Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.652
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Sheng Wu Gong Cheng Xue Bao ; 36(4): 716-731, 2020 Apr 25.
Artigo em Chinês | MEDLINE | ID: mdl-32347066

RESUMO

Stearoyl-ACP Δ9 desaturase (SAD) catalyzes the synthesis of monounsaturated oleic acid or palmitoleic acid in plastids. SAD is the key enzyme to control the ratio of saturated fatty acids to unsaturated fatty acids in plant cells. In order to analyze the regulation mechanism of soybean oleic acid synthesis, soybean (Glycine max) GmSAD family members were genome-wide identified, and their conserved functional domains and physicochemical properties were also analyzed by bioinformatics tools. The spatiotemporal expression profile of each member of GmSADs was detected by qRT-PCR. The expression vectors of GmSAD5 were constructed. The enzyme activity and biological function of GmSAD5 were examined by Agrobacterium-mediated transient expression in Nicotiana tabacum leaves and genetic transformation of oleic acid-deficient yeast (Saccharomyces cerevisiae) mutant BY4389. Results show that the soybean genome contains five GmSAD family members, all encoding an enzyme protein with diiron center and two conservative histidine enrichment motifs (EENRHG and DEKRHE) specific to SAD enzymes. The active enzyme protein was predicted as a homodimer. Phylogenetic analysis indicated that five GmSADs were divided into two subgroups, which were closely related to AtSSI2 and AtSAD6, respectively. The expression profiles of GmSAD members were significantly different in soybean roots, stems, leaves, flowers, and seeds at different developmental stages. Among them, GmSAD5 expressed highly in the middle and late stages of developmental seeds, which coincided with the oil accumulation period. Transient expression of GmSAD5 in tobacco leaves increased the oleic acid and total oil content in leaf tissue by 5.56% and 2.73%, respectively, while stearic acid content was reduced by 2.46%. Functional complementation assay in defective yeast strain BY4389 demonstrated that overexpression of GmSAD5 was able to restore the synthesis of monounsaturated oleic acid, resulting in high oil accumulation. Taken together, soybean GmSAD5 has strong selectivity to stearic acid substrates and can efficiently catalyze the biosynthesis of monounsaturated oleic acid. It lays the foundation for the study of soybean seed oleic acid and total oil accumulation mechanism, providing an excellent target for genetic improvement of oil quality in soybean.


Assuntos
Ácidos Graxos Dessaturases , Proteínas de Plantas , Soja , Ácidos Graxos Dessaturases/genética , Ácidos Graxos Dessaturases/metabolismo , Perfilação da Expressão Gênica , Ácido Oleico/biossíntese , Filogenia , Proteínas de Plantas/genética , Sementes/química , Soja/classificação , Soja/enzimologia , Soja/genética
2.
J Agric Food Chem ; 68(8): 2366-2372, 2020 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-32017555

RESUMO

Spermidine possesses multiple healthy functions, and soybeans contain the most abundant spermidine. In this study, spermidine contents of soybeans from different varieties and production regions in China were evaluated, and a spermidine synthase gene (speE) was identified by recombinant expression, transcriptional verification, and sequence analysis. Spermidine contents of soybean samples from 18 varieties ranged 72.38-228.82 mg/kg, and those from 19 production regions ranged 134.64-242.32 mg/kg. The highest-spermidine sample GZ was used to clone four predicted speE genes. Expressing the gene speE5 improved the spermidine titer by 54% in Bacillus amyloliquefaciens, confirming that speE5 was involved in spermidine synthesis. Transcriptional verification was performed through a soybean germination model. Germination for 48 h led to a onefold increase of spermidine in samples SHX and HB, and corresponding speE5 transcriptional levels were improved by 26-fold and 18-fold, respectively, further verifying the function of speE5. Finally, the sequences of the speE5 gene and deduced amino acids were analyzed, and the conserved sites and catalysis mechanisms were presented. This study identified an active spermidine synthase gene from soybean for the first time, which provided an important gene resource for genetic breeding of spermidine-rich soybean or microbial cell factory.


Assuntos
Proteínas de Plantas/genética , Soja/enzimologia , Espermidina Sintase/genética , Sequência de Aminoácidos , Bacillus amyloliquefaciens/genética , Bacillus amyloliquefaciens/metabolismo , Germinação , Dados de Sequência Molecular , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Sementes/enzimologia , Sementes/genética , Sementes/crescimento & desenvolvimento , Sementes/metabolismo , Alinhamento de Sequência , Soja/genética , Soja/crescimento & desenvolvimento , Soja/metabolismo , Espermidina/metabolismo , Espermidina Sintase/química , Espermidina Sintase/metabolismo , Transcrição Genética
3.
Biosci Biotechnol Biochem ; 84(3): 552-562, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31771419

RESUMO

Phosphoenolpyruvate carboxylase (PEPC) is a carbon-fixing enzyme with critical roles in seed development. Previously we observed a positive correlation between PEPC activity and protein content in mature seeds among soybean cultivars and varietal differences of PEPC activity in immature seeds, which is concordant with seed protein accumulation. Here, we report a PEPC isoform (Gmppc2) which is preferentially expressed in immature soybean seeds at the late maturation stage. Gmppc2 was co-expressed with enzyme genes involved in starch degradation: α-amylase, hexokinase, and α-glucan phosphorylase. Gmppc2 was developmentally induced in the external seed coats, internal seed coats, hypocotyls, and cotyledons at the late maturation stage. The expression of Gmppc2 protein was negatively regulated by the application of a nitrogen fertilizer, which suppressed nodule formation. These results imply that Gmppc2 is involved in the metabolism of nitrogen originated from nodules into seeds, and Gmppc2 might be applicable as a biomarker of seed protein content.Abbreviations: PEP: phosphoenolpyruvate; PEPC: phosphoenolpyruvate carboxylase; RNA-Seq: RNA sequencing; PCA: principal component analysis; SE: standard error.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Regulação Enzimológica da Expressão Gênica , Fosfoenolpiruvato Carboxilase/biossíntese , Sementes/embriologia , Soja/enzimologia , Biomarcadores/metabolismo , Indução Enzimática , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Fosfoenolpiruvato Carboxilase/genética , Sementes/química , Soja/embriologia , Soja/genética
4.
Food Chem ; 306: 125560, 2020 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-31590002

RESUMO

To control the oxidation in chicken fat by immobilized lipoxygenase (LOX), Maillard reaction products (MRPs) with chicken flavor were prepared and analyzed for flavor mechanism. >50% activity of immobilized LOX was retained after repeated use for five times or five weeks. The oxidized chicken fats were prepared by thermal, free LOX, and immobilized LOX treatments. After addition of chicken fats, Maillard reaction produced more aliphatic aldehydes and alcohols (126.0-839.5 ng/g and 493.5-2332.4 ng/g, respectively) which resulted in noticeable enhanced reaction, but the content of sulfur compounds such as thiols and thiophenes decreased significantly (870.8-1233.9 ng/g and 1125.0-2880.3 ng/g, respectively), and the structure of sulfur compounds could easily form alkyl side chains. However, there was no significant difference in sensory and flavors between oxidized chicken after treatments, which may be related to oxidized degree. The mechanism was proposed or aromatic effects of oxidized chicken fat on flaxseed derived MRPs.


Assuntos
Galinhas , Gorduras/metabolismo , Aromatizantes/química , Linho/química , Lipoxigenase/metabolismo , Animais , Enzimas Imobilizadas/metabolismo , Gorduras/química , Produtos Finais de Glicação Avançada/análise , Reação de Maillard , Oxirredução , Soja/enzimologia , Paladar
5.
Arch Insect Biochem Physiol ; 103(1): e21637, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31625209

RESUMO

Anticarsia gemmatalis represents a relevant factor for lowering soybean and other legume crop productivities. Protease inhibitors affect protein degradation and reduce the availability of amino acids, impairing the development and survival of insect pests. To evaluate the possible use of proteinaceous protease inhibitors in the management of this pest, the activities of midgut proteases and the growth and development of A. gemmatalis larvae exposed to soybean Bowman-Birk trypsin-chymotrypsin inhibitor (SBBI) and soybean Kunitz trypsin inhibitor (SKTI) were determined. The survival curves obtained using Kaplan-Meier estimators indicated that SKTI and SBBI stimulated larval survival. However, the development of A. gemmatalis was delayed, and prepupal weight decreased in the presence of both inhibitors. The results showed that SKTI and SBBI inhibited the trypsin-like and total proteolytic activities of larvae on the 12th day after eclosion. On the 15th day after eclosion, larvae exposed to SKTI increased the activities of trypsin and total proteases. Although SKTI and SBBI did not affect the survival of the insect, they had effects on midgut proteases in a stage wherein A. gemmatalis fed voraciously, increased the larval cycle, and decreased prepupal weight. These findings provide baseline information about the potential of proteinaceous protease inhibitors to manage the velvetbean caterpillar, avoiding chemical pesticides.


Assuntos
Mariposas/efeitos dos fármacos , Inibidor da Tripsina de Soja de Bowman-Birk/farmacologia , Inibidor da Tripsina de Soja de Kunitz/farmacologia , Animais , Trato Gastrointestinal/enzimologia , Larva/efeitos dos fármacos , Larva/enzimologia , Larva/crescimento & desenvolvimento , Mariposas/enzimologia , Mariposas/crescimento & desenvolvimento , Peptídeo Hidrolases/metabolismo , Inibidores de Proteases/farmacologia , Soja/enzimologia , Tripsina/metabolismo
6.
Plant Physiol Biochem ; 144: 254-263, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31593898

RESUMO

To elucidate the mechanism of soybean resistance to Al, physiological and biochemical indices and antioxidant enzyme expression and activities were systematically analyzed in Al-sensitive (Glycine max Merr., Yunnan Province of China, SB) and Al-resistant Dambo (Glycine max Merr., Kyoto of Japan, RB) black soybean plants. According to the results, the contents of hydrogen peroxide (H2O2) and malondialdehyde (MDA) in RB root tips were significantly lower than those in SB root tips, though the opposite results occurred for soluble protein contents. Moreover, the expression and activities of superoxide dismutase (SOD, EC1.15.1.1.1.1.1.1), peroxidase (POD, EC1.11.1.7) and catalase (CAT, EC1.11.1.6) under 0-400 µM Al for 0-96 h were greater in RB than in SB. However, below 100 µM Al, the activities of those enzymes in SB increased with increasing Al concentration and treatment duration, with SOD activity being lowest and CAT activity exceeding that of POD with increasing Al concentration. Overall, enzyme activity in SB treated with Al at concentrations greater than 200 µM was lower than that in the SB control (CK; not treated with Al) and decreased with treatment duration. Additionally, at Al concentrations lower than 200 µM, enzyme activities in RB were significantly greater than those in RB CK and increased with both Al concentration and treatment duration. Moreover, enzyme activity in RB treated with 400 µM Al was slightly greater than that in RB CK. Thus, CAT activity determines soybean resistance to Al. These results indicate that soybean resistance to Al can be enhanced by regulating the expression and activity of antioxidant enzymes to remove H2O2 under Al stress.


Assuntos
Alumínio/toxicidade , Soja/efeitos dos fármacos , Soja/enzimologia , Peroxidase/genética , Peroxidase/metabolismo , Soja/metabolismo , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo
7.
Genes (Basel) ; 10(9)2019 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-31514462

RESUMO

Laccase is a widely used industrial oxidase for food processing, dye synthesis, paper making, and pollution remediation. At present, laccases used by industries come mainly from fungi. Plants contain numerous genes encoding laccase enzymes that show properties which are distinct from that of the fungal laccases. These plant-specific laccases may have better potential for industrial purposes. The aim of this work was to conduct a genome-wide search for the soybean laccase genes and analyze their characteristics and specific functions. A total of 93 putative laccase genes (GmLac) were identified from the soybean genome. All 93 GmLac enzymes contain three typical Cu-oxidase domains, and they were classified into five groups based on phylogenetic analysis. Although adjacent members on the tree showed highly similar exon/intron organization and motif composition, there were differences among the members within a class for both conserved and differentiated functions. Based on the expression patterns, some members of laccase were expressed in specific tissues/organs, while some exhibited a constitutive expression pattern. Analysis of the transcriptome revealed that some laccase genes might be involved in providing resistance to oomycetes. Analysis of the selective pressures acting on the laccase gene family in the process of soybean domestication revealed that 10 genes could have been under artificial selection during the domestication process. Four of these genes may have contributed to the transition of the soft and thin stem of wild soybean species into strong, thick, and erect stems of the cultivated soybean species. Our study provides a foundation for future functional studies of the soybean laccase gene family.


Assuntos
Evolução Molecular , Lacase/genética , Proteínas de Plantas/genética , Caules de Planta/genética , Seleção Genética , Soja/genética , Resistência à Doença , Lacase/química , Lacase/metabolismo , Família Multigênica , Melhoramento Vegetal/métodos , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Caules de Planta/fisiologia , Soja/enzimologia , Soja/microbiologia
8.
Plant Sci ; 288: 110232, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31521224

RESUMO

Seed coat is the tissue which establishes an interface between the seed inner tissues and external environment. Our group has shown that cowpea seed coat undergoes coordinated events of programmed cell death (PCD) during development. In relation to germinating seed coats, little is known on PCD events. The goal here was to investigate the biochemical aspects of germinating soybean seed coat, focusing on proteolytic activities related to PCD. In gel and in solution activity profiles of quiescent and germinating seed coat extracts revealed a complex pattern of caspase- and metacaspase-like cysteine protease activities. Trypsin inhibitor and reserve proteins were revealed as potential substrates for these proteases. A pancaspase inhibitor (z-VAD-CHO) affected the radicle length of seeds germinated under its presence. Ultrastructural analysis showed the absence of cell organelles in all seed coat layers after imbibition, while oligonucleosome fragments peaked at 72 h after imbibition (HAI). Altogether, the data suggest the presence of biochemical PCD hallmarks in germinating soybean seed coat and point to the involvement of the detected protease activities in processes such as reserve protein mobilization and weakening of seed coat.


Assuntos
Apoptose , Soja/fisiologia , Proteínas de Plantas/metabolismo , Sementes/fisiologia , Soja/enzimologia
9.
Int J Mol Sci ; 20(15)2019 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-31382584

RESUMO

Low temperature is an environmental stress factor that is always been applied in research on improving crop growth, productivity, and quality of crops. Polyunsaturated fatty acids (PUFAs) play an important role in cold tolerance, so its genetic manipulation of the PUFA contents in crops has led to the modification of cold sensitivity. In this study, we over-expressed an ω-3 fatty acid desaturase from Glycine max (GmFAD3A) drove by a maize ubiquitin promoter in rice. Compared to the wild type (ZH11), ectopic expression of GmFAD3A increased the contents of lipids and total PUFAs. Seed germination rates in GmFAD3A transgenic rice were enhanced under low temperature (15 °C). Moreover, cold tolerance and survival ratio were significantly improved in GmFAD3A transgenic seedlings. Malondialdehyde (MDA) content in GmFAD3A transgenic rice was lower than that in WT under cold stress, while proline content obviously increased. Meanwhile, the activities of superoxide dismutase (SOD), hydroperoxidase (CAT), and peroxidase (POD) increased substantially in GmFAD3A transgenic rice after 4 h of cold treatment. Taken together, our results suggest that GmFAD3A can enhances cold tolerance and the seed germination rate at a low temperature in rice through the accumulation of proline content, the synergistic increase of the antioxidant enzymes activity, which finally ameliorated the oxidative damage.


Assuntos
Ácidos Graxos Dessaturases/genética , Oryza/genética , Plântula/genética , Estresse Fisiológico/genética , Catalase/genética , Regulação da Expressão Gênica de Plantas/genética , Germinação/genética , Metabolismo dos Lipídeos/genética , Oryza/enzimologia , Oryza/crescimento & desenvolvimento , Peroxidase/genética , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Plântula/crescimento & desenvolvimento , Sementes/genética , Sementes/crescimento & desenvolvimento , Soja/enzimologia , Soja/genética , Superóxido Dismutase/genética
10.
Int J Mol Sci ; 20(15)2019 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-31370221

RESUMO

Peroxidases play prominent roles in antioxidant responses and stress tolerance in plants; however, their functions in soybean tolerance to salt stress remain unclear. Here, we investigated the role of a peroxidase gene from the wild soybean (Glycine soja), GsPRX9, in soybean tolerance to salt stress. GsPRX9 gene expression was induced by salt treatment in the roots of both salt-tolerant and -sensitive soybean varieties, and its relative expression level in the roots of salt-tolerant soybean varieties showed a significantly higher increase than in salt-sensitive varieties after NaCl treatment, suggesting its possible role in soybean response to salt stress. GsPRX9-overexpressing yeast (strains of INVSc1 and G19) grew better than the control under salt and H2O2 stress, and GsPRX9-overexpressing soybean composite plants showed higher shoot fresh weight and leaf relative water content than control plants after NaCl treatment. Moreover, the GsPRX9-overexpressing soybean hairy roots had higher root fresh weight, primary root length, activities of peroxidase and superoxide dismutase, and glutathione level, but lower H2O2 content than those in control roots under salt stress. These findings suggest that the overexpression of the GsPRX9 gene enhanced the salt tolerance and antioxidant response in soybean. This study would provide new insights into the role of peroxidase in plant tolerance to salt stress.


Assuntos
Regulação da Expressão Gênica de Plantas , Peroxidase/genética , Proteínas de Plantas/genética , Raízes de Plantas/genética , Tolerância ao Sal/genética , Soja/genética , Glutationa/metabolismo , Peróxido de Hidrogênio/farmacologia , Estresse Oxidativo , Peroxidase/metabolismo , Filogenia , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/enzimologia , Folhas de Planta/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/enzimologia , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/enzimologia , Brotos de Planta/genética , Salinidade , Plântula/efeitos dos fármacos , Plântula/enzimologia , Plântula/genética , Cloreto de Sódio/farmacologia , Soja/efeitos dos fármacos , Soja/enzimologia , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo
11.
Chemosphere ; 235: 365-372, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31265982

RESUMO

The search for an effective and sustainable treatment method to remove the recalcitrant atom-bridged bis-anilino compounds, 4,4'-methylenedianiline (MDA) and 4,4'-thiodianiline (TDA) from water is a major challenge and focus of this study. The escalating discharge of these two toxic and carcinogenic pollutants from industrial sources may pose a serious threat to the environment. Crude soybean peroxidase (SBP), isolated from soybean seed hulls (coats), catalyzes the oxidative polymerization of these aqueous pollutants in the presence of hydrogen peroxide. The effects of several process parameters, i.e., pH, hydrogen peroxide-to-substrate concentration ratio and SBP concentration, were investigated to optimize the performance of enzymatic treatment. The minimum effective SBP concentration required for removal of MDA was 0.70 U/mL, which was higher than that of TDA (0.15 U/mL). The reaction time course to achieve ≥95% removal of these compounds from water was determined under those optimum conditions. Identification of the transformed products was performed by means of high-resolution electrospray ionization mass spectrometry. The products generally observed were protonated oxidized oxidative dimers and higher oligomers (most commonly azo-coupled products). Michaelis constant, KM, and maximum reaction velocity, Vmax, obtained from the Michaelis-Menten (M-M) model revealed that TDA had a 65-fold lower KM than MDA (indicating TDA's higher affinity for SBP), and almost 5-fold higher Vmax than MDA. A pro-forma cost analysis is presented to assess the possibility of commercialization of enzymatic treatment as an alternative to conventional/traditional treatment methods.


Assuntos
Peroxidases/metabolismo , Soja/enzimologia , Poluentes Químicos da Água/isolamento & purificação , Purificação da Água/métodos , Compostos de Anilina/isolamento & purificação , Catálise , Peróxido de Hidrogênio , Cinética , Oxirredução , Peroxidases/química , Soja/metabolismo , Água , Poluentes Químicos da Água/química
12.
Plant Physiol Biochem ; 141: 446-455, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31247427

RESUMO

Coumarin plays a pivotal role in plant response to biotic stress, as well as in the mediation of nutrient acquisition. However, its functions in response to abiotic stresses are largely unknown. In this work, a homologous gene, GmF6'H1, of AtF6'H1, which encodes the enzyme catalyzing the final rate-limiting step in the biosynthesis pathway of coumarin, was isolated from soybean. GmF6'H1 protein shares very high amino acid identity with AtF6'H1, and expression of GmF6'H1 in atf6'h1 can successfully restore the decreased coumarin production in the T-DNA insertion mutant. Further study revealed that the expression of GmF6'H1 in soybean was remarkably induced by salt stress. Constitutive expression of GmF6'H1 in Arabidopsis, driven by 35S promoter, significantly enhanced the resistance to salt of transgenic Arabidopsis. All these results suggest that GmF6'H1 can be used as a potential candidate gene for the engineering of plants with improved resistance to both biotic and abiotic stresses.


Assuntos
Arabidopsis/fisiologia , Regulação da Expressão Gênica de Plantas , Tolerância ao Sal , Soja/enzimologia , Arabidopsis/genética , Clorofila/química , Clonagem Molecular , Cumarínicos/química , Perfilação da Expressão Gênica , Germinação , Fenótipo , Folhas de Planta/metabolismo , Plantas Geneticamente Modificadas/fisiologia , Regiões Promotoras Genéticas , Soja/genética
13.
J Sci Food Agric ; 99(12): 5384-5391, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31077382

RESUMO

BACKGROUND: Soybean seeds contain 18-24% lipids, which are made up of 85% polyunsaturated fatty acids. Two of these (linoleic and linolenic acids) comprise essential fatty acids that are not synthesized in humans and animals. Linolenic acid plays a vital role in the maintenance of brain function and is a source of docosahexaenoic acid for retinal and nerve tissue, with its physiological functions being a focus of attention. RESULTS: We developed mutant soybean populations via gamma irradiation of Korean cultivars Danbaek and Daepung and evaluated the linolenic acid content of 78 and 154 M9 mutant progenies. We selected the four mutant lines with the highest linolenic acid contents based on 2 years of investigation of fatty acids. The selected mutant lines had linolenic acid contents that were 33.9% to 67.7% higher than those of the original cultivars and exhibited increased fatty acid desaturase (FAD) gene expression levels during seed development. We also identified nucleotide polymorphisms of FAD genes in the four mutant lines. CONCLUSION: The present study found that linolenic acid content is related to significantly increased expression levels of the FAD3C and FAD3D genes in the endoplasmic reticulum, which was uncovered by radiation mutation breeding of soybean. © 2019 Society of Chemical Industry.


Assuntos
Ácidos Graxos Dessaturases/genética , Proteínas de Plantas/genética , Sementes/crescimento & desenvolvimento , Soja/enzimologia , Soja/genética , Ácido alfa-Linoleico/análise , Ácidos Graxos Dessaturases/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Mutação , Proteínas de Plantas/metabolismo , Polimorfismo de Nucleotídeo Único , Sementes/química , Sementes/enzimologia , Sementes/genética , Soja/química , Soja/crescimento & desenvolvimento , Ácido alfa-Linoleico/metabolismo
14.
IET Nanobiotechnol ; 13(2): 101-106, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31051438

RESUMO

NiO nanoparticles in high purity, 15 ± 0.5 nm in size, were prepared via solid-state microwave irradiation. The [Ni(NH3)6](NO3)2 complex as a novel source was decomposed in the presence of microwave irradiation for a short time (10 min). The present method is facile, safe, and low-cost. This method exhibits other advantages; there is no need of a solvent, fuel, surfactant, expensive material, or complex instrument. Synthesised NiO nanoparticles were determined by various analyses. Also, for the first time, NiO nanoparticle effects on biochemical factors in soybean were investigated. Seeds of soybean were grown in the Murashige and Skoog agar medium containing different concentrations of NiO nanoparticles (0, 200, and 400 mg/L) for 21 days under growth chamber conditions. Estimates of malondialdehyde, hydrogen peroxide contents, and antioxidant enzymes (catalase and ascorbate peroxidase) under treatment of NiO nanoparticles were assayed. The result showed that by significantly increasing the concentration of NiO nanoparticles, the activity of catalase and ascorbate peroxidase enzymes was enhanced. Malondialdehyde and hydrogen peroxide contents significantly increased in the presence of NiO nanoparticles. In this study, the increasing activity of catalase and ascorbate peroxidase was not enough for radical oxygen species detoxification.


Assuntos
Nanopartículas Metálicas/química , Micro-Ondas , Níquel/química , Soja , Peróxido de Hidrogênio/metabolismo , Nanopartículas Metálicas/toxicidade , Níquel/toxicidade , Tamanho da Partícula , Soja/química , Soja/efeitos dos fármacos , Soja/enzimologia , Soja/metabolismo
15.
J Agric Food Chem ; 67(17): 5043-5052, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-30977368

RESUMO

The low phytic acid ( lpa) soybean ( Glycine max L. Merr.) mutant Gm-lpa-TW-1-M, resulting from a 2 bp deletion in GmMIPS1, was crossed with a commercial cultivar. F3 and F5 progenies were subjected to nontargeted GC-based metabolite profiling, allowing analysis of a broad array of low molecular weight constituents. In the homozygous lpa mutant progenies the intended phytic acid reduction was accompanied by remarkable metabolic changes of nutritionally relevant constituents such as reduced contents of raffinose oligosaccharides and galactosyl cyclitols as well as increased concentrations in sucrose and various free amino acids. The mutation-induced metabolite signature was nearly unaffected by the cross-breeding and consistently expressed over generations and in different growing seasons. Therefore, not only the primary MIPS1 lpa mutant but also its progenies might be valuable genetic resources for commercial breeding programs to produce soybean seeds stably exhibiting improved phytate-related and nutritional properties.


Assuntos
Proteínas de Arabidopsis/genética , Mio-Inositol-1-Fosfato Sintase/genética , Ácido Fítico/análise , Proteínas de Plantas/genética , Soja/enzimologia , Proteínas de Arabidopsis/metabolismo , Homozigoto , Hibridização Genética , Mutação , Mio-Inositol-1-Fosfato Sintase/metabolismo , Oligossacarídeos/análise , Oligossacarídeos/metabolismo , Ácido Fítico/metabolismo , Melhoramento Vegetal , Proteínas de Plantas/metabolismo , Rafinose/análise , Rafinose/metabolismo , Soja/química , Soja/genética , Soja/metabolismo , Sacarose/análise , Sacarose/metabolismo
16.
J Environ Radioact ; 204: 35-41, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30959328

RESUMO

With the increasing density of high voltage transmission systems, the potential risks and hazards of environmental electric fields (EFs) generated by these systems to surrounding organisms is becoming a source of public concern. To evaluate the effect of environmental EFs on plants, we used soybean as a model and systematically evaluated the effect of continuous exposure to different intensities (0 kV/m, 2 kV/m, and 10 kV/m) of power frequency EFs on agronomic characters, yield, nutrient contents, protective enzyme activities, and gene transcription. We found that the effects on soybean were more pronounced when plants were exposed to EF during development (especially at the seedling stage) than when they were exposed at maturity. The functional leaf number, stem diameter, plant dry weight, and pod number were largely unaffected by EF, while the germination rate and protective enzyme activities increased with increasing EF intensity. In plants exposed to low-intensity EF (2 kV/m), some agronomic characters, including chlorophyll content, plant height, and bean dry weight, as well as the soluble sugar and total protein contents, were significantly higher than those of plants exposed to high-intensity EF (10 kV/m) and control plants (0 kV/m). Through transcriptome analysis, we found that 2,977 genes were significantly up-regulated and 1,462 genes were down-regulated when plants were exposed to EF. These differentially expressed genes mainly encode ribosome proteins and related enzymes involved in carbon metabolism pathway, providing a novel perspective for understanding molecular mechanisms underpinning the responses to EF stress in soybean.


Assuntos
Fontes de Energia Elétrica/efeitos adversos , Germinação/efeitos da radiação , Centrais Elétricas , Soja/efeitos da radiação , Transcriptoma/efeitos da radiação , Condutividade Elétrica , Campos Magnéticos/efeitos adversos , Soja/enzimologia , Soja/genética , Soja/fisiologia
17.
DNA Cell Biol ; 38(6): 510-520, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31017480

RESUMO

Plants, being sessile organisms, have evolved several dynamic mechanisms of gene regulation. Epigenetic modification especially cytosine methylation and demethylation actively regulates the expression of genes. To understand the role of cytosine methylation during isoflavonoid biosynthesis and accumulation, we performed cytosine methylation analysis in the coding region of two isoforms IFS1 and IFS2 gene, in two contrasting soybean genotypes differing in total isoflavone content (NRC37: high isoflavone; and NRC7: low isoflavone). The results indicated increased 5-mC in both the isoforms in NRC37 (∼20.51% in IFS2 and ∼85% in IFS1) compared with NRC7 (∼7.8% in IFS2 and ∼2.5% in IFS1) genotype, which signifies the positive role of 5-mC in the coding region of the gene leading to enhanced expression. In addition, temporal expression profiling [35 days after flowering (DAF), 45, 55, and 65 DAF] of both the isoforms showed increasing trend of accumulation in both the genotypes with maximum in NRC37 at 65 DAF. To further establish a correlation between methylation and expression of transcripts, we quantified the different isoforms of isoflavone in both the genotypes across all the stages. Therefore, the finding of this study would certainly increase our understanding of epigenetic regulation of isoflavone biosynthetic pathway mediated by the cytosine methylation that would assist molecular breeders to get high-performing soybean genotypes with better isoflavone yield.


Assuntos
Citosina/metabolismo , Metilação de DNA , Regulação da Expressão Gênica de Plantas , Oxigenases/genética , Soja/genética , Simulação por Computador , Genótipo , Isoenzimas/genética , Isoenzimas/metabolismo , Isoflavonas/biossíntese , Oxigenases/metabolismo , Sementes/enzimologia , Sementes/genética , Sementes/crescimento & desenvolvimento , Soja/embriologia , Soja/enzimologia
18.
Int J Mol Sci ; 20(6)2019 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-30889878

RESUMO

Diacylglycerol kinase (DGK) is an enzyme that plays a pivotal role in abiotic and biotic stress responses in plants by transforming the diacylglycerol into phosphatidic acid. However, there is no report on the characterization of soybean DGK genes in spite of the availability of the soybean genome sequence. In this study, we performed genome-wide analysis and expression profiling of the DGK gene family in the soybean genome. We identified 12 DGK genes (namely GmDGK1-12) which all contained conserved catalytic domains with protein lengths and molecular weights ranging from 436 to 727 amino acids (aa) and 48.62 to 80.93 kDa, respectively. Phylogenetic analyses grouped GmDGK genes into three clusters-cluster I, cluster II, and cluster III-which had three, four, and five genes, respectively. The qRT-PCR analysis revealed significant GmDGK gene expression levels in both leaves and roots coping with polyethylene glycol (PEG), salt, alkali, and salt/alkali treatments. This work provides the first characterization of the DGK gene family in soybean and suggests their importance in soybean response to abiotic stress. These results can serve as a guide for future studies on the understanding and functional characterization of this gene family.


Assuntos
Diacilglicerol Quinase/genética , Perfilação da Expressão Gênica , Genômica , Família Multigênica , Soja/enzimologia , Soja/genética , Estresse Fisiológico/genética , Motivos de Aminoácidos , Sequência de Aminoácidos , Cromossomos de Plantas/genética , Diacilglicerol Quinase/química , Diacilglicerol Quinase/metabolismo , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Especificidade de Órgãos/genética , Filogenia , Regiões Promotoras Genéticas/genética , Domínios Proteicos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Frações Subcelulares/metabolismo
19.
ACS Chem Biol ; 14(4): 619-635, 2019 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-30848125

RESUMO

APEX is an engineered peroxidase that catalyzes the oxidation of a wide range of substrates, facilitating its use in a variety of applications from subcellular staining for electron microscopy to proximity biotinylation for spatial proteomics and transcriptomics. To further advance the capabilities of APEX, we used directed evolution to engineer a split APEX tool (sAPEX). A total of 20 rounds of fluorescence activated cell sorting (FACS)-based selections from yeast-displayed fragment libraries, using 3 different surface display configurations, produced a 200-amino-acid N-terminal fragment (with 9 mutations relative to APEX2) called "AP" and a 50-amino-acid C-terminal fragment called "EX". AP and EX fragments were each inactive on their own but were reconstituted to give peroxidase activity when driven together by a molecular interaction. We demonstrate sAPEX reconstitution in the mammalian cytosol, on engineered RNA motifs within a non-coding RNA scaffold, and at mitochondria-endoplasmic reticulum contact sites.


Assuntos
Ascorbato Peroxidases/metabolismo , Evolução Molecular Direcionada/métodos , Proteínas de Plantas/metabolismo , Ascorbato Peroxidases/genética , Separação Celular , Retículo Endoplasmático/metabolismo , Citometria de Fluxo , Células HEK293 , Humanos , Mitocôndrias/metabolismo , Biblioteca de Peptídeos , Proteínas de Plantas/genética , RNA/genética , Saccharomyces cerevisiae/genética , Soja/enzimologia
20.
Bioorg Chem ; 85: 577-584, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30878890

RESUMO

A series of novel naproxen analogues containing 3-aryl-1,2,4-oxadiazoles moiety (4b-g) and their reaction intermediates aryl carboximidamides moiety (3b-g) was synthesized and evaluated in vitro as dual COXs/15-LOX inhibitors. Compounds 3b-g exhibited superior inhibitory activity than celecoxib as COX-2 inhibitors. Compounds 3b-d and 3g were the most potent COX-2 inhibitors with IC50 range of 6.4 - 8.13 nM and higher selectivity indexes (3b, SI = 26.19; 3c, SI = 13.73; 3d, SI = 29.27; 3g, SI = 18.00) comparing to celecoxib (IC50 = 42.60 nM, SI = 8.05). Regarding 15-LOX inhibitory activity, compounds belonging to aryl carboximidamide backbone 3b-e and 3g were the most potent with IC50 range of 1.77-4.91 nM comparing to meclofenamate sodium (IC50 = 5.64 µM). Data revealed that The levels of NO released by aryl carboximidamides 3b-g were more higher than 3-aryl-1,2,4-oxadiazole derivatives 4b-g, which correlated well with their COX-2 inhibitory activities.


Assuntos
Inibidores de Ciclo-Oxigenase 2/farmacologia , Inibidores de Lipoxigenase/farmacologia , Naproxeno/análogos & derivados , Naproxeno/farmacologia , Oxidiazóis/farmacologia , Animais , Bovinos , Celecoxib/farmacologia , Inibidores de Ciclo-Oxigenase 2/síntese química , Desenho de Fármacos , Humanos , Inibidores de Lipoxigenase/síntese química , Linfócitos/efeitos dos fármacos , Camundongos , Simulação de Acoplamento Molecular , Naproxeno/síntese química , Doadores de Óxido Nítrico/síntese química , Doadores de Óxido Nítrico/farmacologia , Oxidiazóis/síntese química , Soja/enzimologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA