Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 9.711
Filtrar
1.
Nat Commun ; 12(1): 1398, 2021 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-33658519

RESUMO

We previously identified a causal link between a rare patient mutation in DISC1 (disrupted-in-schizophrenia 1) and synaptic deficits in cortical neurons differentiated from isogenic patient-derived induced pluripotent stem cells (iPSCs). Here we find that transcripts related to phosphodiesterase 4 (PDE4) signaling are significantly elevated in human cortical neurons differentiated from iPSCs with the DISC1 mutation and that inhibition of PDE4 or activation of the cAMP signaling pathway functionally rescues synaptic deficits. We further generated a knock-in mouse line harboring the same patient mutation in the Disc1 gene. Heterozygous Disc1 mutant mice exhibit elevated levels of PDE4s and synaptic abnormalities in the brain, and social and cognitive behavioral deficits. Pharmacological inhibition of the PDE4 signaling pathway rescues these synaptic, social and cognitive behavioral abnormalities. Our study shows that patient-derived isogenic iPSC and humanized mouse disease models are integral and complementary for translational studies with a better understanding of underlying molecular mechanisms.


Assuntos
Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/genética , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Proteínas do Tecido Nervoso/genética , Inibidores da Fosfodiesterase 4/farmacologia , Esquizofrenia/genética , Animais , Comportamento Animal/efeitos dos fármacos , Córtex Cerebral/fisiologia , Modelos Animais de Doenças , Feminino , Expressão Gênica , Humanos , Masculino , Camundongos Mutantes , Mutação , Neurônios/efeitos dos fármacos , Rolipram/farmacologia , Esquizofrenia/patologia , Sinapses/efeitos dos fármacos , Sinapses/fisiologia
2.
Nat Commun ; 12(1): 1068, 2021 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-33594066

RESUMO

A graphdiyne-based artificial synapse (GAS), exhibiting intrinsic short-term plasticity, has been proposed to mimic biological signal transmission behavior. The impulse response of the GAS has been reduced to several millivolts with competitive femtowatt-level consumption, exceeding the biological level by orders of magnitude. Most importantly, the GAS is capable of parallelly processing signals transmitted from multiple pre-neurons and therefore realizing dynamic logic and spatiotemporal rules. It is also found that the GAS is thermally stable (at 353 K) and environmentally stable (in a relative humidity up to 35%). Our artificial efferent nerve, connecting the GAS with artificial muscles, has been demonstrated to complete the information integration of pre-neurons and the information output of motor neurons, which is advantageous for coalescing multiple sensory feedbacks and reacting to events. Our synaptic element has potential applications in bioinspired peripheral nervous systems of soft electronics, neurorobotics, and biohybrid systems of brain-computer interfaces.


Assuntos
Grafite/farmacologia , Neurônios Eferentes/fisiologia , Sinapses/fisiologia , Dendritos/efeitos dos fármacos , Dendritos/fisiologia , Teoria da Densidade Funcional , Difusão , Íons , Rede Nervosa/efeitos dos fármacos , Rede Nervosa/fisiologia , Plasticidade Neuronal , Neurônios Eferentes/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Sinapses/efeitos dos fármacos , Temperatura
3.
Anesthesiology ; 134(2): 219-233, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33332534

RESUMO

BACKGROUND: The general anesthetic propofol induces frontal alpha rhythm in the cerebral cortex at a dose sufficient to induce loss of consciousness. The authors hypothesized that propofol-induced facilitation of unitary inhibitory postsynaptic currents would result in firing synchrony among postsynaptic pyramidal neurons that receive inhibition from the same presynaptic inhibitory fast-spiking neurons. METHODS: Multiple whole cell patch clamp recordings were performed from one fast-spiking neuron and two or three pyramidal neurons with at least two inhibitory connections in rat insular cortical slices. The authors examined how inhibitory inputs from a presynaptic fast-spiking neuron modulate the timing of spontaneous repetitive spike firing among pyramidal neurons before and during 10 µM propofol application. RESULTS: Responding to activation of a fast-spiking neuron with 150-ms intervals, pyramidal cell pairs that received common inhibitory inputs from the presynaptic fast-spiking neuron showed propofol-dependent decreases in average distance from the line of identity, which evaluates the coefficient of variation in spike timing among pyramidal neurons: average distance from the line of identity just after the first activation of fast-spiking neuron was 29.2 ± 24.1 (mean ± SD, absolute value) in control and 19.7 ± 19.2 during propofol application (P < 0.001). Propofol did not change average distance from the line of identity without activating fast-spiking neurons and in pyramidal neuron pairs without common inhibitory inputs from presynaptic fast-spiking neurons. The synchronization index, which reflects the degree of spike synchronization among pyramidal neurons, was increased by propofol from 1.4 ± 0.5 to 2.3 ± 1.5 (absolute value, P = 0.004) and from 1.5 ± 0.5 to 2.2 ± 1.0 (P = 0.030) when a presynaptic fast-spiking neuron was activated at 6.7 and 10 Hz, respectively, but not at 1, 4, and 13.3 Hz. CONCLUSIONS: These results suggest that propofol facilitates pyramidal neuron firing synchrony by enhancing inhibitory inputs from fast-spiking neurons. This synchrony of pyramidal neurons may contribute to the alpha rhythm associated with propofol-induced loss of consciousness.


Assuntos
Córtex Cerebral/efeitos dos fármacos , Hipnóticos e Sedativos/farmacologia , Interneurônios/efeitos dos fármacos , Propofol/farmacologia , Células Piramidais/efeitos dos fármacos , Transmissão Sináptica/efeitos dos fármacos , Potenciais de Ação/efeitos dos fármacos , Animais , Feminino , Masculino , Modelos Animais , Ratos , Ratos Transgênicos , Sinapses/efeitos dos fármacos
4.
Int J Mol Sci ; 21(24)2020 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-33322202

RESUMO

Alzheimer's disease (AD) is a neurodegenerative disease characterized by neurological dysfunction, including memory impairment, attributed to the accumulation of amyloid ß (Aß) in the brain. Although several studies reported possible mechanisms involved in Aß pathology, much remains unknown. Previous findings suggested that a protein regulated in development and DNA damage response 1 (REDD1), a stress-coping regulator, is an Aß-responsive gene involved in Aß cytotoxicity. However, we still do not know how Aß increases the level of REDD1 and whether REDD1 mediates Aß-induced synaptic dysfunction. To elucidate this, we examined the effect of Aß on REDD1-expression using acute hippocampal slices from mice, and the effect of REDD1 short hairpin RNA (shRNA) on Aß-induced synaptic dysfunction. Lastly, we observed the effect of REDD1 shRNA on memory deficit in an AD-like mouse model. Through the experiments, we found that Aß-incubated acute hippocampal slices showed increased REDD1 levels. Moreover, Aß injection into the lateral ventricle increased REDD1 levels in the hippocampus. Anisomycin, but not actinomycin D, blocked Aß-induced increase in REDD1 levels in the acute hippocampal slices, suggesting that Aß may increase REDD1 translation rather than transcription. Aß activated Fyn/ERK/S6 cascade, and inhibitors for Fyn/ERK/S6 or mGluR5 blocked Aß-induced REDD1 upregulation. REDD1 inducer, a transcriptional activator, and Aß blocked synaptic plasticity in the acute hippocampal slices. REDD1 inducer inhibited mTOR/Akt signaling. REDD1 shRNA blocked Aß-induced synaptic deficits. REDD1 shRNA also blocked Aß-induced memory deficits in passive-avoidance and object-recognition tests. Collectively, these results demonstrate that REDD1 participates in Aß pathology and could be a target for AD therapy.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/farmacologia , Hipocampo/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Transtornos da Memória/metabolismo , Sinapses/metabolismo , Fatores de Transcrição/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Animais , Anisomicina/farmacologia , Dactinomicina/farmacologia , Modelos Animais de Doenças , MAP Quinases Reguladas por Sinal Extracelular/antagonistas & inibidores , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Masculino , Transtornos da Memória/genética , Transtornos da Memória/patologia , Testes de Memória e Aprendizagem , Camundongos , Biossíntese de Proteínas/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-fyn/metabolismo , RNA Interferente Pequeno , Receptor de Glutamato Metabotrópico 5/antagonistas & inibidores , Proteínas Quinases S6 Ribossômicas/antagonistas & inibidores , Proteínas Quinases S6 Ribossômicas/metabolismo , Sinapses/efeitos dos fármacos , Sinapses/genética , Sinapses/patologia , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/metabolismo , Fatores de Transcrição/genética , Regulação para Cima
5.
Proc Natl Acad Sci U S A ; 117(52): 33235-33245, 2020 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-33318193

RESUMO

The antimalarial artemisinins have also been implicated in the regulation of various cellular pathways including immunomodulation of cancers and regulation of pancreatic cell signaling in mammals. Despite their widespread application, the cellular specificities and molecular mechanisms of target recognition by artemisinins remain poorly characterized. We recently demonstrated how these drugs modulate inhibitory postsynaptic signaling by direct binding to the postsynaptic scaffolding protein gephyrin. Here, we report the crystal structure of the central metabolic enzyme pyridoxal kinase (PDXK), which catalyzes the production of the active form of vitamin B6 (also known as pyridoxal 5'-phosphate [PLP]), in complex with artesunate at 2.4-Šresolution. Partially overlapping binding of artemisinins with the substrate pyridoxal inhibits PLP biosynthesis as demonstrated by kinetic measurements. Electrophysiological recordings from hippocampal slices and activity measurements of glutamic acid decarboxylase (GAD), a PLP-dependent enzyme synthesizing the neurotransmitter γ-aminobutyric acid (GABA), define how artemisinins also interfere presynaptically with GABAergic signaling. Our data provide a comprehensive picture of artemisinin-induced effects on inhibitory signaling in the brain.


Assuntos
Artemisininas/farmacologia , Regulação para Baixo , Inibição Neural/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Piridoxal Quinase/antagonistas & inibidores , Transmissão Sináptica/efeitos dos fármacos , Trifosfato de Adenosina/análogos & derivados , Trifosfato de Adenosina/metabolismo , Animais , Artemisininas/química , Sítios de Ligação , Regulação para Baixo/efeitos dos fármacos , Fenômenos Eletrofisiológicos/efeitos dos fármacos , Feminino , Neurônios GABAérgicos/efeitos dos fármacos , Neurônios GABAérgicos/metabolismo , Glutamato Descarboxilase/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Modelos Biológicos , Modelos Moleculares , Inibidores de Proteínas Quinases/química , Piridoxal Quinase/química , Piridoxal Quinase/metabolismo , Sinapses/efeitos dos fármacos , Sinapses/metabolismo , Ácido gama-Aminobutírico/biossíntese
6.
Science ; 369(6507)2020 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-32855309

RESUMO

Neuronal synapses undergo structural and functional changes throughout life, which are essential for nervous system physiology. However, these changes may also perturb the excitatory-inhibitory neurotransmission balance and trigger neuropsychiatric and neurological disorders. Molecular tools to restore this balance are highly desirable. Here, we designed and characterized CPTX, a synthetic synaptic organizer combining structural elements from cerebellin-1 and neuronal pentraxin-1. CPTX can interact with presynaptic neurexins and postsynaptic AMPA-type ionotropic glutamate receptors and induced the formation of excitatory synapses both in vitro and in vivo. CPTX restored synaptic functions, motor coordination, spatial and contextual memories, and locomotion in mouse models for cerebellar ataxia, Alzheimer's disease, and spinal cord injury, respectively. Thus, CPTX represents a prototype for structure-guided biologics that can efficiently repair or remodel neuronal circuits.


Assuntos
Proteína C-Reativa/farmacologia , Proteínas do Tecido Nervoso/farmacologia , Vias Neurais/efeitos dos fármacos , Precursores de Proteínas/farmacologia , Receptores de AMPA/metabolismo , Proteínas Recombinantes/farmacologia , Sinapses/efeitos dos fármacos , Doença de Alzheimer/terapia , Animais , Proteína C-Reativa/química , Proteína C-Reativa/uso terapêutico , Ataxia Cerebelar/terapia , Modelos Animais de Doenças , Células HEK293 , Hipocampo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/uso terapêutico , Domínios Proteicos , Precursores de Proteínas/química , Precursores de Proteínas/uso terapêutico , Receptores de Glutamato/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/uso terapêutico , Coluna Vertebral/efeitos dos fármacos , Coluna Vertebral/fisiologia
7.
Neuron ; 106(5): 715-726, 2020 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-32497508

RESUMO

Ketamine exerts rapid antidepressant action in depressed and treatment-resistant depressed patients within hours. At the same time, ketamine elicits a unique form of functional synaptic plasticity that shares several attributes and molecular mechanisms with well-characterized forms of homeostatic synaptic scaling. Lithium is a widely used mood stabilizer also proposed to act via synaptic scaling for its antimanic effects. Several studies to date have identified specific forms of homeostatic synaptic plasticity that are elicited by these drugs used to treat neuropsychiatric disorders. In the last two decades, extensive work on homeostatic synaptic plasticity mechanisms have shown that they diverge from classical synaptic plasticity mechanisms that process and store information and thus present a novel avenue for synaptic regulation with limited direct interference with cognitive processes. In this review, we discuss the intersection of the findings from neuropsychiatric treatments and homeostatic plasticity studies to highlight a potentially wider paradigm for treatment advance.


Assuntos
Antimaníacos/farmacologia , Transtorno Bipolar/tratamento farmacológico , Transtorno Depressivo Maior/tratamento farmacológico , Antagonistas de Aminoácidos Excitatórios/farmacologia , Homeostase/efeitos dos fármacos , Ketamina/farmacologia , Compostos de Lítio/farmacologia , Plasticidade Neuronal/efeitos dos fármacos , Animais , Antimaníacos/uso terapêutico , Transtorno Depressivo Resistente a Tratamento/tratamento farmacológico , Antagonistas de Aminoácidos Excitatórios/uso terapêutico , Humanos , Ketamina/uso terapêutico , Compostos de Lítio/uso terapêutico , Transtornos do Humor/tratamento farmacológico , Sinapses/efeitos dos fármacos
8.
J Pharmacol Exp Ther ; 374(1): 126-133, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32358047

RESUMO

The novel small-molecule psychomotor stabilizer, IRL790, is currently in clinical trial for treatment of levodopa-induced dyskinesia and psychosis in patients with Parkinson disease. Here, we used naïve mice to investigate the effects of acute systemic administration of IRL790 on protein levels and phosphorylation states of proteins relevant for synaptic plasticity and transmission. IRL790 increased pro-brain-derived neurotrophic factor protein levels and phosphorylation at Ser1303 of the N-methyl-D-aspartate (NMDA) subtype 2B glutamate receptor (NR2B) in prefrontal cortex. IRL790 also increased the phosphorylation states at Ser19, Ser31, and Ser40, respectively, of tyrosine hydroxylase in striatum. IRL790 reduced protein levels of the NR2B receptor in striatum but not in prefrontal cortex. Taken together, we report that systemically administered IRL790 rapidly elicits changes in protein level and phosphorylation state of proteins associated with a beneficial effect on synaptic markers and neurotransmission. SIGNIFICANCE STATEMENT: The novel small-molecule psychomotor stabilizer, IRL790, is currently in clinical trial for treatment of levodopa-induced dyskinesia and psychosis in patients with Parkinson disease. In this study, we report that systemically administered IRL790 rapidly elicits changes in protein level and phosphorylation state of proteins associated with a beneficial effect on synaptic markers and neurotransmission.


Assuntos
Sinapses/efeitos dos fármacos , Sinapses/metabolismo , Transmissão Sináptica/efeitos dos fármacos , Animais , Biomarcadores/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Dopamina/biossíntese , Relação Dose-Resposta a Droga , Ácido Glutâmico/metabolismo , Espaço Intracelular/efeitos dos fármacos , Espaço Intracelular/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fosforilação/efeitos dos fármacos , Córtex Pré-Frontal/citologia , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/metabolismo , Transdução de Sinais/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos
9.
Invest Ophthalmol Vis Sci ; 61(5): 37, 2020 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-32437548

RESUMO

Purpose: To determine the influence of RIBEYE deletion and the resulting absence of synaptic ribbons on retinal light signaling by electroretinography. Methods: Full-field flash electroretinograms (ERGs) were recorded in RIBEYE knock-out (KO) and wild-type (WT) littermate mice under photopic and scotopic conditions, with oscillatory potentials (OPs) extracted by digital filtering. Flicker ERGs and ERGs following intravitreal injection of pharmacological agents were also obtained under scotopic conditions. Results: The a-wave amplitudes were unchanged between RIBEYE KO and WT mice; however, the b-wave amplitudes were reduced in KOs under scotopic, but not photopic, conditions. Increasing stimulation frequency led to a greater reduction in RIBEYE KO b-wave amplitudes compared with WTs. Furthermore, we observed prominent, supernormal OPs in RIBEYE KO mice in comparison with WT mice. Following intravitreal injections with l-2 amino-4-phosphonobutyric acid and cis-2,3 piperidine dicarboxylic acid to block ON and OFF responses at photoreceptor synapses, OPs were completely abolished in both mice types, indicating a synaptic origin of the prominent OPs in the KOs. Conversely, tetrodotoxin treatment to block voltage-gated Na+ channels/spiking neurons did not differentially affect OPs in WT and KO mice. Conclusions: The decreased scotopic b-wave and decreased responses to increased stimulation frequencies are consistent with signaling malfunctions at photoreceptor and inner retinal ribbon synapses. Because phototransduction in the photoreceptor outer segments is unaffected in the KOs, their supernormal OPs presumably result from a dysfunction in retinal synapses. The relatively mild ERG phenotype in KO mice, particularly in the photopic range, is probably caused by compensatory mechanisms in retinal signaling pathways.


Assuntos
Oxirredutases do Álcool/fisiologia , Proteínas Correpressoras/fisiologia , Eletrorretinografia , Células Fotorreceptoras Retinianas Cones/fisiologia , Sinapses/fisiologia , Transmissão Sináptica , Visão Ocular/fisiologia , Aminobutiratos/farmacologia , Animais , Potenciais Evocados Visuais/fisiologia , Agonistas de Aminoácidos Excitatórios/farmacologia , Feminino , Deleção de Genes , Injeções Intravítreas , Masculino , Camundongos , Camundongos Knockout , Microscopia Eletrônica de Transmissão , Visão Noturna/fisiologia , Estimulação Luminosa , Piperidinas/farmacologia , Células Fotorreceptoras Retinianas Cones/ultraestrutura , Bloqueadores dos Canais de Sódio/farmacologia , Sinapses/efeitos dos fármacos , Sinapses/ultraestrutura , Tetrodotoxina/farmacologia
10.
Toxicology ; 440: 152500, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32428529

RESUMO

Autism spectrum disorders (ASD) include neurodevelopmental disorders in which behavioral deficits can result from neuronal imbalance of excitation to inhibition (E/I) in the brain. Here we used RT-qPCR to screen for the expression of 99 genes associated with excitatory (glutamatergic) and inhibitory (GABAergic) neurotransmission in the cerebral cortex, hippocampus and cerebellum of rats in an established VPA model of ASD. The largest changes in the expression of glutamatergic genes were found in the cerebral cortex, where 12 genes including these encoding some of the subunits of the ionotropic glutamate receptors, were upregulated, while 2 genes were downregulated. The expression of genes encoding the presynaptic glutamatergic proteins vGluT1 and mGluR7 and PKA, involved in downstream glutamatergic signaling, was elevated more than 100-fold. Changes in GABAergic gene expression were found in the cortex, cerebellum and hippocampus; 3 genes were upregulated, and 3 were downregulated. In conclusion, these results revealed that, in the ASD model, several glutamatergic genes in the rat cerebral cortex were upregulated, which contrasts with small and balanced changes in the expression of GABAergic genes. The VPA rat model, useful in studying the molecular basis of ASD, may be suitable for testing experimental therapies in these disabilities.


Assuntos
Transtorno Autístico/induzido quimicamente , Transtorno Autístico/genética , Ácido Glutâmico/genética , Ácido Valproico , Ácido gama-Aminobutírico/genética , Animais , Cerebelo/efeitos dos fármacos , Cerebelo/metabolismo , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Feminino , GABAérgicos , Perfilação da Expressão Gênica , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Masculino , Gravidez , Efeitos Tardios da Exposição Pré-Natal , Ratos , Ratos Wistar , Receptores de Glutamato Metabotrópico/biossíntese , Receptores de Glutamato Metabotrópico/genética , Sinapses/efeitos dos fármacos , Sinapses/metabolismo , Proteína Vesicular 1 de Transporte de Glutamato/biossíntese , Proteína Vesicular 1 de Transporte de Glutamato/genética
11.
J Neurosci ; 40(27): 5161-5176, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32444385

RESUMO

Alterations of excitatory synaptic function are the strongest correlate to the pathologic disturbance of cognitive ability observed in the early stages of Alzheimer's disease (AD). This pathologic feature is driven by amyloid-ß oligomers (Aßos) and propagates from neuron to neuron. Here, we investigated the mechanism by which Aßos affect the function of synapses and how these alterations propagate to surrounding healthy neurons. We used complementary techniques ranging from electrophysiological recordings and molecular biology to confocal microscopy in primary cortical cultures, and from acute hippocampal and cortical slices from male wild-type and amyloid precursor protein (APP) knock-out (KO) mice to assess the effects of Aßos on glutamatergic transmission, synaptic plasticity, and dendritic spine structure. We showed that extracellular application of Aßos reduced glutamatergic synaptic transmission and long-term potentiation. These alterations were not observed in APP KO neurons, suggesting that APP expression is required. We demonstrated that Aßos/APP interaction increases the amyloidogenic processing of APP leading to intracellular accumulation of newly produced Aßos. Intracellular Aßos participate in synaptic dysfunctions as shown by pharmacological inhibition of APP processing or by intraneuronal infusion of an antibody raised against Aßos. Furthermore, we provide evidence that following APP processing, extracellular release of Aßos mediates the propagation of the synaptic pathology characterized by a decreased spine density of neighboring healthy neurons in an APP-dependent manner. Together, our data unveil a complementary role for Aßos in AD, while intracellular Aßos alter synaptic function, extracellular Aßos promote a vicious cycle that propagates synaptic pathology from diseased to healthy neurons.SIGNIFICANCE STATEMENT Here we provide the proof that a vicious cycle between extracellular and intracellular pools of Aß oligomers (Aßos) is required for the spreading of Alzheimer's disease (AD) pathology. We showed that extracellular Aßos propagate excitatory synaptic alterations by promoting amyloid precursor protein (APP) processing. Our results also suggest that subsequent to APP cleavage two pools of Aßos are produced. One pool accumulates inside the cytosol, inducing the loss of synaptic plasticity potential. The other pool is released into the extracellular space and contributes to the propagation of the pathology from diseased to healthy neurons. Pharmacological strategies targeting the proteolytic cleavage of APP disrupt the relationship between extracellular and intracellular Aß, providing a therapeutic approach for the disease.


Assuntos
Peptídeos beta-Amiloides/farmacologia , Precursor de Proteína beta-Amiloide/metabolismo , Plasticidade Neuronal/efeitos dos fármacos , Neurônios/metabolismo , Sinapses/efeitos dos fármacos , Precursor de Proteína beta-Amiloide/antagonistas & inibidores , Animais , Anticorpos Bloqueadores/farmacologia , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Espaço Extracelular/efeitos dos fármacos , Espaço Extracelular/metabolismo , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Histidina/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/efeitos dos fármacos , Técnicas de Patch-Clamp , Cultura Primária de Células , Transmissão Sináptica/efeitos dos fármacos
12.
Toxicology ; 440: 152492, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32407874

RESUMO

Neurotoxicity induced by exposure to heavy metal lead (Pb) is a concern of utmost importance particularly for countries with industrial-based economies. The developing brain is especially sensitive to exposure to even minute quantities of Pb which can alter neurodevelopmental trajectory with irreversible effects on motor, emotive-social and cognitive attributes even into later adulthood. Chemical synapses form the major pathway of inter-neuronal communications and are prime candidates for higher order brain (motor, memory and behavior) functions and determine the resistance/susceptibility for neurological disorders, including neuropsychopathologies. The synaptic pathways and mechanisms underlying Pb-mediated alterations in neuronal signaling and plasticity are not completely understood. Employing a biochemically isolated synaptosomal fraction which is enriched in synaptic terminals and synaptic mitochondria, this study aimed to analyze the alterations in bioenergetic and redox/antioxidant status of cerebellar synapses induced by developmental exposure to Pb (0.2 %). Moreover, we test the efficacy of vitamin C (ascorbate; 500 mg/kg body weight), a neuroprotective and neuromodulatory antioxidant, in mitigation of Pb-induced neuronal deficits. Our results implicate redox and bioenergetic disruptions as an underlying feature of the synaptic dysfunction observed in developmental Pb neurotoxicity, potentially contributing to consequent deficits in motor, behavioral and psychological attributes of the organisms. In addition, we establish ascorbate as a key ingredient for therapeutic approach against Pb induced neurotoxicity, particularly for early-life exposures.


Assuntos
Antioxidantes/uso terapêutico , Ácido Ascórbico/uso terapêutico , Cerebelo/metabolismo , Metabolismo Energético/efeitos dos fármacos , Intoxicação do Sistema Nervoso por Chumbo/patologia , Sinapses/metabolismo , Animais , Antioxidantes/farmacologia , Ácido Ascórbico/farmacologia , Cerebelo/efeitos dos fármacos , Feminino , Glutationa/metabolismo , Chumbo/sangue , Intoxicação do Sistema Nervoso por Chumbo/psicologia , Masculino , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Tamanho do Órgão/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Gravidez , Ratos , Ratos Wistar , Sinapses/efeitos dos fármacos , Sinaptossomos/efeitos dos fármacos , Sinaptossomos/metabolismo
13.
PLoS One ; 15(3): e0229892, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32231396

RESUMO

The specification of cell identity depends on the exposure of cells to sequences of bioactive ligands. All-trans retinoic acid (ATRA) affects neuronal development in the early stage, and it is involved in neuronal lineage reprogramming. We previously established a fibroblast-like dedifferentiated fat cells (DFATs) derived from highly homogeneous mature adipocytes, which are more suitable for the study of cellular reprogramming. Canine cognitive dysfunction is similar to human cognitive dysfunction, suggesting that dogs could be a pathological and pharmacological model for human neuronal diseases. However, the effect of ATRA on neuronal reprogramming in dogs has remained unclear. Therefore, in this study, we investigated the effect of ATRA on the neuronal reprogramming of canine DFATs. ATRA induced the expression of neuronal marker mRNA/protein. The neuron-like cells showed Ca2+ influx with depolarization (50 mM KCl; 84.75 ± 4.05%) and Na+ channel activation (50 µM veratridine; 96.02 ± 2.02%). Optical imaging of presynaptic terminal activity and detection of neurotransmitter release showed that the neuron-like cells exhibited the GABAergic neuronal property. Genome-wide RNA-sequencing analysis shows that the transcriptome profile of canine DFATs is effectively reprogrammed towards that of cortical interneuron lineage. Collectively, ATRA can produce functional GABAergic cortical interneuron-like cells from canine DFATs, exhibiting neuronal function with > 80% efficiency. We further demonstrated the contribution of JNK3 to ATRA-induced neuronal reprogramming in canine DFATs. In conclusion, the neuron-like cells from canine DFATs could be a powerful tool for translational research in cell transplantation therapy, in vitro disease modeling, and drug screening for neuronal diseases.


Assuntos
Desdiferenciação Celular/efeitos dos fármacos , Neurogênese/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Tretinoína/farmacologia , Animais , Diferenciação Celular/efeitos dos fármacos , Reprogramação Celular/efeitos dos fármacos , Cães , Neurogênese/genética , RNA Mensageiro/genética , Sinapses/efeitos dos fármacos , Sinapses/genética
14.
J Neurosci ; 40(21): 4251-4263, 2020 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-32332118

RESUMO

Soluble amyloid ß (Aß)-induced synaptic dysfunction is an early event in the pathogenesis of Alzheimer's disease (AD) that precedes the deposition of insoluble Aß and correlates with the development of cognitive deficits better than the number of plaques. The mammalian plasminogen activation (PA) system catalyzes the generation of plasmin via two activators: tissue-type (tPA) and urokinase-type (uPA). A dysfunctional tPA-plasmin system causes defective proteolytic degradation of Aß plaques in advanced stages of AD. In contrast, it is unknown whether uPA and its receptor (uPAR) contribute to the pathogenesis of this disease. Neuronal cadherin (NCAD) plays a pivotal role in the formation of synapses and dendritic branches, and Aß decreases its expression in cerebral cortical neurons. Here we show that neuronal uPA protects the synapse from the harmful effects of soluble Aß. However, Aß-induced inactivation of the eukaryotic initiation factor 2α halts the transcription of uPA mRNA, leaving unopposed the deleterious effects of Aß on the synapse. In line with these observations, the synaptic abundance of uPA, but not uPAR, is decreased in the frontal cortex of AD patients and 5xFAD mice, and in cerebral cortical neurons incubated with soluble Aß. We found that uPA treatment increases the synaptic expression of NCAD by a uPAR-mediated plasmin-independent mechanism, and that uPA-induced formation of NCAD dimers protects the synapse from the harmful effects of soluble Aß oligomers. These data indicate that Aß-induced decrease in the synaptic abundance of uPA contributes to the development of synaptic damage in the early stages of AD.SIGNIFICANCE STATEMENT Soluble amyloid ß (Aß)-induced synaptic dysfunction is an early event in the pathogenesis of cognitive deficits in Alzheimer's disease (AD). We found that neuronal urokinase-type (uPA) protects the synapse from the deleterious effects of soluble Aß. However, Aß-induced inactivation of the eukaryotic initiation factor 2α decreases the synaptic abundance of uPA, leaving unopposed the harmful effects of Aß on the synapse. In line with these observations, the synaptic expression of uPA is decreased in the frontal cortex of AD brains and 5xFAD mice, and uPA treatment abrogates the deleterious effects of Aß on the synapse. These results unveil a novel mechanism of Aß-induced synaptic dysfunction in AD patients, and indicate that recombinant uPA is a potential therapeutic strategy to protect the synapse before the development of irreversible brain damage.


Assuntos
Peptídeos beta-Amiloides/farmacologia , Córtex Cerebral/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Sinapses/efeitos dos fármacos , Ativador de Plasminogênio Tipo Uroquinase/genética , Ativador de Plasminogênio Tipo Uroquinase/farmacologia , Animais , Células Cultivadas , Córtex Cerebral/metabolismo , Camundongos , Camundongos Transgênicos , Neurônios/metabolismo , Ativador de Plasminogênio Tipo Uroquinase/metabolismo
15.
Environ Toxicol ; 35(9): 922-929, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32293791

RESUMO

Excessive fluoride exposure contributes to neurotoxic effects. Emodin exhibits antioxidative functions in the central nervous system (CNS); however, its neuroprotective mechanism against fluoride remains to be elucidated. Our aim was to explore the neuroprotective efficacy and the possible mechanisms of emodin. In our study, synaptic proteins and oxidative stress damage were examined after human neuroblastoma SH-SY5Y cells were treated with high doses of NaF for 24 hours. Moreover, pretreatment with emodin was used to shed light on the neuroprotective effects in NaF-induced toxicity in SH-SY5Y cells. We found that NaF significantly lowered the protein expressions of SNAP 25, synaptophysin and PSD 95 in SH-SY5Y cells. In addition, NaF exposure increased the protein expression of p-ERK1/2 and decreased the protein expressions of Nrf2 and HO-1, as well as facilitated increasing ROS, 4-hydroxynonenal (4-HNE), and 8-Hydroxy-2'-deoxyguanosine (8-OHdG). Pretreatment with emodin significantly recovered these alterations caused by NaF. These data implied that the neuroprotective effects of emodin and pointed to the promising utilization for protecting against neurotoxicity induced by fluoride.


Assuntos
Emodina/farmacologia , Fluoretos/toxicidade , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/metabolismo , Fármacos Neuroprotetores/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Sinapses/efeitos dos fármacos , Antioxidantes/metabolismo , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Humanos , Neuroblastoma/metabolismo , Síndromes Neurotóxicas/metabolismo , Síndromes Neurotóxicas/prevenção & controle , Espécies Reativas de Oxigênio/metabolismo , Sinapses/metabolismo , Sinapses/patologia , Sinaptofisina/metabolismo
16.
Anesthesiology ; 132(5): 1062-1079, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32149777

RESUMO

BACKGROUND: Overactivation of ryanodine receptors and the resulting impaired calcium homeostasis contribute to Alzheimer's disease-related pathophysiology. This study hypothesized that exposing neuronal progenitors derived from induced pluripotent stems cells of patients with Alzheimer's disease to dantrolene will increase survival, proliferation, neurogenesis, and synaptogenesis. METHODS: Induced pluripotent stem cells obtained from skin fibroblast of healthy subjects and patients with familial and sporadic Alzheimer's disease were used. Biochemical and immunohistochemical methods were applied to determine the effects of dantrolene on the viability, proliferation, differentiation, and calcium dynamics of these cells. RESULTS: Dantrolene promoted cell viability and proliferation in these two cell lines. Compared with the control, differentiation into basal forebrain cholinergic neurons significantly decreased by 10.7% (32.9 ± 3.6% vs. 22.2 ± 2.6%, N = 5, P = 0.004) and 9.2% (32.9 ± 3.6% vs. 23.7 ± 3.1%, N = 5, P = 0.017) in cell lines from sporadic and familial Alzheimer's patients, respectively, which were abolished by dantrolene. Synapse density was significantly decreased in cortical neurons generated from stem cells of sporadic Alzheimer's disease by 58.2% (237.0 ± 28.4 vs. 99.0 ± 16.6 arbitrary units, N = 4, P = 0.001) or familial Alzheimer's disease by 52.3% (237.0 ± 28.4 vs.113.0 ± 34.9 vs. arbitrary units, N = 5, P = 0.001), which was inhibited by dantrolene in the familial cell line. Compared with the control, adenosine triphosphate (30 µM) significantly increased higher peak elevation of cytosolic calcium concentrations in the cell line from sporadic Alzheimer's patients (84.1 ± 27.0% vs. 140.4 ± 40.2%, N = 5, P = 0.049), which was abolished by the pretreatment of dantrolene. Dantrolene inhibited the decrease of lysosomal vacuolar-type H-ATPase and the impairment of autophagy activity in these two cell lines from Alzheimer's disease patients. CONCLUSIONS: Dantrolene ameliorated the impairment of neurogenesis and synaptogenesis, in association with restoring intracellular Ca homeostasis and physiologic autophagy, cell survival, and proliferation in induced pluripotent stem cells and their derived neurons from sporadic and familial Alzheimer's disease patients.


Assuntos
Doença de Alzheimer , Dantroleno/farmacologia , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Relaxantes Musculares Centrais/farmacologia , Neurogênese/efeitos dos fármacos , Sinapses/efeitos dos fármacos , Adulto , Doença de Alzheimer/patologia , Células Cultivadas , Humanos , Células-Tronco Pluripotentes Induzidas/patologia , Células-Tronco Pluripotentes Induzidas/fisiologia , Masculino , Pessoa de Meia-Idade , Neurogênese/fisiologia , Distribuição Aleatória , Sinapses/fisiologia
17.
Toxicology ; 436: 152437, 2020 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-32169474

RESUMO

Mild cognitive impairment in Parkinson's disease (PD-MCI) is considered as a nonmotor clinical symptom in Parkinson's disease (PD). Microglia-mediated inflammation contributes to cognitive function impairment. Poloxamer 188 (P188) is an amphipathic polymer which has cytoprotective effect in 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP)-induced dopaminergic (DA) neurons degeneration in PD. But whether P188 could ameliorate cognitive impairment in PD is still illusive. In the present study, we showed in a mouse model that paraquat (10 mg/kg) and maneb (30 mg/kg) (P + M) treatment intraperitoneally twice a week for 6 consecutive weeks resulted in cognitive deficits and synapse loss in hippocampus, together with DA neuron damage in the substantia nigra pars compacta (SNpc). P188 (0.8 g/kg) injection via tail vein 30 min after P + M administration significantly restored DA neuron numbers in SNpc and synapse density in hippocampus, and alleviated P + M-mediated cognitive function impairment in novel object recognition task and morris water maze task (MWM). Pathological synapse loss might be attributed to increased microglial phagocytic activity and cell density, and P188 prevented P + M-induced phagocytic state changes of microglia, such as increase in cell body size and decrease in process length, and upregulated microglia abundance in hippocampus. Consistently, P188 attenuated P + M-mediated increased mRNA levels of microglia proliferation related CSF1r and CSF2ra, microglial engulfment associated CD68, ICAM1, and ICAM2, and pro-inflammatory IL-6, IL-1ß, CD11b, and TNF-α in hippocampus. Together, these findings suggest that the biocompatible polymer P188 blunts microglia activation which may promote synaptic loss and exacerbate cognitive function in a mouse model of PD-MCI.


Assuntos
Anti-Inflamatórios/farmacologia , Comportamento Animal/efeitos dos fármacos , Cognição/efeitos dos fármacos , Disfunção Cognitiva/prevenção & controle , Hipocampo/efeitos dos fármacos , Mediadores da Inflamação/metabolismo , Transtornos Parkinsonianos/tratamento farmacológico , Parte Compacta da Substância Negra/efeitos dos fármacos , Poloxâmero/farmacologia , Animais , Proliferação de Células/efeitos dos fármacos , Disfunção Cognitiva/induzido quimicamente , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/psicologia , Modelos Animais de Doenças , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/patologia , Hipocampo/metabolismo , Hipocampo/patologia , Masculino , Maneb , Aprendizagem em Labirinto/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Microglia/efeitos dos fármacos , Microglia/metabolismo , Microglia/patologia , Degeneração Neural , Paraquat , Transtornos Parkinsonianos/induzido quimicamente , Transtornos Parkinsonianos/metabolismo , Transtornos Parkinsonianos/psicologia , Parte Compacta da Substância Negra/metabolismo , Parte Compacta da Substância Negra/patologia , Fagocitose/efeitos dos fármacos , Poloxâmero/farmacocinética , Reconhecimento Psicológico/efeitos dos fármacos , Sinapses/efeitos dos fármacos , Sinapses/metabolismo , Sinapses/patologia
18.
Mol Pharmacol ; 97(5): 336-350, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32111699

RESUMO

Positive allosteric modulators (PAMs) of AMPA receptors boost cognitive performance in preclinical and clinical studies. Their therapeutic window is narrow, however, and clinical application will likely only occur if greater discrimination in activity is achieved. Toward that end, we compared the modulatory activity of two PAMs recently considered as clinical candidates, LY451395 (mibampator) and PF-04958242/BIIB104, on recombinant and native AMPA receptors (AMPARs). We found that the principle molecular determinant that shaped modulatory activity of both PAMs on deactivation (recombinant) and decay (synaptic) of AMPARs was the auxiliary protein incorporated into the receptor complexes. AMPARs containing the stargazin/γ2 transmembrane AMPAR regulatory protein (TARP) were slowed to a >10-fold degree by both PAMs as compared with those incorporating γ8 TARP. Neither subunit composition nor flip/flop splice variation had substantive effect. Similarly, stargazin/γ2-containing mossy fiber EPSCs in cerebellar granule neurons were slowed to a ∼5-fold greater degree than EPSCs in hippocampal CA1 pyramidal cell neurons, which express the γ8 TARP. LY451395 exhibited greater efficacy than BIIB104 at both synapses. These studies provide insight into the receptor constituents that determine efficacy of sulfonamide PAMs. We conclude that compounds that discriminate between AMPARs complexed with distinct TARPs, and particularly those with lower stargazin/γ2 efficacy such as BIIB104, could act as viable procognitive therapeutics. SIGNIFICANCE STATEMENT: Positive allosteric modulators (PAMs) of AMPA receptors enhance cognitive function in a variety of preclinical models. A clearer understanding of the critical determinants of PAM activity could yield critical insight into pathways to maximize their therapeutic index. Here we show that auxiliary proteins for AMPARs play a major, but thus far underappreciated, role in shaping recombinant and neuronal AMPAR modulation by two clinical candidate PAMs. These data will inform both clinical outcomes as well as future rational development of new modulators.


Assuntos
Proteínas de Membrana/metabolismo , Receptores de AMPA/metabolismo , Regulação Alostérica/efeitos dos fármacos , Animais , Compostos de Bifenilo/farmacologia , Cerebelo/metabolismo , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Feminino , Células HEK293 , Hipocampo/metabolismo , Humanos , Masculino , Camundongos Endogâmicos C57BL , Multimerização Proteica/efeitos dos fármacos , Subunidades Proteicas/metabolismo , Pirimidinas/farmacologia , Sulfonamidas/farmacologia , Sinapses/efeitos dos fármacos , Sinapses/metabolismo , Resultado do Tratamento , Triazóis/farmacologia
19.
Br J Anaesth ; 124(5): 603-613, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32151384

RESUMO

BACKGROUND: The most currently used general anaesthetics are potent potentiators of γ-aminobutyric acid A (GABAA) receptors and are invariably neurotoxic during the early stages of brain development in preclinical animal models. As causality between GABAA potentiation and anaesthetic-induced developmental neurotoxicity has not been established, the question remains whether GABAergic activity is crucial for promoting/enhancing neurotoxicity. Using the neurosteroid analogue, (3α,5α)-3-hydroxy-13,24-cyclo-18,21-dinorchol-22-en-24-ol (CDNC24), which potentiates recombinant GABAA receptors, we examined whether this potentiation is the driving force in inducing neurotoxicity during development. METHODS: The neurotoxic potential of CDNC24 was examined vis-à-vis propofol (2,6-diisopropylphenol) and alphaxalone (5α-pregnan-3α-ol-11,20-dione) at the peak of rat synaptogenesis. In addition to the morphological neurotoxicity studies of the subiculum and medial prefrontal cortex (mPFC), we assessed the extra-, pre-, and postsynaptic effects of these agents on GABAergic neurotransmission in acute subicular slices from rat pups. RESULTS: CDNC24, like alphaxalone and propofol, caused dose-dependent hypnosis in vivo, with a higher therapeutic index. CDNC24 and alphaxalone, unlike propofol, did not cause developmental neuroapoptosis in the subiculum and mPFC. Propofol potentiated post- and extrasynaptic GABAA currents as evidenced by increased spontaneous inhibitory postsynaptic current (sIPSC) decay time and prominent tonic currents, respectively. CDNC24 and alphaxalone had a similar postsynaptic effect, but also displayed a strong presynaptic effect as evidenced by decreased frequency of sIPSCs and induced moderate tonic currents. CONCLUSIONS: The lack of neurotoxicity of CDNC24 and alphaxalone may be at least partly related to suppression of presynaptic GABA release in the developing brain.


Assuntos
Encéfalo/efeitos dos fármacos , Hipnóticos e Sedativos/toxicidade , Pregnanodionas/toxicidade , Esteroides/toxicidade , Animais , Apoptose/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Relação Dose-Resposta a Droga , Agonistas de Receptores de GABA-A/administração & dosagem , Agonistas de Receptores de GABA-A/farmacologia , Agonistas de Receptores de GABA-A/toxicidade , Hipocampo/efeitos dos fármacos , Hipocampo/crescimento & desenvolvimento , Hipocampo/metabolismo , Hipocampo/patologia , Hipnóticos e Sedativos/administração & dosagem , Hipnóticos e Sedativos/farmacologia , Potenciais Pós-Sinápticos Inibidores/efeitos dos fármacos , Síndromes Neurotóxicas/etiologia , Síndromes Neurotóxicas/patologia , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/crescimento & desenvolvimento , Córtex Pré-Frontal/patologia , Pregnanodionas/administração & dosagem , Pregnanodionas/farmacologia , Propofol/administração & dosagem , Propofol/farmacologia , Propofol/toxicidade , Ratos Sprague-Dawley , Receptores de GABA-A/metabolismo , Esteroides/administração & dosagem , Esteroides/farmacologia , Sinapses/efeitos dos fármacos , Sinapses/fisiologia
20.
Food Funct ; 11(2): 1235-1244, 2020 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-32048672

RESUMO

Panaxynol (PAL, also called falcarinol) is widely found in plants of the Umbelliferae family, among which carrots are rich in PAL, so it is proved to be edible. PAL has neuroprotective effects and other pharmacological activities. This study aimed to explore the effects and mechanisms of action of PAL on chronic unpredictable mild stress (CUMS)-induced anxiety and depression in mice. The effects of PAL on behavioral activities in mice were first assessed by a CUMS-induced depression model. The secretion levels of monoamine neurotransmitters and hypothalamic-pituitary-adrenal (HPA) axis-related hormones were measured by ELISA. Western blotting was used to analyze the expression of glucocorticoid receptor (GR), glutamate receptor 1 (GluR1) and synapse-associated protein in the hippocampus. The behavioral experiment results showed that PAL can improve exploratory behavior and activities in mice. Meanwhile, PAL can significantly activate the release of 5-HT/5-HIAA and DA/HVA in the hippocampus. It inhibits the expression of adrenocorticotropic hormone (ACTH), corticosterone (CORT) and corticotrophin-releasing hormone (CRH) in serum and the hypothalamus. The contents of GR, glutamate receptor 1 (GluR1), postsynaptic density-95 (PSD95) and synapsin I protein in the hippocampus significantly increased. Studies have found that PAL can inhibit the hyperfunction of the HPA axis, which may be achieved by regulating HPA axis hormones and GR. Meanwhile, PAL promotes the release of 5-HT and DA in the hippocampus and improves synaptic plasticity in the hippocampus, allowing neurotransmitters to function more effectively. Therefore, PAL may improve anxiety and depression-like effects in mice through the abovementioned effects.


Assuntos
Ansiedade/fisiopatologia , Comportamento Animal/efeitos dos fármacos , Depressão/fisiopatologia , Di-Inos/farmacologia , Álcoois Graxos/farmacologia , Sistema Hipotálamo-Hipofisário/efeitos dos fármacos , Animais , Doença Crônica , Modelos Animais de Doenças , Hipocampo/química , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos ICR , Neurotransmissores/metabolismo , Estresse Psicológico/fisiopatologia , Sinapses/efeitos dos fármacos , Sinapses/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...