Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.410
Filtrar
1.
Front Immunol ; 13: 911997, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35799787

RESUMO

Objective: Systemic Lupus Erythematosus (SLE) is a systemic autoimmune disease that displays a significant gender difference in terms of incidence and severity. However, the underlying mechanisms accounting for sexual dimorphism remain unclear. The aim of this work was to reveal the heterogeneity in the pathogenesis of SLE between male and female patients. Methods: PBMC were collected from 15 patients with SLE (7 males, 8 females) and 15 age-matched healthy controls (7 males, 8 females) for proteomic analysis. The proteins of interest were validated in independent samples (6 male SLE, 6 female SLE). Biomarkers for neutrophil activation (calprotectin), neutrophil extracellular traps (cell-free DNA and elastase), and reactive oxygen species (glutathione) were measured, using enzyme-linked immunosorbent assay, in plasma obtained from 52 individuals. Results: Enrichment analysis of proteomic data revealed that type I interferon signaling and neutrophil activation networks mapped to both male and female SLE, while male SLE has a higher level of neutrophil activation compared with female SLE. Western blot validated that PGAM1, BST2, and SERPINB10 involved in neutrophil activation are more abundant in male SLE than in female SLE. Moreover, biomarkers of neutrophil activation and reactive oxygen species were increased in male SLE compared with female SLE. Conclusion: Type I interferon activation is a common signature in both male and female SLE, while neutrophil activation is more prominent in male SLE compared with female SLE. Our findings define gender heterogeneity in the pathogenesis of SLE and may facilitate the development of gender-specific treatments.


Assuntos
Interferon Tipo I , Lúpus Eritematoso Sistêmico , Serpinas , Biomarcadores , Feminino , Humanos , Interferon Tipo I/metabolismo , Leucócitos Mononucleares/metabolismo , Masculino , Ativação de Neutrófilo , Neutrófilos , Proteômica , Espécies Reativas de Oxigênio/metabolismo , Serpinas/metabolismo
2.
Int J Mol Sci ; 23(14)2022 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-35887093

RESUMO

The retinal pigment epithelium (RPE) expresses the Serpinf1 gene to produce pigment epithelium-derived factor (PEDF), a retinoprotective protein that is downregulated with cell senescence, aging and retinal degenerations. We determined the expression of senescence-associated genes in the RPE of 3-month-old mice that lack the Serpinf1 gene and found that Serpinf1 deletion induced H2ax for histone H2AX protein, Cdkn1a for p21 protein, and Glb1 gene for ß-galactosidase. Senescence-associated ß-galactosidase activity increased in the Serpinf1 null RPE when compared with wild-type RPE. We evaluated the subcellular morphology of the RPE and found that ablation of Serpinf1 increased the volume of the nuclei and the nucleoli number of RPE cells, implying chromatin reorganization. Given that the RPE phagocytic function declines with aging, we assessed the expression of the Pnpla2 gene, which is required for the degradation of photoreceptor outer segments by the RPE. We found that both the Pnpla2 gene and its protein PEDF-R declined with the Serpinf1 gene ablation. Moreover, we determined the levels of phagocytosed rhodopsin and lipids in the RPE of the Serpinf1 null mice. The RPE of the Serpinf1 null mice accumulated rhodopsin and lipids compared to littermate controls, implying an association of PEDF deficiency with RPE phagocytosis dysfunction. Our findings establish PEDF loss as a cause of senescence-like changes in the RPE, highlighting PEDF as both a retinoprotective and a regulatory protein of aging-like changes associated with defective degradation of the photoreceptor outer segment in the RPE.


Assuntos
Epitélio Pigmentado da Retina , Serpinas , Animais , Células Cultivadas , Proteínas do Olho/genética , Proteínas do Olho/metabolismo , Lipídeos , Camundongos , Camundongos Knockout , Fatores de Crescimento Neural , Fagocitose/genética , Epitélio Pigmentado da Retina/metabolismo , Rodopsina/metabolismo , Serpinas/metabolismo , beta-Galactosidase/metabolismo
3.
Cell Death Dis ; 13(7): 635, 2022 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-35864103

RESUMO

Defective execution of proteases and protease inhibitors that mediate abnormal signaling cascades is emerging as a key contributor to skin diseases, such as psoriasis. SerpinB7 is identified as a skin-specific endogenous protease inhibitor, but the role and underlying mechanism in psoriasis are poorly understood. Here we found that SerpinB7 is highly expressed in psoriatic keratinocytes of patients and imiquimod-induced psoriatic lesions in mice. SerpinB7-/- mice showed abnormal epidermal barrier integrity and skin architecture in homeostasis, and aggravated psoriatic lesion with inhibiting terminal differentiation and increasing inflammatory cells infiltration compared to SerpinB7+/+ mice after Imiquimod treatment. Mechanistically, SerpinB7 deficiency results in excessive proliferation and impaired differentiation, as well as increased chemokines and antimicrobial peptide expression in normal human epidermal keratinocyte and mouse primary keratinocyte. Transcriptomics and proteomics results showed that the SeprinB7 deficiency affected keratinocyte differentiation and proinflammatory cytokines, possibly by affecting the calcium ion channel-related proteins. Notably, we demonstrated that SerpinB7 deficiency prevented the increase in intracellular Ca2+ influx, which was partly eliminated by the intracellular Ca2+ chelator BAPTA-AM. Our findings first described the critical role of SerpinB7 in the regulation of keratinocyte differentiation and psoriatic microenvironment mediated via keratinocytes' intracellular calcium flux, proposing a new candidate for therapeutic targets in psoriasis.


Assuntos
Queratinócitos , Psoríase , Serpinas , Animais , Cálcio/metabolismo , Proliferação de Células , Epiderme/metabolismo , Humanos , Imiquimode , Queratinócitos/citologia , Camundongos , Psoríase/induzido quimicamente , Psoríase/metabolismo , Serpinas/genética , Serpinas/metabolismo
4.
Front Immunol ; 13: 905357, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35757693

RESUMO

Phenoloxidase (PO)-catalyzed melanization is a vital immune response in insects for defense against pathogen infection. This process is mediated by clip domain serine proteases and regulated by members of the serpin superfamily. We here revealed that the infection of Autographa californica multicapsid nucleopolyhedrovirus (AcMNPV) significantly inhibited the PO activity in Ostrinia furnacalis hemolymph and induced the expression of O. furnacalis serpin-4. Addition of recombinant serpin-4 protein to O. furnacalis hemolymph resulted in a great increase of AcMNPV copies. Serpin-4 significantly suppressed the PO activity and the amidase activity in cleaving colorimetric substrate IEARpNA (IEARase activity) of hemolymph. Further experiments indicated it formed covalent complexes with three serine proteases (SP1, SP13 and SP105) and prevented them from cleaving their cognate downstream proteases in vitro. Altogether, O. furnacalis melanization restricted AcMNPV replication and serpin-4 facilitated AcMNPV infection by inhibiting serine proteases, SP1, SP13, and SP105 which were all involved in the melanization response.


Assuntos
Mariposas , Nucleopoliedrovírus , Serpinas , Animais , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Mariposas/metabolismo , Serina Endopeptidases/metabolismo , Serina Proteases/metabolismo , Serpinas/genética , Serpinas/metabolismo , Zea mays/metabolismo
5.
Biomed Res Int ; 2022: 1557010, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35677097

RESUMO

Ischemic stroke is a devastating CNS insult with few clinical cures. Poor understanding of underlying mechanistic network is the primary limitation to develop novel curative therapies. Extracellular accumulation of granzyme B subsequent ischemia promotes neurodegeneration. Inhibition of granzyme B can be one of the potent strategies to mitigate neuronal damage. In present study, we investigated the effect of murine Serpina3n and human (homolog) SERPINA3 against cerebral ischemia through granzyme B inactivation. Recombinant Serpina3n/SERPINA3 were expressed by transfected 293 T cells, and eluted proteins were examined for postischemic influence both in vitro and in vivo. During in vitro test, Serpina3n was found effective enough to inhibit granzyme B, while SERPINA3 was ineffectual to counter cytotoxic protease. Treatment of hypoxic culture with recombinant Serpina3n/SERPINA3 significantly increased cell viability in dosage-dependent manner, recorded maximum at the highest concentration (4 mM). Infarct volume analysis confirmed that 50 mg/kg dosage of exogenous Serpina3n was adequate to reduce disease severity, while SERPINA3 lacked behind in analeptic effect. Immunohistochemical test, western blot analysis, and protease activity assay's results illustrated successful diffusion of applied protein to the ischemic lesion and reactivity with the target protease. Taken together, our findings demonstrate therapeutic potential of Serpina3n by interfering granzyme B-mediated neuronal death subsequent cerebral ischemia.


Assuntos
Isquemia Encefálica , Serpinas , Proteínas de Fase Aguda/metabolismo , Animais , Isquemia Encefálica/tratamento farmacológico , Infarto Cerebral , Granzimas , Humanos , Camundongos , Neurônios/metabolismo , Serpinas/metabolismo , Linfócitos T Citotóxicos
6.
Front Immunol ; 13: 900129, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35651613

RESUMO

To elucidate the application value of insect endogenous protease and its inhibitor genes in pest control, we analyzed in detail the transcriptome sequence of the Asian corn borer, Ostrinia furnacalis. We obtained 12 protease genes and 11 protease inhibitor genes, and comprehensively analyzed of their spatiotemporal expression by qRT-PCR. In which, a previous unstudied serine protease inhibitor gene attracted our attention. It belongs to the canonical serine proteinase inhibitor family, a trypsin inhibitor-like cysteine-rich domain (TIL)-type protease inhibitor, but its TIL domain lacks two cysteine residues, and it was named as ACB-TIL. Its expression level is relatively very low in the absence of pathogen stimulation, and can be up-regulated expression induced by Gram-negative bacteria (Escherichia coli), virus (BmNPV), and dsRNA (dsEGFP), but cannot be induced by fungus spores (Metarrhizium anisopliae). Prokaryotic expressed ACB-TIL protein can significantly inhibit the melanization in vitro. Injecting this protein into insect body can inhibit the production of antimicrobial peptides of attacin, lebocin and gloverin. Inhibition of ACB-TIL by RNAi can cause the responses of other immune-, protease- and inhibitor-related genes. ACB-TIL is primarily involved in Asian corn borer humoral immunity in responses to Gram-negative bacteria and viruses. This gene can be a potential target for pest control since this will mainly affect insect immune response.


Assuntos
Mariposas , Serpinas , Animais , Cisteína , Imunidade Humoral , Insetos/metabolismo , Mariposas/metabolismo , Peptídeo Hidrolases , Inibidores de Serino Proteinase , Serpinas/metabolismo , Zea mays/metabolismo
7.
Front Cell Infect Microbiol ; 12: 892770, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35711658

RESUMO

Tick saliva has been extensively studied in the context of tick-host interactions because it is involved in host homeostasis modulation and microbial pathogen transmission to the host. Accumulated knowledge about the tick saliva composition at the molecular level has revealed that serine protease inhibitors play a key role in the tick-host interaction. Serpins are one highly expressed group of protease inhibitors in tick salivary glands, their expression can be induced during tick blood-feeding, and they have many biological functions at the tick-host interface. Indeed, tick serpins have an important role in inhibiting host hemostatic processes and in the modulation of the innate and adaptive immune responses of their vertebrate hosts. Tick serpins have also been studied as potential candidates for therapeutic use and vaccine development. In this review, we critically summarize the current state of knowledge about the biological role of tick serpins in shaping tick-host interactions with emphasis on the mechanisms by which they modulate host immunity. Their potential use in drug and vaccine development is also discussed.


Assuntos
Serpinas , Carrapatos , Animais , Saliva/metabolismo , Glândulas Salivares/metabolismo , Inibidores de Serino Proteinase/fisiologia , Serpinas/metabolismo , Carrapatos/metabolismo
8.
J Biol Chem ; 298(6): 102022, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35551912

RESUMO

Protein Z (PZ)-dependent protease inhibitor (ZPI) is a plasma anticoagulant protein of the serpin superfamily, which is activated by its cofactor, PZ, to rapidly inhibit activated factor X (FXa) on a procoagulant membrane surface. ZPI is also activated by heparin to inhibit free FXa at a physiologically significant rate. Here, we show that heparin binding to ZPI antagonizes PZ binding to and activation of ZPI. Virtual docking of heparin to ZPI showed that a heparin-binding site near helix H close to the PZ-binding site as well as a previously mapped site in helix C was both favored. Alanine scanning mutagenesis of the helix H and helix C sites demonstrated that both sites were critical for heparin activation. The binding of heparin chains 72 to 5-saccharides in length to ZPI was similarly effective in antagonizing PZ binding and in inducing tryptophan fluorescence changes in ZPI. Heparin binding to variant ZPIs with either the helix C sites or the helix H sites mutated showed that heparin interaction with the higher affinity helix C site most distant from the PZ-binding site was sufficient to induce these tryptophan fluorescence changes. Together, these findings suggest that heparin binding to a site on ZPI extending from helix C to helix H promotes ZPI inhibition of FXa and allosterically antagonizes PZ binding to ZPI through long-range conformational changes. Heparin antagonism of PZ binding to ZPI may serve to spare limiting PZ and allow PZ and heparin cofactors to target FXa at different sites of action.


Assuntos
Proteínas Sanguíneas , Heparina , Serpinas , Sítios de Ligação , Proteínas Sanguíneas/metabolismo , Fator Xa/metabolismo , Heparina/metabolismo , Humanos , Serpinas/metabolismo , Triptofano
9.
Biochim Biophys Acta Mol Basis Dis ; 1868(9): 166441, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35577178

RESUMO

BACKGROUND: Fibrotic remodeling is an essential aspect of heart failure. Human kallistatin (KS, mouse Serpina3c homologs) inhibits fibrosis after myocardial infarction (MI) but the specific underlying mechanism is unknown. METHODS: A total of 40 heart failure patients (HFPs) were enrolled and their plasma KS was measured using ELISA. Serpina3c-/- and C57BL/6 mice were used to construct the MI model. TGF-ß1 or a hypoxic condition was established to interfere with the functioning of cardiac fibroblasts (CFs). RNA-seq was performed to assess the effect of Serpina3c on the transcriptome. FINDINGS: The levels of KS were used as a predictor of readmission among the HFPs. Serpina3c expression decreased in MI hearts and CFs. Serpina3c-/- led to the aggravation of MI fibrosis, and increased the proliferation of CFs. The overexpression of Serpina3c in CFs had the opposite effect. Glycolysis-related genes were significantly increased in Serpina3c-/- group by RNA-seq. Enolase (ENO1), which is a key enzyme in glycolysis, increased most significantly. Inhibition of ENO1 could antagonize the promotion of Serpina3c-/- on the proliferation of CFs. Co-IP was performed to verify the interaction between Serpina3c and Nr4a1. Serpina3c-/- inhibited the acetylation of Nr4a1 and increased the degradation of Nr4a1. Activation of Nr4a1 could negatively regulate the expression of ENO1 and inhibited the proliferation of Serpina3c-/- CFs in Serpina3c-/- MI mice. INTERPRETATION: Serpina3c inhibits the transcriptional activation of ENO1 by regulating the acetylation of Nr4a1, thereby reducing the fibrosis after MI by inhibiting glycolysis. Serpina3c is a potential target for prevention and treatment of heart failure after MI.


Assuntos
Insuficiência Cardíaca , Infarto do Miocárdio , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares , Serpinas , Animais , Modelos Animais de Doenças , Fibrose , Glicólise , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Infarto do Miocárdio/genética , Infarto do Miocárdio/metabolismo , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/metabolismo , Serpinas/metabolismo
10.
Exp Cell Res ; 417(2): 113213, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35618012

RESUMO

PURPOSE: The impairment of the coronary microcirculatory barrier caused by acute myocardial infarction (AMI) is closely related to poor prognosis. Recently, pigment epithelial-derived factor (PEDF) has been proven to be a promising cardiovascular protective drug. In this study, we demonstrated the protective role of PEDF in endothelial tight junctions (TJs) and the vascular barrier in AMI. MATERIALS AND METHODS: 2, 3, 5-triphenyltetrazolium chloride (TTC), echocardiography and immunofluorescence staining were used to observe the size of infarcted myocardium area and cardiac function in myocardial tissue, and the distribution of TJ proteins in human coronary endothelial cells (HCAEC). Dextran leakage assay and Transwell were used to assess the extent of vascular and HCAEC leakage. Polymerase chain reaction (PCR) and Western blot were used to detect TJ-related mRNA and protein, and signaling pathway protein expression. RESULTS: PEDF effectively reduced the infarction area and improved cardiac function in AMI rats, and lowered the leakage in AMI rats' angiocarpy and oxygen-glucose deprivation (OGD)-treated HCAEC. Furthermore, PEDF upregulated the expression of TJ mRNA and proteins in vivo and vitro. Mechanistically, PEDF inhibited the expression of phosphorylated low-density lipoprotein receptor-related protein 6 (p-LRP6) and active ß-catenin under OGD, thus suppressing the activation of the classical Wnt pathway. CONCLUSIONS: These novel findings demonstrated that PEDF maintained the expression of TJ proteins and endothelial barrier integrity by inhibiting the classical Wnt pathway during AMI.


Assuntos
Infarto do Miocárdio , Serpinas , Animais , Células Endoteliais/metabolismo , Proteínas do Olho/genética , Proteínas do Olho/metabolismo , Microcirculação , Infarto do Miocárdio/tratamento farmacológico , Fatores de Crescimento Neural , RNA Mensageiro , Ratos , Serpinas/genética , Serpinas/metabolismo , Serpinas/farmacologia , Junções Íntimas/metabolismo , Via de Sinalização Wnt
11.
Biomed Pharmacother ; 151: 113113, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35598368

RESUMO

Ocular ischemia is a vision-threatening disease, and is a medical condition associated with many ocular diseases. Anti-VEGF therapy has limitations related to its side effects and suppression of physiological revascularization. Pigment epithelium derived factor (PEDF) has anti-angiogenesis and neurotrophic neuroprotective functions and is a promising agent in the treatment of ischemia-induced retinal neurodegeneration. The purpose of this study is to investigate the effect of PEDF and anti-VEGF and the combined therapy on the ischemic rat eye model ex vivo. In this study, the PEDF protein, anti-VEGF drug (Avastin) or the combination of PEDF and Avastin were intravitreally injected immediately after eye enucleation. Then the eyes were incubated in Dulbecco's modified eagle medium (DMEM) at 4 â„ƒ for 14 h. After that the eyes were fixed immediately by formalin. VEGF, PEDF and glial fibrillary acidic protein (GFAP) were detected by immunohistochemical (IHC) staining. The IHC staining intensity was evaluated for each eye. Compared to the groups treated by vehicle, PEDF, and anti-VEGF alone, the value of staining intensity of VEGF and GFAP was significantly reduced in the retina and choroidal vessels of the PEDF/Anti-VEGF treatment group. The intravitreally injected PEDF protein can locate in the retina and the choroidal vessels. Compared to the vehicle-treatment group, both the PEDF-treatment and the PEDF/Anti-VEGF treatment groups showed significantly decreased number of TUNEL-positive nuclei, and the PEDF/Anti-VEGF treatment group had the least TUNEL-positive nuclei. Combination of PEDF and an anti-VEGF drug (Avastin) is a possible therapeutic strategy against ischemic retinal and choroidal diseases.


Assuntos
Proteínas do Olho , Doenças Retinianas , Serpinas , Animais , Bevacizumab/farmacologia , Bevacizumab/uso terapêutico , Epitélio/metabolismo , Proteínas do Olho/metabolismo , Proteínas do Olho/farmacologia , Proteínas do Olho/uso terapêutico , Isquemia/tratamento farmacológico , Isquemia/prevenção & controle , Ratos , Retina/patologia , Doenças Retinianas/tratamento farmacológico , Doenças Retinianas/metabolismo , Serpinas/metabolismo , Serpinas/farmacologia , Serpinas/uso terapêutico , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fatores de Crescimento do Endotélio Vascular
12.
Cell Death Dis ; 13(4): 345, 2022 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-35418110

RESUMO

Neutrophils are the dominant leukocytes in circulation and the first responders to infection and inflammatory cues. While the roles of neutrophils in driving inflammation have been widely recognized, the contribution of neutrophils in facilitating inflammation resolution is under-studied. Here, through single-cell RNA sequencing analysis, we identified a subpopulation of neutrophils exhibiting pro-resolving characteristics with greater Cd200r and Cd86 expression at the resting state. We further discovered that 4-PBA, a peroxisomal stress-reducing agent, can potently train neutrophils into the resolving state with enhanced expression of CD200R, CD86, as well as soluble pro-resolving mediators Resolvin D1 and SerpinB1. Resolving neutrophils trained by 4-PBA manifest enhanced phagocytosis and bacterial-killing functions. Mechanistically, the generation of resolving neutrophils is mediated by the PPARγ/LMO4/STAT3 signaling circuit modulated by TLR4 adaptor molecule TRAM. We further demonstrated that genetic deletion of TRAM renders the constitutive expansion of resolving neutrophils, with an enhanced signaling circuitry of PPARγ/LMO4/STAT3. These findings may have profound implications for the effective training of resolving neutrophils with therapeutic potential in the treatment of both acute infection as well as chronic inflammatory diseases.


Assuntos
Neutrófilos , Serpinas , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Butilaminas , Humanos , Inflamação/metabolismo , Proteínas com Domínio LIM/metabolismo , Neutrófilos/metabolismo , PPAR gama/metabolismo , Fagocitose , Serpinas/metabolismo
13.
Mol Metab ; 61: 101500, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35436587

RESUMO

OBJECTIVE: Due to the increasing prevalence of obesity and insulin resistance, there is an urgent need for better treatment of obesity and its related metabolic disorders. This study aimed to elucidate the role of SERPINA3C, an adipocyte secreted protein, in obesity and related metabolic disorders. METHODS: Male wild type (WT) and knockout (KO) mice were fed with high-fat diet (HFD) for 16 weeks, adiposity, insulin resistance, and inflammation were assessed. AAV-mediated overexpression of SERPINA3C was injected locally in inguinal white adipose tissue (iWAT) to examine the effect of SERPINA3C. In vitro analyses were conducted in 3T3-L1 adipocytes to explore the molecular pathways underlying the function of SERPINA3C. RESULTS: Functional exploration of the SERPINA3C knockout mice revealed that SERPINA3C deficiency led to an impaired metabolic phenotype (more severe obesity, lower metabolic rates, worse glucose intolerance and insulin insensitivity), which was associated with anabatic inflammation and apoptosis of white adipose tissues. Consistent with these results, overexpression of SERPINA3C in inguinal adipose tissue protected mice against diet-induced obesity and metabolic disorders with less inflammation and apoptosis in adipose tissue. Mechanistically, SERPINA3C inhibited Cathepsin G activity, acting as a serine protease inhibitor, which blocked Cathepsin G-mediated turnover of α5/ß1 Integrin protein. Then, the preserved integrity (increase) of α5/ß1 Integrin signaling activated AKT to decrease JNK phosphorylation, thereby inhibiting inflammation and promoting insulin sensitivity in adipocytes. CONCLUSIONS/INTERPRETATION: These findings demonstrate a previously unknown SERPINA3C/Cathepsin G/Integrin/AKT pathway in regulating adipose tissue inflammation, and suggest the therapeutic potential of targeting SERPINA3C/Cathepsin G axis in adipose tissue for the treatment of obesity and metabolic diseases.


Assuntos
Tecido Adiposo , Catepsina G , Resistência à Insulina , Integrina alfa5beta1 , Obesidade , Serpinas , Adipócitos/metabolismo , Tecido Adiposo/metabolismo , Animais , Catepsina G/metabolismo , Catepsina G/farmacologia , Dieta Hiperlipídica/efeitos adversos , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Resistência à Insulina/fisiologia , Integrina alfa5beta1/metabolismo , Integrina beta1/metabolismo , Integrinas/metabolismo , Masculino , Camundongos , Camundongos Knockout , Obesidade/etiologia , Obesidade/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serpinas/deficiência , Serpinas/metabolismo
14.
BMC Cancer ; 22(1): 366, 2022 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-35387643

RESUMO

BACKGROUND: Glioblastoma (GBM) is malignant, demanding more attention to the improvement of the diagnosis and therapy. LncRNAs have been implicated in the malignancy of GBM cells. METHODS: HOXA-AS2, miR-2116-3p and SERPINA3 expression levels in GBM tissues and cell lines were detected by qRT-PCR. Western blotting was performed to detect the protein levels of Bax and Bcl-2. Dual-luciferase reporter assay was for detection of relationship among these factors, together with RIP and RNA pull-down. CCK-8, EdU, wound healing and transwell assays were for detection of the role of HOXA-AS2, miR-2116-3p and SERPINA3 in cell viability, proliferation, migration and invasion in GBM, respectively. RESULTS: HOXA-AS2 and SERPINA3 showed higher level in GBM tissues and cell lines. Low level of HOXA-AS2 attenuated GBM cell growth in vitro. Moreover, the anti-tumor impact of silenced HOXA-AS2 was restored by miR-2116-3p inhibitor, but its tumor-promotional effect could be reversed by silenced SERPINA3. CONCLUSION: HOXA-AS2 enhanced GBM cell malignancy through sponging miR-2116-3p and releasing SERPINA3, which might shed light on the diagnosis and therapy for GBM in the future.


Assuntos
Glioblastoma , MicroRNAs , RNA Longo não Codificante , Serpinas , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Glioblastoma/genética , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Serpinas/genética , Serpinas/metabolismo
15.
Sci Rep ; 12(1): 3085, 2022 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-35361790

RESUMO

Preterm birth affects approximately 5% to 7% of live births worldwide and is the leading cause of neonatal morbidity and mortality. Amniotic fluid supernatant (AFS) contains abundant cell-free nucleic acids (cfNAs) that can provide genetic information associated with pregnancy complications. In the current study, cfNAs of AFS in the early second-trimester before the onset of symptoms of preterm birth were analyzed, and we compared gene expression levels between spontaneous preterm birth (n = 5) and term birth (n = 5) groups using sequencing analysis. Differential expression analyses detected 24 genes with increased and 6 genes with decreased expression in the preterm birth group compared to term birth. Upregulated expressions of RDH14, ZNF572, VOPP1, SERPINA12, and TCF15 were validated in an extended AFS sample by quantitative PCR (preterm birth group, n = 21; term birth group, n = 40). Five candidate genes displayed a significant increase in mRNA expression in immortalized trophoblast HTR-8/SVneo cell with H2O2 treatment. Moreover, the expression of five candidate genes was increased to more than twofold by pretreatment with lipopolysaccharide in HTR-8/SVneo cells. Changes in gene expression between preterm birth and term birth is strongly correlated with oxidative stress and infection during pregnancy. Specific expression patterns of genes could be used as potential markers for the early identification of women at risk of having a spontaneous preterm birth.


Assuntos
Nascimento Prematuro , Serpinas , Líquido Amniótico/metabolismo , Feminino , Humanos , Peróxido de Hidrogênio/metabolismo , Recém-Nascido , Gravidez , Segundo Trimestre da Gravidez , Nascimento Prematuro/etiologia , Serpinas/metabolismo , Nascimento a Termo , Fatores de Transcrição/metabolismo
16.
Cell Mol Life Sci ; 79(3): 172, 2022 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-35244780

RESUMO

Neuroserpin is an axonally secreted serpin that is involved in regulating plasminogen and its enzyme activators, such as tissue plasminogen activator (tPA). The protein has been increasingly shown to play key roles in neuronal development, plasticity, maturation and synaptic refinement. The proteinase inhibitor may function both independently and through tPA-dependent mechanisms. Herein, we discuss the recent evidence regarding the role of neuroserpin in healthy and diseased conditions and highlight the participation of the serpin in various cellular signalling pathways. Several polymorphisms and mutations have also been identified in the protein that may affect the serpin conformation, leading to polymer formation and its intracellular accumulation. The current understanding of the involvement of neuroserpin in Alzheimer's disease, cancer, glaucoma, stroke, neuropsychiatric disorders and familial encephalopathy with neuroserpin inclusion bodies (FENIB) is presented. To truly understand the detrimental consequences of neuroserpin dysfunction and the effective therapeutic targeting of this molecule in pathological conditions, a cross-disciplinary understanding of neuroserpin alterations and its cellular signaling networks is essential.


Assuntos
Doenças do Sistema Nervoso/patologia , Neuropeptídeos/metabolismo , Serpinas/metabolismo , Axônios/metabolismo , Comunicação Celular , Humanos , Neoplasias/metabolismo , Neoplasias/patologia , Doenças do Sistema Nervoso/metabolismo , Plasticidade Neuronal , Neuropeptídeos/química , Plasminogênio/metabolismo , Serpinas/química , Transdução de Sinais , Ativador de Plasminogênio Tecidual/metabolismo
17.
J Bone Miner Res ; 37(5): 925-937, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35258129

RESUMO

Osteogenesis imperfecta (OI) is a heterogeneous genetic disorder of bone and connective tissue, also known as brittle bone disease. Null mutations in SERPINF1, which encodes pigment epithelium-derived factor (PEDF), cause severe type VI OI, characterized by accumulation of unmineralized osteoid and a fish-scale pattern of bone lamellae. Although the potent anti-angiogenic activity of PEDF has been extensively studied, the disease mechanism of type VI OI is not well understood. Using Serpinf1(-/-) mice and primary osteoblasts, we demonstrate that loss of PEDF delays osteoblast maturation as well as extracellular matrix (ECM) mineralization. Barium sulfate perfusion reveals significantly increased vessel density in the tibial periosteum of Serpinf1(-/-) mouse compared with wild-type littermates. The increased bone vascularization in Serpinf1(-/-) mice correlated with increased number of CD31(+)/Endomucin(+) endothelial cells, which are involved in the coupling angiogenesis and osteogenesis. Global transcriptome analysis by RNA-Seq of Serpinf1(-/-) mouse osteoblasts reveals osteogenesis and angiogenesis as the biological processes most impacted by loss of PEDF. Intriguingly, TGF-ß signaling is activated in type VI OI cells, and Serpinf1(-/-) osteoblasts are more sensitive to TGF-ß stimulation than wild-type osteoblasts. TGF-ß stimulation and PEDF deficiency showed additive effects on transcription suppression of osteogenic markers and stimulation of pro-angiogenic factors. Furthermore, PEDF attenuated TGF-ß-induced expression of pro-angiogenic factors. These data suggest that functional antagonism between PEDF and TGF-ß pathways controls osteogenesis and bone vascularization and is implicated in type VI OI pathogenesis. This antagonism may be exploited in developing therapeutics for type VI OI utilizing PEDF and TGF-ß antibody. © 2022 American Society for Bone and Mineral Research (ASBMR). This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.


Assuntos
Proteínas do Olho , Fatores de Crescimento Neural , Osteogênese Imperfeita , Serpinas , Fator de Crescimento Transformador beta , Animais , Células Endoteliais , Proteínas do Olho/genética , Proteínas do Olho/metabolismo , Camundongos , Fatores de Crescimento Neural/genética , Fatores de Crescimento Neural/metabolismo , Osteogênese Imperfeita/genética , Osteogênese Imperfeita/metabolismo , Serpinas/genética , Serpinas/metabolismo , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo
18.
Cell Signal ; 93: 110299, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35263629

RESUMO

OBJECTIVE: The Serpin protein family plays an important role in regulating the functioning of the adipose tissue. This study aimed to study the underlying mechanisms of Serpina3c in regulating adipogenesis. METHODS: We developed a Serpina3c knockout (Serpina3c-/-) mouse model and Serpina3c knockdown and overexpression 3T3-L1 preadipocyte models to evaluate the role of Serpina3c in adipose differentiation. Mice were fed on ND for 12-month or HFD for one month. The body weight, glucose tolerance, and insulin tolerance of the mice were subsequently measured. Lipid depositions and adipose tissue morphology were then detected using Oil red O staining and HE staining. qRT-PCR and Western blot were used to detect the expression of adipose differentiation transcription factors. RESULTS: Serpina3c-/- mice exhibited lower body weight and white adipose tissue (WAT) weight than WT mice after 12 months of being fed on ND. Additionally, there was an increase in serum and hepatic triglyceride (TG) levels in Serpina3c-/- mice, without changes in glucose metabolism. Wnt/ß-catenin was upregulated while PPARγ expression was decreased in knockout mice WAT. Impaired adipocyte differentiation caused by Serpina3c knockdown was reversed by IWR-1 and kallistatin through an increase in PPARγ expression. Serpina3c-/- mice fed on HFD for one month had a lower body weight and WAT than WT, accompanied by increased lipid depositions in the liver and muscles and severe insulin resistance. CONCLUSION: Serpina3c promotes adipogenesis and maintains normal fat function by inhibiting the Wnt/ß-catenin pathway.


Assuntos
PPAR gama , Serpinas/metabolismo , beta Catenina , Células 3T3-L1 , Adipócitos/metabolismo , Adipogenia , Animais , Peso Corporal , Diferenciação Celular , Dieta Hiperlipídica , Lipídeos , Camundongos , PPAR gama/metabolismo , beta Catenina/metabolismo
19.
Nutrients ; 14(3)2022 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-35276837

RESUMO

BACKGROUND: Changes in adipokine secretion may be involved in the anti-epileptic effect of a ketogenic diet (KD) in drug-resistant epilepsy (DRE). OBJECTIVES: The assessment of the influence of KD on serum adiponectin, omentin-1, and vaspin in children with DRE. METHODS: Anthropometric measurements (weight, height, BMI, and waist-to-hip circumference ratio) were performed in 72 children aged 3-9 years, divided into 3 groups: 24 children with DRE treated with KD, 26-treated with valproic acid (VPA), and a control group of 22 children. Biochemical tests included fasting glucose, insulin, beta-hydroxybutyric acid, lipid profile, aminotransferases activities, and blood gasometry. Serum levels of adiponectin, omentin-1 and vaspin were assayed using commercially available ELISA tests. RESULTS: Serum levels of adiponectin and omentin-1 in the KD group were significantly higher and vaspin-lower in comparison to patients receiving VPA and the control group. In all examined children, serum adiponectin and omentin-1 correlated negatively with WHR and serum triglycerides, insulin, fasting glucose, and HOMA-IR. Vaspin levels correlated negatively with serum triglycerides and positively with body weight, BMI, fasting glucose, insulin, and HOMA-IR. CONCLUSION: One of the potential mechanisms of KD in children with drug-resistant epilepsy may be a modulation of metabolically beneficial and anti-inflammatory adipokine levels.


Assuntos
Adiponectina , Citocinas , Dieta Cetogênica , Epilepsia Resistente a Medicamentos , Lectinas , Serpinas , Adiponectina/metabolismo , Índice de Massa Corporal , Criança , Pré-Escolar , Citocinas/metabolismo , Epilepsia Resistente a Medicamentos/dietoterapia , Epilepsia Resistente a Medicamentos/metabolismo , Proteínas Ligadas por GPI/metabolismo , Humanos , Resistência à Insulina , Lectinas/metabolismo , Obesidade , Serpinas/metabolismo
20.
Biochem Biophys Res Commun ; 605: 148-153, 2022 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-35334413

RESUMO

Pigment epithelium-derived factor (PEDF) is a secreted protein that is essential in tissue homeostasis and is involved in multiple functions in the eye, such as antiangiogenesis and neuroprotection. However, short retention in the retinal microenvironment can limit its therapeutic effects. In this study, we modified the amino acid sequence of PEDF to increase its affinity for heparin and hyaluronic acid (HA), which are negatively charged extracellular matrix (ECM) molecules. HA is the major component of the vitreous humor. We selectively converted neutral or anionic residues into cationic residues to obtain engineered PEDF (ePEDF). Using in vitro binding assays, we demonstrate that ePEDF had higher affinity for heparin and HA than wild-type PEDF (wtPEDF). ePEDF exhibited antiangiogenic and retinal survival bioactivities. It inhibited endothelial cell proliferation and tube formation in vitro. In an ex vivo model mimicking retinal degeneration, ePEDF protected photoreceptors from cell death. The findings suggest that protein engineering is an approach to develop active PEDF with higher ECM affinity to potentially improve its retention in the retina microenvironment and in turn make it a more efficient therapeutic drug for retinal diseases.


Assuntos
Glicosaminoglicanos , Serpinas , Proteínas do Olho/metabolismo , Heparina/metabolismo , Ácido Hialurônico , Fatores de Crescimento Neural/metabolismo , Serpinas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...