Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.210
Filtrar
1.
Anticancer Res ; 41(3): 1219-1229, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33788713

RESUMO

BACKGROUND: CD105 is highly expressed on human activated endothelial cells (ECs), is an important component of the TGF-ß1 receptor complex and is essential for angiogenesis. CD105 expression is up-regulated in activated ECs and is an important potential marker for cancer prognosis. MATERIALS AND METHODS: In vitro rat myoblasts transfected with the L-CD105 and S-CD105 transfectants. The transfectants were treated with TGF-ß1 for the angiogenesis study. RESULTS: L-CD105 affects cell proliferation in the presence and absence of TGF-ß1, and inhibits p-ERK1/2, p-MEK1/2 and p-c-Jun in L-CD105 transfectants compared to controls. The induction of phospho-ERK1/2 following treatment with TGF-ß1 remained significantly lower in L-CD105 transfectants compared to controls. CONCLUSION: L-CD105 inhibits the phosphorylation of ERK1/2, MEK1/2, c-Jun1/2/3, and associated signalling intermediates. CD105 modulates cell growth and TGF-ß1 induced cell signalling through ERK-c-Jun expression.


Assuntos
Endoglina/fisiologia , Sistema de Sinalização das MAP Quinases/fisiologia , Neoplasias/prevenção & controle , Animais , Proliferação de Células , Células Cultivadas , MAP Quinases Reguladas por Sinal Extracelular/fisiologia , Humanos , Neoplasias/irrigação sanguínea , Neovascularização Patológica/etiologia , Fosforilação , Ratos , Fator de Crescimento Transformador beta1/farmacologia
2.
Anticancer Res ; 41(3): 1231-1242, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33788714

RESUMO

BACKGROUND/AIM: Successful therapy of EGFR-mutant NSCLC remains a challenging task despite initial benefits with the usage of EGFR tyrosine kinase inhibitors. Cancer immunotherapy has shown promising results in certain tumors, but response rate in EGFR-mutant NCLC is low, because these tumors are thought to have weak immunogenicity. MATERIALS AND METHODS: We used data from in vivo NSCLC databases as well as from in vitro cell culture experiments to investigate the regulation of CD73 by EGFR. RESULTS: EGFR expression was correlated with CD73 expression in patients' datasets, with EGFR-mutant tumors showing higher expression than their EGFR wildtype counterparts. Treatment of EGFR-mutant NSCLC cell lines with EGFR TKI reduced expression of CD73 at both mRNA and protein level. Among EGFR downstream signaling pathways, the Ras-Raf-ERK pathway was involved in the regulation of CD73 expression directly via ERK1/2 without the engagement of RSKs or MSKs. CONCLUSION: The results of this study may provide novel therapeutic strategies for the treatment of oncogene-driven NSCLC.


Assuntos
5'-Nucleotidase/fisiologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , MAP Quinases Reguladas por Sinal Extracelular/fisiologia , Neoplasias Pulmonares/tratamento farmacológico , Sistema de Sinalização das MAP Quinases , 5'-Nucleotidase/antagonistas & inibidores , 5'-Nucleotidase/genética , Carcinoma Pulmonar de Células não Pequenas/fisiopatologia , Linhagem Celular Tumoral , Receptores ErbB/fisiologia , Proteínas Ligadas por GPI/antagonistas & inibidores , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/fisiologia , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Pulmonares/fisiopatologia , Sistema de Sinalização das MAP Quinases/fisiologia , Transdução de Sinais/fisiologia
3.
Ecotoxicol Environ Saf ; 213: 112066, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33610944

RESUMO

As an emerging pollutant in the aquatic environment, microcystin-LR (MC-LR) can enter the body through multiple pathways, and then induce apoptosis and gonadal damage, affecting reproductive function. Previous studies focused on male reproductive toxicity induced by MC-LR neglecting its effects on females. The apoptotic signal-regulated kinase 1 (ASK1) is an upstream protein of P38/JNK pathway, closely associated with apoptosis and organ damage. However, the role of ASK1 in MC-LR-induced reproductive toxicity is unclear. Therefore, this study investigated the role of ASK1 in mouse ovarian injury and apoptosis induced by MC-LR. After MC-LR exposure, ASK1 expression in mouse ovarian granulosa cells was increased at the protein and mRNA levels, and decreased following pretreatment by antioxidant N-acetylcysteine, suggesting that MC-LR-induced oxidative stress has a regulatory role in ASK1 expression. Inhibition of ASK1 expression with siASK1 and NQDI-1 could effectively alleviate MC-LR-induced mitochondrial membrane potential damage and apoptosis in ovarian granulosa cells, as well as pathological damage, apoptosis and the decreased gonadal index in ovaries of C57BL/6 mice. Moreover, the P38/JNK pathway and downstream apoptosis-related proteins (P-P38, P-JNK, P-P53, Fas) and genes (MKK4, MKK3, Ddit3, Mef2c) were activated in vivo and vitro, but their activation was restrained after ASK1 inhibition. Data presented herein suggest that the ASK1-mediated P38/JNK pathway is involved in ovarian injury and apoptosis induced by MC-LR in mice. It is confirmed that ASK1 has an important role in MC-LR-induced ovarian injury, which provides new insights for preventing MCs-induced reproductive toxicity in females.


Assuntos
Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Toxinas Marinhas/toxicidade , Microcistinas/toxicidade , Animais , Apoptose/efeitos dos fármacos , Proteínas Reguladoras de Apoptose , Feminino , MAP Quinase Quinase Quinase 5/metabolismo , Sistema de Sinalização das MAP Quinases/fisiologia , Masculino , Potencial da Membrana Mitocondrial , Camundongos , Camundongos Endogâmicos C57BL , Ovário
4.
Life Sci ; 271: 119188, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33581126

RESUMO

AIMS: Enterovirus 71 (EV71) is one of the main viruses that cause hand-foot-mouth disease; however, its pathogenic mechanism remains unclear. This study characterized the relationship between EV71 infection and autophagy in vivo and explored the molecular mechanism underlying EV71-induced autophagy. MATERIALS AND METHODS: A mouse model of EV71 infection was prepared by intraperitoneally injecting one-day-old BALB/c suckling mice with 30 µL/g of EV71 virus stock solution for 3 days. The behavior, fur condition, weight, and mice mortality were monitored, and disease scores were calculated. The pathological damage to the brain, lung, and muscle tissues after the viral infection was assessed by hematoxylin and eosin staining. Western blot and immunofluorescence analyses were used to detect the expression levels of viral protein 1, Beclin-1, microtubule-associated protein light chain 3B, mammalian target of rapamycin (mTOR), phosphorylated (p)-mTOR, extracellular signal-regulated protein kinase (ERK) 1/2, and p-ERK. KEY FINDINGS: EV71 infection can trigger autophagy in the brains, lungs, and muscles of infected mice. The autophagy response triggered by EV71 is achieved by the simultaneous mTOR inhibition and the ERK pathway activation. Blocking the mTOR pathway may aggravate autophagy, whereas ERK inhibition alleviates autophagy but cannot completely prevent it. SIGNIFICANCE: EV71 infection can induce autophagy in mice, involving mTOR and ERK signaling pathways. These two signaling pathways are independent and do not interfere with each other.


Assuntos
Autofagia/fisiologia , Enterovirus Humano A/metabolismo , Infecções por Enterovirus/metabolismo , Sistema de Sinalização das MAP Quinases/fisiologia , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/metabolismo , Animais , Animais Recém-Nascidos , Linhagem Celular Tumoral , Infecções por Enterovirus/patologia , Ativação Enzimática/fisiologia , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C
5.
Life Sci ; 271: 119181, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33581128

RESUMO

AIMS: To investigate the roles and mechanisms of C. trachomatis glycogen synthase (GlgA) in regulating the inflammatory response in THP-1 cells. MAIN METHODS: In this work, after THP-1 cells were stimulated with GlgA, transcript and protein expression levels were measured by qRT-PCR and ELISA, respectively. Western blotting and immunofluorescence were used to determine the signaling pathway involved in the inflammatory mechanism. KEY FINDINGS: GlgA elicited the expression of interleukin-8 (IL-8), interleukin-1beta (IL-1ß) and tumor necrosis factor alpha (TNF-α) in THP-1 cells, and the blockade of TLR2 and TLR4 signaling abrogated the induction of IL-8, TNF-α and IL-1ß expression. Similarly, IL-8, IL-1ß and TNF-α secretion was reduced by transfection with a dominant negative plasmid (pDeNyhMyD88). Moreover, Western blotting and immunofluorescence experiments further validated that MAPKs and NF-кB signaling are involved in the transcription and translation of these cytokines. Treatment of the cells with ERK and JNK inhibitors dramatically attenuated the induction of IL-8, IL-1ß and TNF-α. SIGNIFICANCE: These results suggest that GlgA contributes to inflammation during C. trachomatis infection via the TLR2, TLR4 and MAPK/NF-кB pathways, which may enhance our understanding of the pathogenesis of C. trachomatis.


Assuntos
Chlamydia trachomatis/enzimologia , Citocinas/metabolismo , Glicogênio Sintase/farmacologia , Sistema de Sinalização das MAP Quinases/fisiologia , Receptor 2 Toll-Like/metabolismo , Receptor 4 Toll-Like/metabolismo , Relação Dose-Resposta a Droga , Humanos , Mediadores da Inflamação/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Células THP-1
7.
Arch Virol ; 166(3): 921-927, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33486628

RESUMO

Replication of Newcastle disease virus (NDV) is regulated by various host mechanisms, but the role of the extracellular signal-regulated kinase (ERK) pathway in regulating NDV replication is an open question. In this study, the relationship between the ERK pathway and NDV replication was investigated. NDV activated the ERK signaling in chicken embryo fibroblasts at the late stage of infection, correlating to expression of viral proteins. Specific blockage of the ERK pathway activation significantly decreased the transcription and translation levels of viral genes as well as virus replication and the cytopathogenic effect caused by NDV. Our results demonstrate that activation of the ERK pathway is required for NDV replication.


Assuntos
MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Sistema de Sinalização das MAP Quinases/fisiologia , Doença de Newcastle/patologia , Vírus da Doença de Newcastle/genética , Replicação Viral/fisiologia , Animais , Linhagem Celular , Embrião de Galinha , Galinhas/virologia , Efeito Citopatogênico Viral/genética , Ativação Enzimática , Doença de Newcastle/virologia , Vírus da Doença de Newcastle/crescimento & desenvolvimento
8.
Life Sci ; 267: 118934, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33385405

RESUMO

The biological functions of melatonin range beyond the regulation of the circadian rhythm. With regard to cancer, melatonin's potential to suppress cancer initiation, progression, angiogenesis and metastasis as well as sensitizing malignant cells to conventional chemo- and radiotherapy are among its most interesting effects. The targets at which melatonin initiates its anti-cancer effects are in common with those of a majority of existing anti-cancer agents, giving rise to the notion that this molecule is a pleiotropic agent sharing many features with other antineoplastic drugs in terms of their mechanisms of action. Among these common mechanisms of action are the regulation of several major intracellular pathways including mitogen-activated protein kinase (MAPK), extracellular signal-regulated kinase (ERK) and protein kinase B (AKT/PKB) signaling. The important mediators affected by melatonin include cyclins, nuclear factor-κB (NF-κB), heat shock proteins (HSPs) and c-Myc, all of which can serve as potential targets for cancer drugs. Melatonin also exerts some of its anti-cancer effects via inducing epigenetic modifications, DNA damage and mitochondrial disruption in malignant cells. The regulation of these mediators by melatonin mitigates tumor growth and invasiveness via modulating their downstream responsive genes, housekeeping enzymes, telomerase reverse transcriptase, apoptotic gene expression, angiogenic factors and structural proteins involved in metastasis. Increasing our knowledge on how melatonin affects its target sites will help find ways of exploiting the beneficial effects of this ubiquitously-acting molecule in cancer therapy. Acknowledging this, here we reviewed the most studied target pathways attributed to the anti-cancer effects of melatonin, highlighting their therapeutic potential.


Assuntos
Melatonina/metabolismo , Melatonina/farmacologia , Neoplasias/tratamento farmacológico , Animais , Antineoplásicos/farmacologia , Ritmo Circadiano/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos , Sistema de Sinalização das MAP Quinases/fisiologia , Melatonina/fisiologia , NF-kappa B/metabolismo , Neoplasias/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Transdução de Sinais/efeitos dos fármacos , Telomerase/metabolismo
9.
Life Sci ; 267: 118978, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33412209

RESUMO

AIMS: Vascular smooth muscle cell (VSMC) phenotype shift is involved in the pathophysiology of vascular injury or platelet-derived growth factor (PDGF)-induced abnormal proliferation and migration of VSMCs. We aimed to investigate the underlying mechanism involved in PDGF-mediated signaling pathways and autophagy regulation followed by VSMC phenotype shift. MAIN METHODS: The proliferation, migration and apoptosis of cultured rat aortic VSMCs were measured, and cells undergoing phenotype shift and autophagy were examined. Specific inhibitors for target proteins in signaling pathways were applied to clarify their roles in regulating cell functions. KEY FINDINGS: PDGF-BB stimulation initiated autophagy activation and synthetic phenotype transition by decreasing α-smooth muscle-actin (SMA), calponin and myosin heavy chain (MHC) and increasing osteopontin (OPN) expression. However, U0126, a potent extracellular signal-regulated kinase 1/2 (Erk1/2) inhibitor, decreased PDGF-BB-induced LC3 expression, while rapamycin, an inhibitor of the mammalian target of rapamycin (mTOR), increased it. Furthermore, U0126 decreased the expresseion of autophagy-related genes (Atgs) such as beclin-1, Atg7, Atg5, and Atg12-Atg5 complex, indicating that Erk1/2 is a regulator of PDGF-BB-induced VSMC autophagy. Regardless of autophagy inhibition by U0126 or activation by rapamycin, the PDGF-BB-induced decrease in SMA, calponin and MHC and increase in OPN expression were inhibited. Furthermore, PDGF-BB-stimulated VSMC proliferation, migration and proliferating cell nuclear antigen (PCNA) expression were inhibited by U0126 and rapamycin. SIGNIFICANCE: These findings suggest that PDGF-BB-induced autophagy is strongly regulated by Erk1/2, an mTOR-independent pathway, and any approach for targeting autophagy modulation is a potential therapeutic strategy for addressing abnormal VSMC proliferation and migration.


Assuntos
Autofagia/fisiologia , Becaplermina/metabolismo , Músculo Liso Vascular/metabolismo , Animais , Becaplermina/genética , Becaplermina/farmacologia , Proteínas de Ligação ao Cálcio , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Sistema de Sinalização das MAP Quinases/fisiologia , Proteínas dos Microfilamentos , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Miócitos de Músculo Liso/metabolismo , Miosinas , Fenótipo , Antígeno Nuclear de Célula em Proliferação/metabolismo , Proteínas Proto-Oncogênicas c-sis/metabolismo , Ratos , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo
10.
Am J Physiol Gastrointest Liver Physiol ; 320(3): G366-G379, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33470189

RESUMO

Activation of mitogen-activated protein kinases (MAPKs) is a key factor in the pathogenesis of cancer, although the specific role of mitogen-activated protein kinase kinase (MEK1) is not well understood. Villin promoter-driven Cre expression was used to excise a floxed stop cassette from a phosphomimetically constitutively activated MEK1 (caMEK1) expression construct in the intestine of C57BL/6 mice. Zygosity status of caMEK1 afforded assessment of the dose dependence of the effect. The expected mendelian distribution of genotypes and sex was observed in 443 progenies. Between 21 and 63 days of life, caMEK1 had no effect on body weight in male mice, but reduced body weight in female mice homozygous for caMEK1. At 10 wk of age, the ileum of caMEK1-expressing mice was characterized by the finding of dysplasia and profound changes in overall architecture. Paneth cells were nearly absent in caMEK1 homozygotes. Targeted proteomic profiling via reverse phase protein array analyses with confirmatory Western blotting revealed significant changes in protein and phosphoprotein expression, including upregulation of proteins downstream of MEK1, associated with enhanced markers of proliferation, diminished apoptosis, alterations in cell-fate determination, cell-cell interactions, and tight junctions. Long-term viability of caMEK1 homozygous mice was reduced with no survival beyond 1 yr. Invasive adenocarcinoma developed in three of ten older mice [15 wk (homozygous), 26 wk (homozygous), and 35 wk (heterozygous) of age]. Expression of caMEK1 in enterocytes leads to marked derangements in the intestinal epithelium, which is associated with a predisposition to the development of invasive cancer.NEW & NOTEWORTHY The ileum of mice with constitutive expression of activated MEK1 (via phosphomimetic changes) in enterocytes is markedly abnormal with architectural distortion and cytologic atypia, which evolves into an adenoma invasive carcinoma sequence. Phosphoproteomic analysis reveals upregulation of proteins downstream of MEK1, associated with enhanced markers of proliferation, diminished apoptosis, alterations in cell-fate determination, cell-cell interactions, and tight junctions. This novel model provides new insights into intestinal homeostasis and carcinogenesis.


Assuntos
Enterócitos/metabolismo , Íleo/citologia , Neoplasias Intestinais/metabolismo , MAP Quinase Quinase 1/metabolismo , Animais , Diferenciação Celular/fisiologia , Feminino , Deleção de Genes , Predisposição Genética para Doença , Neoplasias Intestinais/genética , Longevidade , MAP Quinase Quinase 1/genética , Sistema de Sinalização das MAP Quinases/fisiologia , Masculino , Camundongos
11.
J Ethnopharmacol ; 269: 113669, 2021 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-33338591

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Tiao Geng (TG) decoction is a Chinese herbal medicine extract that has been utilized for the treatment of menopausal symptoms for a history of over 30 years. In our previous study, we suggest that TG decoction possibly exerts an anti-apoptotic effect on hypothalamic neurons of ovariectomized rats via the ASK1/MKK7/JNK pathway. Tributyltin chloride (TBTC) causes oxidative damage and induces apoptosis of primary hypothalamic neurons in rats. AIM OF THE STUDY: The present work aimed to explore the inhibition of TG decoction on TBTC-induced GT1-7 cell apoptosis and its possible molecular mechanism. MATERIALS AND METHODS: The GT1-7 cell line was exposed to TG decoction at diverse doses (31.25, 62.5, 125 µg/mL) for 24 h and later with TBTC (1 mg/L) for 1 h, with 17ß-E2 (100 nM) treatment being the positive control. Then, CCK8 assay was conducted to evaluate cell viability, while flow cytometric analysis was conducted to examine the apoptosis level. Related pathways and differentially expressed proteins were identified by tandem mass tag (TMT)-based quantitative phosphoproteomics. qRT-PCR was carried out to examine mRNA levels of Bax and B-cell lymphoma-2 (Bcl-2). Western blotting was performed to detect the levels of Bax, Bcl-2, c-Jun, c-Jun N-terminal kinase (JNK), Caspase-3 (Casp3), Mitogen-activated protein kinase kinase 7 (MKK7), and apoptosis signal-regulating kinase 1 (ASK1) . Finally, cells were pretreated with SP600125, an inhibitor of JNK, later the expression of JNK and Casp3 was measured. RESULTS: Application of TG decoction mitigated the GT1-7 cell apoptosis and injury caused by TBTC; besides, it inhibited the activation of the ASK1/MKK7/JNK pathway. Moreover, Bcl-2/Bax ratio became higher, and the MKK7, ASK1, Casp3 and c-Jun levels were inhibited. Besides, TG decoction combined with SP600125 (the JNK inhibitor) more significantly inhibited GT1-7 cell apoptosis caused by TBTC. CONCLUSION: As discovered from the experiment in this study, TG decoction has a neuroprotective effect, which is achieved through inhibiting the ASK1/MKK7/JNK signal transduction pathway to reduce GT1-7 cell apoptosis.


Assuntos
Apoptose/efeitos dos fármacos , Medicamentos de Ervas Chinesas/farmacologia , MAP Quinase Quinase Quinase 5/antagonistas & inibidores , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Proteínas Quinases Ativadas por Mitógeno/antagonistas & inibidores , Compostos de Trialquitina/toxicidade , Animais , Apoptose/fisiologia , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Relação Dose-Resposta a Droga , MAP Quinase Quinase Quinase 5/metabolismo , Sistema de Sinalização das MAP Quinases/fisiologia , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Ratos , Compostos de Trialquitina/antagonistas & inibidores
12.
Cancer Sci ; 112(2): 781-791, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33315285

RESUMO

Malignant pleural effusion is a common complication in metastatic breast cancer (MBC); however, changes in the pleural microenvironment are poorly characterized, especially with respect to estrogen receptor status. Histologically, MBC presents with increased microvessels beneath the parietal and visceral pleura, indicating generalized angiogenic activity. Breast cancer-associated pleural fluid (BAPF) was collected and cultured with HUVECs to recapitulate the molecular changes in subpleural endothelial cells. The clinical progression of triple-negative breast cancer (TNBC) is much more aggressive than that of hormone receptor-positive breast cancer (HPBC). However, BAPF from HPBC (BAPF-HP) and TNBC (BAPF-TN) homogeneously induced endothelial proliferation, migration, and angiogenesis. In addition, BAPF elicited negligible changes in the protein marker of endothelial-mesenchymal transition. Both BAPF-HP and BAPF-TN exclusively upregulated JNK signaling among all MAPKs in HUVECs. By contrast, the response to the JNK inhibitor was insignificant in Transwell and tube formation assays of the HUVECs cultured with BAPF-TN. The distinct contribution of p-JNK to endothelial angiogenesis was consequently thought to be induced by BAPF-HP and BAPF-TN. Due to increased angiogenic factors in HUVECs cultured with BAPF, vascular endothelial growth factor receptor 2 (VEGFR2) inhibitor was applied accordingly. Responses to VEGFR2 blockade were observed in both BAPF-HP and BAPF-TN concerning endothelial migration and angiogenesis. In conclusion, the above results revealed microvessel formation in the pleura of MBC and the underlying activation of p-JNK/VEGFR2 signaling. Distinct responses to blocking p-JNK and VEGFR2 in HUVECs cultured with BAPF-HP or BAPF-TN could lay the groundwork for future investigations in treating MBC based on hormone receptor status.


Assuntos
Neoplasias da Mama/patologia , Sistema de Sinalização das MAP Quinases/fisiologia , Neovascularização Patológica/metabolismo , Derrame Pleural Maligno/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Idoso , Neoplasias da Mama/metabolismo , Feminino , Humanos , Pessoa de Meia-Idade , Neovascularização Patológica/patologia , Derrame Pleural Maligno/patologia
13.
J Ethnopharmacol ; 264: 113224, 2021 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-32800928

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Lophatherum gracile Brongn. (L. gracile) has been long used in traditional herbal medicine to clinically clear heat, disinhibit dampness, and treat inflammation. However, the effect of L. gracile on the activation of human neutrophils remains unclear. AIM OF THE STUDY: The aim of current study is to investigate the anti-inflammatory properties of L. gracile extract (LGE) in N-formyl-methionyl-leucyl-phenylalanine (fMLF)-induced activation of human neutrophils. MATERIALS AND METHODS: Superoxide anion generation and elastase release were estimated by spectrophotometry. A series of signaling pathways including mitogen-activated protein kinases (MAPKs) and protein kinase B (Akt), as well as calcium mobilization were studied by Western blot analysis and spectrofluorometry. RESULTS: Our experimental results indicated that the nontoxic dosage of LGE does-dependently inhibited the fMLF-induced superoxide anion (O2•-) generation, elastase release, CD11b expression, adhesion, and chemotactic migration in human neutrophils. LGE selectively inhibited the fMLF-induced phosphorylation of JNK but not p38, ERK, or Akt in human neutrophils. LGE also decreased the intracellular Ca2+ levels ([Ca2+]i) in fMLF-activated human neutrophils. However, a specific JNK inhibitor inhibited the fMLF-induced O2•- generation and CD11b expression, but it had no effect on [Ca2+]i in human neutrophils. CONCLUSIONS: LGE exhibited anti-inflammatory activities in fMLF-activated human neutrophils. The pharmacological mechanisms of LGE-repressed neutrophilic inflammation were through two independent pathways, JNK signaling and calcium mobilization. Our results suggested that LGE holds the potential to be developed as an anti-inflammatory botanical medicine.


Assuntos
Anti-Inflamatórios/farmacologia , Sinalização do Cálcio/efeitos dos fármacos , Medicamentos de Ervas Chinesas/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Neutrófilos/efeitos dos fármacos , Plantas Medicinais , Adulto , Anti-Inflamatórios/isolamento & purificação , Sinalização do Cálcio/fisiologia , Relação Dose-Resposta a Droga , Medicamentos de Ervas Chinesas/isolamento & purificação , Feminino , Humanos , Sistema de Sinalização das MAP Quinases/fisiologia , Masculino , Neutrófilos/metabolismo , Neutrófilos/patologia , Adulto Jovem
14.
Life Sci ; 267: 118983, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33383046

RESUMO

AIMS: The present study aimed to investigate the role and underlying mechanisms of CD166 in cancer stem cell-like (CSCs) phenotype of the radioresistant nasopharyngeal carcinoma cell CNE-2R. MAIN METHODS: Established CD166-shRNA- CNE-2R cell line by lentivirus-mediated silencing CD166. Then, CSC-related genes mRNAs and proteins, and EGFR/ERK1/2 signaling pathway were detected using RT-PCR and western blot. Sphere formation assay was performed to evaluate the sphere formation capacity in CD166-shRNA- CNE-2R cells. The tumorigenesis ability in vivo was examined in nude mice mode. KEY FINDINGS: Downregulation of CD166 inhibited the expression of the CSC-related genes, pEGFR and pERK in vitro and vivo. The capacity to form spheres and tumorigenesis was significantly decreased in CD166-shRNA cells. Furthermore, EGF-stimulated CD166-shRNA cells exhibited an increase in CSC-like traits by activating EGFR/ERK1/2 signaling. SIGNIFICANCE: CD166 induced CSCs formation by activating the EGFR/ERK1/2 signaling pathway in nasopharyngeal carcinoma, which may serve as a critical molecular target for NPC therapeutic strategies.


Assuntos
Antígenos CD/metabolismo , Moléculas de Adesão Celular Neuronais/metabolismo , Proteínas Fetais/metabolismo , Carcinoma Nasofaríngeo/metabolismo , Animais , Antígenos CD/fisiologia , Carcinogênese/patologia , Moléculas de Adesão Celular Neuronais/fisiologia , Linhagem Celular Tumoral , Receptores ErbB/genética , Receptores ErbB/metabolismo , Proteínas Fetais/fisiologia , Humanos , Sistema de Sinalização das MAP Quinases/genética , Sistema de Sinalização das MAP Quinases/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Carcinoma Nasofaríngeo/genética , Carcinoma Nasofaríngeo/patologia , Neoplasias Nasofaríngeas/genética , Neoplasias Nasofaríngeas/metabolismo , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/fisiologia , Fenótipo , Transdução de Sinais
15.
Korean J Parasitol ; 58(4): 393-402, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32871633

RESUMO

Toxoplasma gondii is an intracellular parasite that causes severe disease when the infection occurs during pregnancy. Adenosine is a purine nucleoside involved in numerous physiological processes; however, the role of adenosine receptors in T. gondii-induced trophoblast cell function has not been investigated until now. The goal of the present study was to evaluate the intracellular signaling pathways regulated by adenosine receptors using a HTR-8/SVneo trophoblast cell model of T. gondii infection. HTR8/SVneo human extravillous trophoblast cells were infected with or without T. gondii and then evaluated for cell morphology, intracellular proliferation of the parasite, adenosine receptor expression, TNF-α production and mitogen-activated protein (MAP) kinase signaling pathways triggered by adenosine A3 receptor (A3AR). HTR8/SVneo cells infected with T. gondii exhibited an altered cytoskeletal changes, an increased infection rate and reduced viability in an infection time-dependent manner. T. gondii significantly promoted increased TNF-α production, A3AR protein levels and p38, ERK1/2 and JNK phosphorylation compared to those observed in uninfected control cells. Moreover, the inhibition of A3AR by A3AR siRNA transfection apparently suppressed the T. gondii infection-mediated upregulation of TNF-α, A3AR production and MAPK activation. In addition, T. gondii-promoted TNF-α secretion was dramatically attenuated by pretreatment with PD098059 or SP600125. These results indicate that A3AR-mediated activation of ERK1/2 and JNK positively regulates TNF-α secretion in T. gondii-infected HTR8/SVneo cells.


Assuntos
MAP Quinase Quinase 4/metabolismo , Sistema de Sinalização das MAP Quinases/fisiologia , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Receptor A3 de Adenosina/fisiologia , Toxoplasmose/metabolismo , Trofoblastos/metabolismo , Trofoblastos/parasitologia , Fator de Necrose Tumoral alfa/metabolismo , Células Cultivadas , Humanos
16.
Proc Natl Acad Sci U S A ; 117(34): 20776-20784, 2020 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-32788348

RESUMO

Transcription factor fusions (TFFs) are present in ∼30% of soft-tissue sarcomas. TFFs are not readily "druggable" in a direct pharmacologic manner and thus have proven difficult to target in the clinic. A prime example is the CIC-DUX4 oncoprotein, which fuses Capicua (CIC) to the double homeobox 4 gene, DUX4. CIC-DUX4 sarcoma is a highly aggressive and lethal subtype of small round cell sarcoma found predominantly in adolescents and young adults. To identify new therapeutic targets in CIC-DUX4 sarcoma, we performed chromatin immunoprecipitation sequencing analysis using patient-derived CIC-DUX4 cells. We uncovered multiple CIC-DUX4 targets that negatively regulate MAPK-ERK signaling. Mechanistically, CIC-DUX4 transcriptionally up-regulates these negative regulators of MAPK to dampen ERK activity, leading to sustained CIC-DUX4 expression. Genetic and pharmacologic MAPK-ERK activation through DUSP6 inhibition leads to CIC-DUX4 degradation and apoptotic induction. Collectively, we reveal a mechanism-based approach to therapeutically degrade the CIC-DUX4 oncoprotein and provide a precision-based strategy to combat this lethal cancer.


Assuntos
Regulação Neoplásica da Expressão Gênica/genética , Proteínas de Fusão Oncogênica/metabolismo , Sarcoma/metabolismo , Animais , Biomarcadores Tumorais/genética , Linhagem Celular Tumoral , Fosfatase 6 de Especificidade Dupla/genética , Fosfatase 6 de Especificidade Dupla/metabolismo , Feminino , Genes Homeobox , Humanos , Sistema de Sinalização das MAP Quinases/genética , Sistema de Sinalização das MAP Quinases/fisiologia , Camundongos , Camundongos SCID , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteínas Oncogênicas/genética , Proteínas de Fusão Oncogênica/genética , Proteínas Repressoras/genética , Sarcoma/genética , Sarcoma de Ewing/genética , Sarcoma de Células Pequenas/genética , Fatores de Transcrição/genética , Translocação Genética/genética
17.
J Pharmacol Sci ; 144(1): 23-29, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32653342

RESUMO

Microglia maintain brain homeostasis as the main immune cells in the central nervous system. Activation of sigma-1 receptor (Sig1R) plays neuroprotective and anti-inflammatory roles in microglia. Recent studies showed that Sig1R expression level has been reduced in the brain of the patients with neurodegenerative diseases including Alzheimer's disease. However, the mechanisms underlying the down regulation of the Sig1R has not been clear. Treatment of rat primary cultured microglia with the inflammogen lipopolysaccharide (LPS) significantly decreased the expression of Sig1R mRNA in a concentration and time-dependent manner. The effects of LPS were blocked by pretreatment with TAK-242, a toll-like receptor 4 (TLR4) antagonist. Furthermore, inhibitors of transforming growth factor beta-activated kinase 1 (TAK1), p38 mitogen-activated protein kinase (MAPK) and histone deacetylase 6 (HDAC6) restored the LPS-induced downregulation of Sig1R. Thus, the current findings demonstrate that TLR4 activation leads to the downregulation of the Sig1R expression via TLR4-TAK1-p38 MAPK pathway and the inhibition of HDAC6 can increase Sig1R expression in microglia. The current findings suggest that downregulation of Sig1R may contribute to neuroinflammation-induced microglial dysfunction, regulation of microglial Sig1R may be novel therapeutic drug candidates for neurodegenerative and neuroinflammatory diseases.


Assuntos
Regulação da Expressão Gênica/genética , Expressão Gênica/genética , Desacetilase 6 de Histona/fisiologia , MAP Quinase Quinase Quinases/fisiologia , Sistema de Sinalização das MAP Quinases/genética , Sistema de Sinalização das MAP Quinases/fisiologia , Microglia/metabolismo , Doenças Neurodegenerativas/genética , Receptores sigma/genética , Receptores sigma/metabolismo , Receptor 4 Toll-Like/fisiologia , Proteínas Quinases p38 Ativadas por Mitógeno/fisiologia , Animais , Células Cultivadas , Regulação para Baixo/genética , MAP Quinase Quinase Quinases/metabolismo , Terapia de Alvo Molecular , Doenças Neurodegenerativas/tratamento farmacológico , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Receptores sigma/fisiologia , Receptor 4 Toll-Like/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
18.
Hum Cell ; 33(4): 1186-1196, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32700262

RESUMO

Pancreatic cancer is the fourth most common lethal malignancy with an overall 5-year survival rate of less than 5%. ERas, a novel Ras family member, was first identified in murine embryonic stem cells and is upregulated in various cancers. However, the expression and potential role of ERas in pancreatic cancer have not been investigated. In this study, we found that ERas mRNA and protein were upregulated in pancreatic cancer tissues and cells compared with controls. Knockdown of ERas in pancreatic cancer cells by siRNA significantly decreased cell proliferation, colony formation, migration, and invasion and promoted cell apoptosis in vitro. Epithelial-mesenchymal transition (EMT) is closely related to tumor progression. We observed a significant decrease in N-cadherin expression in pancreatic cancer cells in response to ERas gene silencing by immunofluorescence assay and western blot. Furthermore, tumor growth and EMT were inhibited in xenografts derived from pancreatic cancer cells with ERas downregulation. We further investigated the regulatory mechanisms of ERas in pancreatic cancer and found that ERas may activate the Erk/Akt signaling pathway. Moreover, Erk inhibitor decreased pancreatic cancer cells proliferation and colony formation activities. Our data suggest that targeting ERas and its relevant signaling pathways might represent a novel therapeutic approach for the treatment of pancreatic cancer.


Assuntos
Proliferação de Células/genética , Transição Epitelial-Mesenquimal/genética , Regulação Neoplásica da Expressão Gênica/genética , Sistema de Sinalização das MAP Quinases/genética , Proteína Oncogênica p21(ras)/genética , Proteína Oncogênica p21(ras)/fisiologia , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/genética , Animais , Linhagem Celular Tumoral , Movimento Celular/genética , Progressão da Doença , Humanos , Sistema de Sinalização das MAP Quinases/fisiologia , Masculino , Camundongos Nus , Terapia de Alvo Molecular , Invasividade Neoplásica/genética , Proteína Oncogênica p21(ras)/metabolismo , Neoplasias Pancreáticas/terapia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/uso terapêutico , Transdução de Sinais/fisiologia , Regulação para Cima/genética
19.
Nat Commun ; 11(1): 3494, 2020 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-32661402

RESUMO

Cellular processes are inherently noisy, and the selection for accurate responses in presence of noise has likely shaped signalling networks. Here, we investigate the trade-off between accuracy of information transmission and its energetic cost for a mitogen-activated protein kinase (MAPK) signalling cascade. Our analysis of the pheromone response pathway of budding yeast suggests that dose-dependent induction of the negative transcriptional feedbacks in this network maximizes the information per unit energetic cost, rather than the information transmission capacity itself. We further demonstrate that futile cycling of MAPK phosphorylation and dephosphorylation has a measurable effect on growth fitness, with energy dissipation within the signalling cascade thus likely being subject to evolutionary selection. Considering optimization of accuracy versus the energetic cost of information processing, a concept well established in physics and engineering, may thus offer a general framework to understand the regulatory design of cellular signalling systems.


Assuntos
Sistema de Sinalização das MAP Quinases/fisiologia , Animais , Proteínas Ativadoras de GTPase/metabolismo , Humanos , Sistema de Sinalização das MAP Quinases/genética , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fosforilação , Proteínas Tirosina Fosfatases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomycetales/genética , Saccharomycetales/metabolismo , Transdução de Sinais/genética , Transdução de Sinais/fisiologia
20.
Toxicol Appl Pharmacol ; 401: 115092, 2020 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-32512068

RESUMO

Inflammatory breast cancer (IBC) is a highly metastatic and lethal breast cancer. As many as 25-30% of IBCs are triple negative (TN) and associated with low survival rates and poor prognosis. We found that the microenvironment of IBC is characterized by high infiltration of tumor associated macrophages (TAMs) and by over-expression of the cysteine protease cathepsin B (CTSB). TAMs in IBC secrete high levels of the cytokines interleukin-8 (IL-8) and monocyte chemoattractant protein-1 (MCP-1/CCL2) compared to non-IBC patients. Herein, we tested the roles of IL-8 and MCP-1/CCL2 in modulating proteolytic activity and invasiveness of TN-non-IBC as compared to TN-IBC and addressed the underlying molecular mechanism(s) for both cytokines. Quantitative real time PCR results showed that IL-8 and MCP-1/CCL2 were significantly overexpressed in tissues of TN-IBCs. IL-8 and MCP-1/CCL2 induced CTSB expression and activity of the p-Src and p-Erk1/2 signaling pathways relevant for invasion and metastasis in TN-non-IBC, HCC70 cells and TN-IBC, SUM149 cells. Dasatinib, an inhibitor of p-Src, and U0126, an inhibitor of p-Erk1/2, down-regulated invasion and expression of CTSB by HCC70 and SUM149 cells, a mechanism that is reversed by IL-8 and MCP-1/CCL2. Our study shows that targeting the cytokines IL-8 and MCP-1/CCL2 and associated signaling molecules may represent a promising therapeutic strategy in TN-IBC patients.


Assuntos
Quimiocina CCL2/biossíntese , Genes src/fisiologia , Neoplasias Inflamatórias Mamárias/metabolismo , Interleucina-8/biossíntese , Sistema de Sinalização das MAP Quinases/fisiologia , Neoplasias de Mama Triplo Negativas/metabolismo , Adulto , Idoso , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Dasatinibe/farmacologia , Feminino , Genes src/efeitos dos fármacos , Humanos , Neoplasias Inflamatórias Mamárias/patologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Pessoa de Meia-Idade , Proteólise/efeitos dos fármacos , Neoplasias de Mama Triplo Negativas/patologia , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...