Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 995
Filtrar
1.
Chemosphere ; 305: 135510, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35772516

RESUMO

Although the ecological safety of nanomaterials is of widespread concern, their current ambient concentrations are not yet sufficient to cause serious toxic effects. Thus, the nontoxic bioimpact of nanomaterials in wastewater treatment has attracted increasing attention. In this study, the effect of nano zinc oxide (nZnO), one of the most widely used nanomaterials, on the anaerobic biodegradation of methyl orange (MO) by Shewanella oneidensis MR-1 was comprehensively investigated. High-dosage nZnO (>0.5 mg/L) caused severe toxic stress on S. oneidensis MR-1, resulting in the decrease in decolorization efficiency. However, nZnO at ambient concentrations could act as nanostimulants and promote the anaerobic removal of MO by S. oneidensis MR-1, which should be attributed to the improvement of decolorization efficiency rather than cell proliferation. The dissolved Zn2+ was found to contribute to the bioeffect of nZnO on MO decolorization. Further investigation revealed that low-dosage nZnO could promote the cell viability, membrane permeability, anaerobic metabolism, as well as related gene expression, indicating that nZnO facilitated rather than inhibited the anaerobic wastewater treatment under ambient conditions. Thus, this work provides a new insight into the bioeffect of nZnO in actual environment and facilitates the practical application of nanomaterials as nanostimulants in biological process.


Assuntos
Shewanella , Óxido de Zinco , Anaerobiose , Biodegradação Ambiental , Shewanella/metabolismo , Óxido de Zinco/metabolismo , Óxido de Zinco/toxicidade
2.
Appl Microbiol Biotechnol ; 106(12): 4749-4761, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35708750

RESUMO

As a possible human carcinogen, bromate is easily formed in drinking water and wastewater treatments using advanced oxidation technology. Microbial reduction is a promising method to remove bromate, but little is known about aerobic bromate reduction as well as the molecular mechanism of tolerance and reduction to bromate in bacteria. Herein, bromate reduction by isolate under aerobic conditions was reported for the first time. Shewanella decolorationis Ni1-3, isolated from an activated sludge recently, was identified to reduce bromate to bromide under both aerobic and anaerobic conditions. RNA-Seq together with differential gene expression analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis was performed to identify that bromate triggered the expression of genes for oxidative stress protection (e.g., ohr, msrQ, dsbC, gpo, gorA, and gst), DNA damage repair (e.g., dprA, parA, and recJ), and sulfur metabolism (e.g., cysH, cysK, and cysP). However, the genes for lactate utilization (e.g., lldF and dld), nitrate reduction (e.g., napA and narG), and dissimilatory metal reduction (e.g., mtrC and omcA) were down-regulated in the presence of bromate. The results contribute to revealing the molecular mechanism of resistance and reduction in S. decolorationis Ni1-3 to bromate under aerobic conditions and clarifying the biogeochemical cycle of bromine. KEY POINTS: • Aerobic bromate reduction by pure culture was observed for the first time • Strain Ni1-3 effectively reduced bromate under both aerobic and anaerobic conditions • ROS and SOS response genes were strongly induced in the presence of bromate.


Assuntos
Bromatos , Shewanella , Bromatos/metabolismo , Bromatos/farmacologia , Perfilação da Expressão Gênica , Humanos , Oxirredução , Shewanella/genética , Shewanella/metabolismo
3.
Biochemistry ; 61(13): 1337-1350, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35687533

RESUMO

The multiheme cytochrome MtrA enables microbial respiration by transferring electrons across the outer membrane to extracellular electron acceptors. While structural studies have identified residues that mediate the binding of MtrA to hemes and to other cytochromes that facilitate extracellular electron transfer (EET), the relative importance of these interactions for EET is not known. To better understand EET, we evaluated how insertion of an octapeptide across all MtrA backbone locations affects Shewanella oneidensis MR-1 respiration on Fe(III). The EET efficiency was found to be inversely correlated with the proximity of the insertion to the heme prosthetic groups. Mutants with decreased EET efficiencies also arose from insertions in a subset of the regions that make residue-residue contacts with the porin MtrB, while all sites contacting the extracellular cytochrome MtrC presented high peptide insertion tolerance. MtrA variants having peptide insertions within the CXXCH motifs that coordinate heme cofactors retained some ability to support respiration on Fe(III), although these variants presented significantly decreased EET efficiencies. Furthermore, the fitness of cells expressing different MtrA variants under Fe(III) respiration conditions correlated with anode reduction. The peptide insertion profile, which represents the first comprehensive sequence-structure-function map for a multiheme cytochrome, implicates MtrA as a strategic protein engineering target for the regulation of EET.


Assuntos
Elétrons , Shewanella , Citocromos/genética , Citocromos/metabolismo , Transporte de Elétrons , Compostos Férricos/metabolismo , Heme/química , Oxirredução , Peptídeos/genética , Peptídeos/metabolismo , Shewanella/genética , Shewanella/metabolismo
4.
ACS Synth Biol ; 11(7): 2327-2338, 2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35731987

RESUMO

Electroactive bacterial biofilms can function as living biomaterials that merge the functionality of living cells with electronic components. However, the development of such advanced living electronics has been challenged by the inability to control the geometry of electroactive biofilms relative to solid-state electrodes. Here, we developed a lithographic strategy to pattern conductive biofilms of Shewanella oneidensis by controlling aggregation protein CdrAB expression with a blue light-induced genetic circuit. This controlled deposition enabled S. oneidensis biofilm patterning on transparent electrode surfaces, and electrochemical measurements allowed us to both demonstrate tunable conduction dependent on pattern size and quantify the intrinsic conductivity of the living biofilms. The intrinsic biofilm conductivity measurements enabled us to experimentally confirm predictions based on simulations of a recently proposed collision-exchange electron transport mechanism. Overall, we developed a facile technique for controlling electroactive biofilm formation on electrodes, with implications for both studying and harnessing bioelectronics.


Assuntos
Shewanella , Biofilmes , Condutividade Elétrica , Eletrodos , Transporte de Elétrons , Proteômica , Shewanella/metabolismo
5.
Sci Total Environ ; 838(Pt 3): 156501, 2022 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-35667430

RESUMO

Many exoelectrogens utilize small redox mediators for extracellular electron transfer (EET). Notable examples include Shewanella species, which synthesize flavins, and Pseudomonas species, which produce phenazines. In natural and engineered environments, redox-active metabolites from different organisms coexist. The interaction between Shewanella oneidensis and phenazine 1-carboxylic acid (PCA, a representative phenazine compound) was investigated to demonstrate exoelectrogens utilizing metabolites secreted by other organisms as redox mediators. After 24 h in a reactor with and without added PCA (1 µM), the anodic current generated by Shewanella was 235 ± 11 and 51.7 ± 2.8 µA, respectively. Shewanella produced oxidative current approximately three times as high with medium containing PCA as with medium containing the same concentration of riboflavin. PCA also stimulated inward EET in Shewanella. The strong effect of PCA on EET was attributed to its enrichment at the biofilm/electrode interface. The PCA voltammetric peak heights with a Shewanella bioanode were 25-30 times higher than under abiotic conditions. The electrochemical properties of PCA were also altered by the transition from two-electron to single-electron electrochemistry, which suggests PCA was bound between the electrode and cell surface redox proteins. This behavior would benefit electroactive bacteria, which usually dwell in open systems where mediators are present in low concentrations. Like flavins, PCA can be immobilized under both bioanode and biocathode conditions but not under metabolically inactive conditions. Shewanella rapidly transfers electrons to PCA via its Mtr pathway. Compared with wild-type Shewanella, the PCA reduction ability was decreased in gene knockout mutants lacking Mtr pathway cytochromes, especially in the mutants with severely undermined electrode-reduction capacities. These strains also lost the ability to immobilize PCA, even under current-generating conditions.


Assuntos
Shewanella , Ácidos Carboxílicos/metabolismo , Flavinas/química , Flavinas/metabolismo , Oxirredução , Fenazinas/metabolismo , Shewanella/metabolismo
6.
Sci Total Environ ; 840: 156577, 2022 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-35688243

RESUMO

Fe(III) may be reasonably considered as one of the most important electron acceptors in petroleum reservoir ecosystems. The microbial mineralization of clay minerals, especially montmorillonite, is also of great significance to the exploration of petroleum and gas reservoirs. The bioreduction mechanisms of iron-poor minerals in petroleum reservoirs have been poorly investigated. This study investigated the bioreduction of montmorillonite by dissimilatory iron-reducing bacteria (DIRB) in petroleum reservoirs based on culture-independent and culture-dependent methods. Microbial diversity analysis revealed that Halolactibacillus, Bacillus, Alkaliphilus, Shewanella, Clostridium, and Pseudomonas were the key genera involved in the bioreduction of Fe(III). Through the traditional culture-dependent method, most of the key genera were isolated from the samples collected from petroleum reservoirs. Traditional culture-dependent methods can be used to reveal the metabolic characteristics of microorganisms (such as iron-reduction efficiency) to further elucidate the roles of different species (B. subtilis and B. alkalitelluris) in the environment. Moreover, many species with high iron-reduction efficiencies and relatively low abundances in the samples, such as Tessaracoccus and Flaviflexus, were isolated from petroleum reservoirs for the first time. The combination of culture-dependent and culture-independent methods can be used to further the understanding of the microbial communities and the metabolic characteristics of DIRB in petroleum reservoirs. Structural alterations that occurred during the interactions of microorganisms and montmorillonite were revealed through scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and X-ray powder diffraction (XRD). The physical and chemical analysis results demonstrated that microorganisms from petroleum reservoirs can dissolve iron-poor montmorillonite and promote the release of interlayer water. The secondary minerals illite and clinoptilolite were observed in bioreduced smectite. The formation of secondary minerals was closely related to the dissolution degrees of minerals based on iron reduction.


Assuntos
Petróleo , Shewanella , Bentonita , Argila , Ecossistema , Compostos Férricos/química , Ferro/química , Minerais/metabolismo , Campos de Petróleo e Gás , Oxirredução , Petróleo/metabolismo , Shewanella/metabolismo
7.
ACS Synth Biol ; 11(6): 2184-2192, 2022 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-35608070

RESUMO

Extracellular electron transfer (EET) of electroactive microorganisms (EAMs) is the dominating factor for versatile applications of bio-electrochemical systems. Shewanella oneidensis MR-1 is one of the model EAMs for the study of EET, which is associated with a variety of cellular activities. However, due to the lack of a transcriptional activation tool, regulation of multiple genes is labor-intensive and time-consuming, which hampers the advancement of improving the EET efficiency in S. oneidensis. In this study, we developed an easily operated and multifunctional regulatory tool, that is, a simultaneous clustered regularly interspaced short palindromic repeats (CRISPR)-mediated transcriptional activation (CRISPRa) and interference (CRISPRi) system, for application in S. oneidensis. First, a large number of activators were screened, and RpoD (σ70) was determined as the optimal activator. Second, the effective activation range was identified to be 190-216 base upstream of the transcriptional start site. Third, up- and downregulation was achieved in concert by two orthogonal single guide RNAs targeting different positions. The activation of the cell division gene (minCDE) and repression of the cytotoxic gene (SO_3166) were concurrently implemented, increasing the power density by 2.5-fold and enhancing the degradation rate of azo dyes by 2.9-fold. The simultaneous CRISPRa and CRISPRi system enables simultaneous multiplex genetic regulation, offering the potential to further advance studies of the EET mechanism and application in S. oneidensis.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Shewanella , Transporte de Elétrons , Shewanella/genética , Shewanella/metabolismo , Ativação Transcricional/genética
8.
Proc Natl Acad Sci U S A ; 119(19): e2119964119, 2022 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-35503913

RESUMO

Using a series of multiheme cytochromes, the metal-reducing bacterium Shewanella oneidensis MR-1 can perform extracellular electron transfer (EET) to respire redox-active surfaces, including minerals and electrodes outside the cell. While the role of multiheme cytochromes in transporting electrons across the cell wall is well established, these cytochromes were also recently found to facilitate long-distance (micrometer-scale) redox conduction along outer membranes and across multiple cells bridging electrodes. Recent studies proposed that long-distance conduction arises from the interplay of electron hopping and cytochrome diffusion, which allows collisions and electron exchange between cytochromes along membranes. However, the diffusive dynamics of the multiheme cytochromes have never been observed or quantified in vivo, making it difficult to assess their hypothesized contribution to the collision-exchange mechanism. Here, we use quantum dot labeling, total internal reflection fluorescence microscopy, and single-particle tracking to quantify the lateral diffusive dynamics of the outer membrane-associated decaheme cytochromes MtrC and OmcA, two key components of EET in S. oneidensis. We observe confined diffusion behavior for both quantum dot-labeled MtrC and OmcA along cell surfaces (diffusion coefficients DMtrC = 0.0192 ± 0.0018 µm2/s, DOmcA = 0.0125 ± 0.0024 µm2/s) and the membrane extensions thought to function as bacterial nanowires. We find that these dynamics can trace a path for electron transport via overlap of cytochrome trajectories, consistent with the long-distance conduction mechanism. The measured dynamics inform kinetic Monte Carlo simulations that combine direct electron hopping and redox molecule diffusion, revealing significant electron transport rates along cells and membrane nanowires.


Assuntos
Shewanella , Imagem Individual de Molécula , Membrana Celular/metabolismo , Citocromos/metabolismo , Transporte de Elétrons , Oxirredução , Shewanella/metabolismo
9.
Environ Pollut ; 306: 119451, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35569621

RESUMO

Bacteria play crucial roles in the biogeochemical cycle of arsenic (As) and selenium (Se) as these elements are metabolized via detoxification, energy generation (anaerobic respiration) and biosynthesis (e.g. selenocysteine) strategies. To date, arsenic and selenium biomineralization in bacteria were studied separately. In this study, the anaerobic metabolism of As and Se in Shewanella sp. O23S was investigated separately and mixed, with an emphasis put on the biomineralization products of this process. Multiple analytical techniques including ICP-MS, TEM-EDS, XRD, Micro-Raman, spectrophotometry and surface charge (zeta potential) were employed. Shewanella sp. O23S is capable of reducing selenate (SeO42-) and selenite (SeO32-) to red Se(-S)0, and arsenate (AsO43-) to arsenite (AsO33-). The release of H2S from cysteine led to the precipitation of AsS minerals: nanorod AsS and granular As2S3. When As and Se oxyanions were mixed, both As-S and Se(-S)0 biominerals were synthesized. All biominerals were extracellular, amorphous and presented a negative surface charge (-24 to -38 mV). Kinetic analysis indicated the following reduction yields: SeO32- (90%), AsO43- (60%), and SeO42- (<10%). The mix of SeO32- with AsO43- led to a decrease in As removal to 30%, while Se reduction yield was unaffected (88%). Interestingly, SeO42- incubated with AsO43- boosted the Se removal (71%). The exclusive extracellular formation of As and Se biominerals might indicate an extracellular respiratory process characteristic of various Shewanella species and strains. This is the first study documenting a complex interplay between As and Se oxyanions: selenite decreased arsenate reduction, whereas arsenate stimulated selenate reduction. Further investigation needs to clarify whether Shewanella sp. O23S employs multi-substrate respiratory enzymes or separate, high affinity enzymes for As and Se oxyanion respiration.


Assuntos
Arsênio , Compostos de Selênio , Selênio , Shewanella , Arseniatos/metabolismo , Arsênio/metabolismo , Biomineralização , Cinética , Ácido Selênico , Ácido Selenioso , Selênio/metabolismo , Shewanella/metabolismo
10.
J Hazard Mater ; 431: 128595, 2022 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-35247734

RESUMO

The immobilized anthraquinone-2-sulfonate (iAQS) could significantly promote anaerobic biotransformation of the contaminants. During this process, the role of flavins secreted by bacteria remains unclear. In the present study, mutual interaction between extracellular flavins and AQS-modified polyurethane foam (AQS-PUF) during the reduction of azo dye Acid Red 18 and 3-nitrobenzenesulfonate (3-NBS) was investigated. Results showed that the amount of extracellular flavins secreted by Shewanella sp. RQs-106 was positively correlated with the concentration of iAQS ranging from 10 to 100 µM. The presence of iAQS resulted in the increased concentration of extracellular and intracellular flavins, implying that iAQS could induce the synthesis and secretion of flavins. The deletion of gene bfe encoding the flavin adenine dinucleotide exporter resulted in approximately 63.8% decrease in the amount of extracellular flavins. Further analysis showed that the decreased amount of extracellular flavins could contribute to around 50.8% reduction of iAQS. Moreover, around 23.2% and 34.0% decreases were observed in AQS-PUF-mediated removal rates of AR 18 and 3-NBS by mutant lacking bfe gene, respectively, compared with that by wild type strain RQs-106. These results indicated that the secreted flavins played an important role in the bio-reduction of AQS-PUF, resulting in their contribution to AQS-PUF-mediated removals of high-polarity aromatic compounds containing nitrogen.


Assuntos
Shewanella , Anaerobiose , Benzoquinonas , Flavinas/metabolismo , Nitrogênio/metabolismo , Oxirredução , Shewanella/metabolismo
11.
J Hazard Mater ; 431: 128629, 2022 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-35278967

RESUMO

Bioreduction by electroactive bacteria (EAB) is considered as a potential and cost-effective approach for the removal of nitroaromatic compounds (NACs). However, little is known about how the widespread EAB sense and respond to slightly soluble NACs in aquatic environments. Here, the chemotactic behaviors of Shewanella oneidensis MR-1, a model EAB, toward several NACs were examined and their underlying molecular mechanism was elucidated. S. oneidensis MR-1 was found to exhibit a strong chemotactic response to nitrobenzene (NB), but not to other selected NACs under aerobic conditions. To sense NB, this bacterium requires both the histidine kinase (CheA-3)-involved chemotactic signal transduction pathway and an inner-membrane c-type cytochrome CymA. Such a chemotactic response is mediated by an energy taxis mechanism. Additionally, external riboflavin was shown to greatly enhance the Shewanella taxis toward NB, implying a feasible way to increase the bioavailability of NACs. The present study deepens our understanding of the role of microbial chemotaxis in the removal of NACs and provides more options for the bioremediation of NAC-contaminated sites.


Assuntos
Shewanella , Quimiotaxia , Nitrobenzenos/metabolismo , Oxirredução , Shewanella/metabolismo
12.
J Environ Sci (China) ; 118: 14-20, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35305762

RESUMO

Shewanella sp. ANA-3 with the respiratory arsenate reductase (ArrAB) and MR-1 with ferric reduction ability always coexist in the presence of high arsenic (As)-containing waste residue. However, their synergistic impacts on As transformation and mobility remain unclear. To identify which bacterium, ANA-3 or MR-1, dominates As mobility in the coexisting environment, we explored the As biotransformation in the industrial waste residue in the presence of Shewanella sp. ANA-3 and MR-1. The incubation results show that As(III) was the main soluble species, and strain ANA-3 dominated As mobilization. The impact of ANA-3 was weakened by MR-1, probably due to the survival competition between these two bacteria. The results of micro X-ray fluorescence and X-ray photoelectron spectroscopy analyses further reveal the pathway for ANA-3 to enhance As mobility. Strain ANA-3 almost reduced 100% surface-bound Fe(III), and consequently led to As(V) release. The dissolved As(V) was then reduced to As(III) by ANA-3. The results of this study help to understand the fate of arsenic in the subsurface and highlight the importance of the safe disposal of high As-containing industrial waste.


Assuntos
Arsênio , Shewanella , Purificação da Água , Arsênio/metabolismo , Biotransformação , Compostos Férricos/metabolismo , Shewanella/metabolismo
13.
Environ Microbiol ; 24(4): 1838-1848, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35170205

RESUMO

Exoelectrogenic bacteria (EEB) are capable of anaerobic respiration with diverse extracellular electron acceptors including insoluble minerals, electrodes and flavins, but the detailed electron transfer pathways and reaction mechanisms remain elusive. Here, we discover that CymA, which is usually considered to solely serve as an inner-membrane electron transfer hub in Shewanella oneidensis MR-1 (a model EEB), might also function as a reductase for direct reducing diverse nitroaromatic compounds (e.g. 2,4-dichloronitrobenzene) and azo dyes. Such a process can be accelerated by dosing anthraquinone-2,6-disulfonate. The CymA-based reduction pathways in S. oneidensis MR-1 for different contaminants could be functionally reconstructed and strengthened in Escherichia coli. The direct reduction of lowly polar contaminants by quinol oxidases like CymA homologues might be universal in diverse microbes. This work offers new insights into the pollutant reduction mechanisms of EEB and unveils a new function of CymA to act as a terminal reductase.


Assuntos
Poluentes Ambientais , Shewanella , Transporte de Elétrons , Elétrons , Poluentes Ambientais/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Oxirredução , Oxirredutases/genética , Oxirredutases/metabolismo , Shewanella/metabolismo
14.
Biochemistry ; 61(2): 107-116, 2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-34989236

RESUMO

The radical S-adenosyl-l-methionine (SAM) enzyme HydG cleaves tyrosine to generate CO and CN- ligands of the [FeFe] hydrogenase H-cluster, accompanied by the formation of a 4-oxidobenzyl radical (4-OB•), which is the precursor to the HydG p-cresol byproduct. Native HydG only generates a small amount of 4-OB•, limiting detailed electron paramagnetic resonance (EPR) spectral characterization beyond our initial EPR lineshape study employing various tyrosine isotopologues. Here, we show that the concentration of trapped 4-OB• is significantly increased in reactions using HydG variants, in which the "dangler Fe" to which CO and CN- bind is missing or substituted by a redox-inert Zn2+ ion. This allows for the detailed characterization of 4-OB• using high-field EPR and electron nuclear double resonance spectroscopy to extract its g-values and 1H/13C hyperfine couplings. These results are compared to density functional theory-predicted values of several 4-OB• models with different sizes and protonation states, with a best fit to the deprotonated radical anion configuration of 4-OB•. Overall, our results depict a clearer electronic structure of the transient 4-OB• radical and provide new insights into the radical SAM chemistry of HydG.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas Ferro-Enxofre/metabolismo , S-Adenosilmetionina/metabolismo , Shewanella/metabolismo , Proteínas de Bactérias/química , Espectroscopia de Ressonância de Spin Eletrônica , Radicais Livres/química , Radicais Livres/metabolismo , Proteínas Ferro-Enxofre/química , Modelos Moleculares , S-Adenosilmetionina/química , Shewanella/química
15.
Int J Mol Sci ; 23(2)2022 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-35054801

RESUMO

Osmotic changes are common challenges for marine microorganisms. Bacteria have developed numerous ways of dealing with this stress, including reprogramming of global cellular processes. However, specific molecular adaptation mechanisms to osmotic stress have mainly been investigated in terrestrial model bacteria. In this work, we aimed to elucidate the basis of adjustment to prolonged salinity challenges at the proteome level in marine bacteria. The objects of our studies were three representatives of bacteria inhabiting various marine environments, Shewanella baltica, Vibrio harveyi and Aliivibrio fischeri. The proteomic studies were performed with bacteria cultivated in increased and decreased salinity, followed by proteolytic digestion of samples which were then subjected to liquid chromatography with tandem mass spectrometry analysis. We show that bacteria adjust at all levels of their biological processes, from DNA topology through gene expression regulation and proteasome assembly, to transport and cellular metabolism. The finding that many similar adaptation strategies were observed for both low- and high-salinity conditions is particularly striking. The results show that adaptation to salinity challenge involves the accumulation of DNA-binding proteins and increased polyamine uptake. We hypothesize that their function is to coat and protect the nucleoid to counteract adverse changes in DNA topology due to ionic shifts.


Assuntos
Adaptação Fisiológica , Aliivibrio fischeri/fisiologia , Oceanos e Mares , Proteômica , Salinidade , Shewanella/fisiologia , Vibrio/fisiologia , Adaptação Fisiológica/genética , Aliivibrio fischeri/genética , Aliivibrio fischeri/metabolismo , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Ontologia Genética , Chaperonas Moleculares/metabolismo , Ácidos Nucleicos/metabolismo , Concentração Osmolar , Osmose , Pressão Osmótica , Ligação Proteica , Proteoma/metabolismo , Shewanella/genética , Shewanella/metabolismo , Transcrição Genética , Vibrio/genética , Vibrio/metabolismo
16.
Appl Biochem Biotechnol ; 194(4): 1755-1774, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34982373

RESUMO

Biosurfactants are microbial-derived compounds with surface and emulsifying activities. Environmental and industrial applications make glycolipid biosurfactants particularly interesting among the several categories of biosurfactants. A potential glycolipid biosurfactant resource, Shewanella algae, was isolated from marine samples at the Persian Gulf. The glycolipid biosurfactant caused a reduction in water surface tension from 72 to 43 mN/m with a 0.25 mg/mL critical micelle concentration (CMC). Two-level factorial design was then applied for optimization of biosurfactant production, where a maximal reduction of culture broth surface tension (31 mN/m) acquired in the presence of crude oil (0.5%, v/v), NaNO3 (0.2 g/L), NH4Cl (0.7 g/L), and peptone (0.5 g/L). GC-MS analysis of the culture broth showed when crude oil was used as the sole carbon source, S. algae was able to degrade most of its alkane components. Nuclear magnetic resonance (NMR) and Fourier transform infrared (FTIR) spectroscopy revealed the glycolipid structure of biosurfactant. The glycolipid biosurfactant exhibited considerable growth inhibition of clinical bacterial pathogens and disrupted the preformed biofilms of Bacillus cereus (83%), Streptococcus pneumoniae (53%), Pseudomonas aeruginosa (92%), Escherichia coli (64%), Klebsiella pneumoniae (87%), and Acinetobacter sp. (72%). In conclusion, the glycolipid biosurfactant secreted by S. algae exhibited a wide range of functional properties and was evidenced as a promising candidate for biomedical application.


Assuntos
Anti-Infecciosos , Petróleo , Shewanella , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Biofilmes , Glicolipídeos/química , Glicolipídeos/farmacologia , Shewanella/metabolismo , Tensoativos/química
17.
Commun Biol ; 5(1): 87, 2022 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-35064202

RESUMO

Cytochromes c (cyts c), essential for respiration and photosynthesis in eukaryotes, confer bacteria respiratory versatility for survival and growth in natural environments. In bacteria having a cyt c maturation (CCM) system, DsbD is required to mediate electron transport from the cytoplasm to CcmG of the Ccm apparatus. Here with cyt c-rich Shewanella oneidensis as the research model, we identify NapB, a cyt c per se, that suppresses the CCM defect of a dsbD mutant during anaerobiosis, when NapB is produced at elevated levels, a result of activation by cAMP-Crp. Data are then presented to suggest that NapB reduces CcmG, leading to the suppression. We further show that NapB proteins capable of rescuing CCM in the dsbD mutant form a small distinct clade. The study sheds light on multifunctionality of cyts c, and more importantly, unravels a self-salvation strategy through which bacteria have evolved to better adjust to the natural world.


Assuntos
Proteínas de Bactérias/metabolismo , Citocromos c/biossíntese , Oxirredutases/metabolismo , Shewanella/metabolismo , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Regulação Enzimológica da Expressão Gênica , Modelos Moleculares , Mutação , Oxirredutases/genética , Conformação Proteica , Isoformas de Proteínas , Shewanella/genética
18.
Environ Sci Technol ; 56(1): 239-250, 2022 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-34932354

RESUMO

Electron-shuttling agents such as pyrogenic carbon (PC) can mediate long-distance electron transfer and play numerous key roles in aquatic and soil biogeochemical processes. The electron-shuttling capacity of PC relies on both the surface oxygen-containing functional groups and bulk graphitic structures. Although the impacts of oxygen-containing functional groups on the electron-shuttling performance of PC are well studied, there remains insufficient understanding on the function of graphitic structures. Here, we studied the functions of PC in mediating microbial (Shewanella oneidensis MR-1) reduction of ferrihydrite, a classic and geochemically important soil redox process. The results show that PC enhanced microbial ferrihydrite reduction by 20-115% and the reduction rates increased with PC pyrolysis temperature increasing from 500 to 900 °C. For PC prepared at low temperature (500-600 °C), the electron-shuttling capacity of PC is mainly attributed to its oxygen-containing functional groups, as indicated by a 50-60% decline in the ferrihydrite reduction rate when PC was reduced under a H2 atmosphere to remove surface oxygen-containing functional groups. In stark contrast, for PC prepared at higher temperature (700-900 °C), the formation of PC graphitic structures was enhanced, as suggested by the higher electrical conductivity; accordingly, the graphitic structure exhibits greater importance in shuttling electrons, as demonstrated by a minor decline (10-18%) in the ferrihydrite reduction rate after H2 treatment of PC. This study provides new insights into the nonlinear and combined role of graphitic structures and oxygen-containing functional groups of PC in mediating electron transfer, where the pyrolysis temperature of PC acts as a key factor in determining the electron-shuttling pathways.


Assuntos
Grafite , Shewanella , Carbono , Transporte de Elétrons , Compostos Férricos/metabolismo , Oxirredução , Shewanella/metabolismo
19.
J Biol Chem ; 297(6): 101434, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34801557

RESUMO

Bacterial fatty acid synthesis in Escherichia coli is initiated by the condensation of an acetyl-CoA with a malonyl-acyl carrier protein (ACP) by the ß-ketoacyl-ACP synthase III enzyme, FabH. E. coli ΔfabH knockout strains are viable because of the yiiD gene that allows FabH-independent fatty acid synthesis initiation. However, the molecular function of the yiiD gene product is not known. Here, we show the yiiD gene product is a malonyl-ACP decarboxylase (MadA). MadA has two independently folded domains: an amino-terminal N-acetyl transferase (GNAT) domain (MadAN) and a carboxy-terminal hot dog dimerization domain (MadAC) that encodes the malonyl-ACP decarboxylase function. Members of the proteobacterial Mad protein family are either two domain MadA (GNAT-hot dog) or standalone MadB (hot dog) decarboxylases. Using structure-guided, site-directed mutagenesis of MadB from Shewanella oneidensis, we identified Asn45 on a conserved catalytic loop as critical for decarboxylase activity. We also found that MadA, MadAC, or MadB expression all restored normal cell size and growth rates to an E. coli ΔfabH strain, whereas the expression of MadAN did not. Finally, we verified that GlmU, a bifunctional glucosamine-1-phosphate N-acetyl transferase/N-acetyl-glucosamine-1-phosphate uridylyltransferase that synthesizes the key intermediate UDP-GlcNAc, is an ACP binding protein. Acetyl-ACP is the preferred glucosamine-1-phosphate N-acetyl transferase/N-acetyl-glucosamine-1-phosphate uridylyltransferase substrate, in addition to being the substrate for the elongation-condensing enzymes FabB and FabF. Thus, we conclude that the Mad family of malonyl-ACP decarboxylases supplies acetyl-ACP to support the initiation of fatty acid, lipopolysaccharide, peptidoglycan, and enterobacterial common antigen biosynthesis in Proteobacteria.


Assuntos
Proteína de Transporte de Acila/metabolismo , Parede Celular/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Ácido Graxo Sintase Tipo II/metabolismo , Ácidos Graxos/biossíntese , Shewanella/metabolismo , Proteína de Transporte de Acila/genética , Parede Celular/genética , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Ácido Graxo Sintase Tipo II/genética , Ácidos Graxos/genética , Shewanella/genética
20.
Elife ; 102021 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-34643180

RESUMO

Bin/Amphiphysin/RVS (BAR) domain proteins belong to a superfamily of coiled-coil proteins influencing membrane curvature in eukaryotes and are associated with vesicle biogenesis, vesicle-mediated protein trafficking, and intracellular signaling. Here, we report a bacterial protein with BAR domain-like activity, BdpA, from Shewanella oneidensis MR-1, known to produce redox-active membrane vesicles and micrometer-scale outer membrane extensions (OMEs). BdpA is required for uniform size distribution of membrane vesicles and influences scaffolding of OMEs into a consistent diameter and curvature. Cryo-TEM reveals that a strain lacking BdpA produces lobed, disordered OMEs rather than membrane tubules or narrow chains produced by the wild-type strain. Overexpression of BdpA promotes OME formation during planktonic growth of S. oneidensis where they are not typically observed. Heterologous expression results in OME production in Marinobacter atlanticus and Escherichia coli. Based on the ability of BdpA to alter membrane architecture in vivo, we propose that BdpA and its homologs comprise a newly identified class of bacterial BAR domain-like proteins.


Assuntos
Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Shewanella/genética , Proteínas de Bactérias/metabolismo , Membrana Celular/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Shewanella/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...