the specific antitumor active ingredients and mechanism of action when these two herbs are used in combination. AIM OF THE STUDY: Through the integration of network pharmacology, molecular docking techniques, experimental assays, and bioinformatics analysis, our study aims to forecast the active ingredients, potential targets, and molecular mechanisms underlying the therapeutic efficacy of this herb pair against CRC. MATERIALS AND METHODS: Plant names (1, Sargentodoxa cuneata (Oliv.) Rehder & E.H.Wilson; 2, Patrinia villosa (Thunb.) Dufr.) have been verified through WorldFloraOnline (www.worldFloraonline.org) and MPNs (http://mpns.kew.org). The Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP) were utilized for screening the active ingredients of the herb pair. The PharmMapper database was employed to predict the target proteins for each active ingredient. CRC-related targets were obtained from the Genecards database, Online Mendelian Inheritance in Man (OMIM) database, Disease Gene Network (DisGeNET) database, and Therapeutic Target Database (TTD). Common targets were identified by intersecting the target proteins of all active ingredients with CRC-related targets. Protein-protein interactions (PPI) for the common target proteins were constructed using the String database and Cytoscape 3.9.1 software. Network topology analysis facilitated the identification of core targets. These core targets were subjected to enrichment analysis of Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) using the Metascape database. Molecular docking was performed using Discovery Studio 2019 to investigate the interactions between the active ingredients and core target proteins. The core targets were validated through bioinformatics analysis using GEPIA, HPA, and the cBioPortal database. Finally, a series of experiments were conducted to further validate the results in vitro. RESULT: A total of 15 active ingredients and 255 herb targets were identified, resulting in 66 common targets in conjunction with 6113 disease targets. The PPI analysis highlighted AKT1, EGFR, CASP3, SRC, and ESR1 as core targets. KEGG enrichment analysis indicated significant enrichment in the PI3K-AKT signaling pathway, a pathway associated with cancer. Molecular docking experiments confirmed favorable interactions between dihydroguaiaretic acid and the core target proteins (AKT1, EGFR, CASP3, and ESR1). Bioinformatics analysis revealed differential expression of EGFR and CASP3 in normal and CRC tissues. Cellular experiments further verified that dihydroguaiaretic acid induces apoptosis in colorectal cancer cells through the PI3K-AKT signaling pathway. CONCLUSION: Our network pharmacology study has elucidated that the Sargentodoxa cuneata-Patrinia villosa herb pair exerts the negative regulation of the PI3K/AKT/mTOR signaling pathway, ultimately leading to the induction of apoptosis in colorectal cancer cells. This research has predicted and validated the active ingredients, potential targets, and molecular mechanisms of Sargentodoxa cuneata-Patrinia villosa in the treatment of CRC, providing scientific evidence for the use of traditional Chinese medicine in managing CRC.
Assuntos
Neoplasias Colorretais , Medicamentos de Ervas Chinesas , Patrinia , Humanos , Caspase 3 , Farmacologia em Rede , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Simulação de Acoplamento Molecular , Serina-Treonina Quinases TOR , Transdução de Sinais , Neoplasias Colorretais/tratamento farmacológico , Receptores ErbBRESUMO
The protein WWOX was reported to be involved in cancer progression via interaction with mTOR and DNA repair pathway. We previously reported noteworthy association of some single nucleotide polymorphisms (SNPs) in mTOR and DNA repair pathways with gastric cancer (GCa) patients' survival. We hypothesized that genetic variants in WWOX gene could predict the survival of GCa patients. By extracting WWOX genetic variants from our ongoing genome-wide association study including 796 GCa patients from an Eastern Chinese population, we identified 51 out of 1913 SNPs to be significantly associated with survival of GCa patients, which passed the false positive probability tests. In particular, the intronic variant rs9922483, a G>T change, was associated with 21% increased death risk for GCa patients (HR = 1.21, 95% CI = 1.04-1.42, P = .015). This locus was predicted to be involved in potential enhancer by bioinformatics analysis. Genotype-phenotype correlation analysis revealed decreased expression of WWOX by rs9922483 G>T change. Mechanistically, rs9922483 locus may exhibits long-range interaction with WWOX promoter, and the G>T change inhibited the transcriptional activity driven by WWOX promoter in luciferase reporter system. Especially, the G>T change had an allele-specific negative effect on NR3C1 binding, and NR3C1 promoted the expression of WWOX in GCa cells. Further functional analysis indicated an increase in proliferation, migration and invasion of GCa cells by knockdown of WWOX. In conclusion, WWOX genetic variants may modulate survival of Chinese GCa patients by exerting remote regulatory effect on WWOX expression. Our results highlight the cis-regulatory effect of genetic variants on genes and survival modulation for GCa patients.
Assuntos
Neoplasias Gástricas , Humanos , Neoplasias Gástricas/genética , Neoplasias Gástricas/epidemiologia , Genótipo , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , População do Leste Asiático , Serina-Treonina Quinases TOR/genética , Polimorfismo de Nucleotídeo Único , Oxidorredutase com Domínios WW/genética , Proteínas Supressoras de Tumor/genéticaRESUMO
Benign prostatic hyperplasia (BPH) is a quite common chronic disease plagued elderly men and its etiology remains unclear. It was reported that the six-transmembrane epithelial antigen of prostate 4 (STEAP4) could modulate cell proliferation/apoptosis ratio and oxidative stress in cancers. Our current study aimed to explore the expression, biological function, and underlying mechanism of STEAP4 in BPH progress. Human prostate tissues and cell lines were utilized. qRT-PCR and immunofluorescence staining were employed. STEAP4 knockdown (STEAP4-KD) or STEAP4 overexpression (STEAP4-OE) cell models were established. Cell proliferation, cell cycle, apoptosis, and reactive oxygen species (ROS) were determined by cell counting kit-8 (CCK-8) assay and flow cytometry. Apoptosis-related proteins and antioxidant enzymes were identified by Western Blot. In addition, the epithelial-mesenchymal transition (EMT) process and fibrosis biomarker (collagen I and α-SMA) were analyzed. It was indicated that STEAP4 was mainly located in the prostate epithelium and upregulated in BPH tissues. STEAP4 deficiency induced apoptosis and inhibited cell survival, but had no effect on the cell cycle, fibrosis, and EMT process. In addition, ROS changes were observed in the STEAP4-KD model. Consistently, overproduction of STEAP4 suppressed apoptosis and promoted cell proliferation, as well as facilitated ROS production. We further examined AKT / mTOR, p38MAPK / p-p38MAPK, and WNT/ ß-Catenin signaling pathway and demonstrated that STEAP4 regulated the proliferation and apoptosis of prostate cells through AKT / mTOR signaling, rather than p38MAPK / p-p38MAPK and WNT/ ß-Catenin pathways. Furthermore, activating AKT / mTOR signaling with SC79 significantly reversed apoptosis triggered by STEAP4 deficiency, whereas suppressing AKT / mTOR signaling with MK2206 reduced the increase of cell viability triggered by STEAP4 overproduction. Our original data demonstrated that STEAP4 is crucial in the onset and progression of prostate hyperplasia and may become a new target for the treatment of BPH.
Assuntos
Hiperplasia Prostática , Masculino , Humanos , Idoso , Hiperplasia Prostática/metabolismo , beta Catenina/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espécies Reativas de Oxigênio , Serina-Treonina Quinases TOR/metabolismo , Proliferação de Células , Apoptose , Estresse Oxidativo , Fibrose , Proteínas de Membrana/metabolismo , OxirredutasesRESUMO
Granulosa cells play a pivotal role in growth, development and ovulation of ovarian follicle. Simultaneously, autophagy and apoptosis processes are crucial determinants in the destiny of granulosa cells. Within this context, miR-29-3p, known to regulate a broad spectrum of biological processes and critical for tumor detection, prognosis, and treatment, is poised to clarify its roles in both autophagy and apoptosis. To enhance the understanding of the influence of miR-29-3p on follicular development, our study primarily delved into the realms autophagy and apoptosis. We employed a well-established chicken follicular atrophy model achieved through subcutaneous injection of tamoxifen (TMX) into hens. qPCR analysis revealed a significant decrease in the expression of miR-29-3p within the atrophic follicles. In our in vitro experiments with cultured chicken primary granulosa cells, miR-29-3p emerged as a novel microRNA capable of impeding autophagy and apoptosis when transfected with miR-29-3p mimics and inhibitors. Results from luciferase reporter assays corroborated that PTEN is a legitimate target of miR-29-3p. Unlike miR-29-3p, PTEN appeared to foster autophagy and apoptosis in chicken granulosa cells. Moreover, our findings uncovered that miR-29-3p facilitates the phosphorylation of Akt and mTOR proteins by targeting PTEN in chicken granulosa cells. In conclusion, the findings of this study suggest that miR-29-3p, through its targeting of PTEN via the Akt/mTOR signaling pathway, exerts inhibitory effects on autophagy and apoptosis. These effects may hold significant importance in the context of follicular development.
Assuntos
MicroRNAs , Animais , Feminino , MicroRNAs/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Galinhas/genética , Galinhas/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , PTEN Fosfo-Hidrolase/farmacologia , Apoptose/genéticaRESUMO
Facial nerve regeneration still lacks a well-defined and practical clinical intervention. The survival of central facial motoneuron is a critical component in the successful peripheral facial nerve regeneration. Endogenous GDNF is vital for facial nerve regeneration according to earlier investigations. Nevertheless, the low endogenous GDNF level makes it challenging to achieve therapeutic benefits. Thus, we crushed the main trunk of facial nerve in SD rats to provide a model of peripheral facial paralysis, and we administered exogenous GDNF and Rapa treatments. We observed changes in the animal behavior scores, the morphology of facial nerve and buccinator muscle, the electrophysiological of facial nerve, and the expression of GDNF, GAP-43, and PI3K/AKT/mTOR signaling pathway-related molecules in the facial motoneurons. We discovered that GDNF could boost axon regeneration, hasten the recovery of facial paralysis symptoms and nerve conduction function, and increase the expression of GDNF, GAP-43, and PI3K/AKT/mTOR signaling pathway-related molecules in the central facial motoneurons. Therefore, exogenous GDNF injection into the buccinator muscle can enhance facial nerve regeneration following crushing injury and protect facial neurons via the PI3K/AKT/mTOR signaling pathway. This will offer a fresh perspective and theoretical foundation for the management of clinical facial nerve regeneration.