Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.367
Filtrar
1.
Vet Q ; 44(1): 1-8, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38946435

RESUMO

This study aimed to evaluate the effect of varying levels of sorghum-based diets as an alternative to maize in broiler nutrition. A total of 320 one-day-old male Ross 708 broiler chickens were randomly allocated to four treatment groups (5 pens per treatment and 16 birds per pen), comprising a control group with a basal diet and groups receiving sorghum-based diets with 20%, 40%, and 100% maize replacement. The overall weight gain was significantly (p < 0.0001) higher in the control group, followed by 20%, 40%, and 100% sorghum replacement. Additionally, overall feed intake was significantly (p < 0.01) higher in the 20% sorghum replacement group compared to the control and other groups. Broilers fed sorghum-based diets exhibited a significantly (p < 0.01) increased feed conversion ratio. Carcass characteristics showed no significant differences between broilers fed corn and sorghum; however, the digestibility of crude protein and apparent metabolizable energy significantly (p < 0.01) increased in the 20% sorghum-corn replacement compared to the 40% and 100% replacement levels. Ileal villus height and width did not differ among the corn-sorghum-based diets, regardless of the replacement percentage. Furthermore, among the cecal microbiota, Lactobacillus count was significantly (p < 0.041) higher in the 20% corn-sorghum diet compared to the 40% and 100% replacement levels. These findings suggest that replacing corn up to 20% of corn with sorghum in broiler diet positively impact growth performance, gut health, nutrient digestibility, and cecal microbiota in broilers. However, larger replacements (40% and 100%) may have negative implications for broiler production and health.


Assuntos
Ração Animal , Fenômenos Fisiológicos da Nutrição Animal , Galinhas , Dieta , Digestão , Microbioma Gastrointestinal , Sorghum , Zea mays , Animais , Galinhas/microbiologia , Galinhas/fisiologia , Ração Animal/análise , Masculino , Dieta/veterinária , Digestão/efeitos dos fármacos , Nutrientes , Distribuição Aleatória
2.
Commun Biol ; 7(1): 841, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38987396

RESUMO

Cereal seeds are vital for food, feed, and agricultural sustainability because they store and provide essential nutrients to human and animal food and feed systems. Unraveling molecular processes in seed development is crucial for enhancing cereal grain yield and quality. We analyze spatiotemporal transcriptome and metabolome profiles during sorghum seed development in the inbred line 'BTx623'. Morphological and molecular analyses identify the key stages of seed maturation, specifying starch biosynthesis onset at 5 days post-anthesis (dpa) and protein at 10 dpa. Transcriptome profiling from 1 to 25 dpa reveal dynamic gene expression pathways, shifting from cellular growth and embryo development (1-5 dpa) to cell division, fatty acid biosynthesis (5-25 dpa), and seed storage compounds synthesis in the endosperm (5-25 dpa). Network analysis identifies 361 and 207 hub genes linked to starch and protein synthesis in the endosperm, respectively, which will help breeders enhance sorghum grain quality. The availability of this data in the sorghum reference genome line establishes a baseline for future studies as new pangenomes emerge, which will consider copy number and presence-absence variation in functional food traits.


Assuntos
Regulação da Expressão Gênica de Plantas , Metaboloma , Sementes , Sorghum , Transcriptoma , Sorghum/genética , Sorghum/metabolismo , Sementes/metabolismo , Sementes/genética , Sementes/crescimento & desenvolvimento , Redes Reguladoras de Genes , Perfilação da Expressão Gênica , Endosperma/metabolismo , Endosperma/genética , Amido/biossíntese , Amido/metabolismo , Grão Comestível/genética , Grão Comestível/metabolismo
3.
Int J Mol Sci ; 25(13)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-39000365

RESUMO

Sorghum (Sorghum bicolor), the fifth most important cereal crop globally, serves as a staple food, animal feed, and a bioenergy source. Paclobutrazol-Resistance (PRE) genes play a pivotal role in the response to environmental stress, yet the understanding of their involvement in pest resistance remains limited. In the present study, a total of seven SbPRE genes were found within the sorghum BTx623 genome. Subsequently, their genomic location was studied, and they were distributed on four chromosomes. An analysis of cis-acting elements in SbPRE promoters revealed that various elements were associated with hormones and stress responses. Expression pattern analysis showed differentially tissue-specific expression profiles among SbPRE genes. The expression of some SbPRE genes can be induced by abiotic stress and aphid treatments. Furthermore, through phytohormones and transgenic analyses, we demonstrated that SbPRE4 improves sorghum resistance to aphids by accumulating jasmonic acids (JAs) in transgenic Arabidopsis, giving insights into the molecular and biological function of atypical basic helix-loop-helix (bHLH) transcription factors in sorghum pest resistance.


Assuntos
Afídeos , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas , Sorghum , Estresse Fisiológico , Triazóis , Sorghum/genética , Sorghum/metabolismo , Afídeos/genética , Afídeos/fisiologia , Animais , Triazóis/farmacologia , Estresse Fisiológico/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Oxilipinas/metabolismo , Oxilipinas/farmacologia , Ciclopentanos/metabolismo , Ciclopentanos/farmacologia , Arabidopsis/genética , Regiões Promotoras Genéticas , Família Multigênica , Reguladores de Crescimento de Plantas/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Filogenia , Doenças das Plantas/parasitologia , Doenças das Plantas/genética , Genoma de Planta
4.
Sci Rep ; 14(1): 15123, 2024 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956272

RESUMO

The OVATE gene family plays an important role in regulating the development of plant organs and resisting stress, but its expression characteristics and functions in sorghum have not been revealed. In this study, we identified 26 OVATE genes in the sorghum BTx623 genome, which were divided into four groups and distributed unevenly across 9 chromosomes. Evolutionary analysis showed that after differentiation between sorghum and Arabidopsis, the OVATE gene family may have experienced unique expansion events, and all OVATE family members were negatively selected. Transcriptome sequencing and RT-qPCR results showed that OVATE genes in sorghum showed diverse expression characteristics, such as gene SORBl_3001G468900 and SORBl_3009G173400 were significantly expressed in seeds, while SORBI_3005G042700 and SORBI_3002G417700 were only highly expressed in L1. Meantime, in the promoter region, a large number of hormone-associated cis-acting elements were identified, and these results suggest that members of the OVATE gene family may be involved in regulating specific development of sorghum leaves and seeds. This study improves the understanding of the OVATE gene family of sorghum and provides important clues for further exploration of the function of the OVATE gene family.


Assuntos
Regulação da Expressão Gênica de Plantas , Família Multigênica , Folhas de Planta , Proteínas de Plantas , Sementes , Sorghum , Sorghum/genética , Sorghum/metabolismo , Sementes/genética , Sementes/metabolismo , Folhas de Planta/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Genoma de Planta , Filogenia , Perfilação da Expressão Gênica , Evolução Molecular , Regiões Promotoras Genéticas , Cromossomos de Plantas/genética , Genes de Plantas
5.
Theor Appl Genet ; 137(8): 181, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38985188

RESUMO

KEY MESSAGES: We investigate a method of extracting and fitting synthetic environmental covariates and pedigree information in multilocation trial data analysis to predict genotype performances in untested locations. Plant breeding trials are usually conducted across multiple testing locations to predict genotype performances in the targeted population of environments. The predictive accuracy can be increased by the use of adequate statistical models. We compared linear mixed models with and without synthetic covariates (SCs) and pedigree information under the identity, the diagonal and the factor-analytic variance-covariance structures of the genotype-by-location interactions. A comparison was made to evaluate the accuracy of different models in predicting genotype performances in untested locations using the mean squared error of predicted differences (MSEPD) and the Spearman rank correlation between predicted and adjusted means. A multi-environmental trial (MET) dataset evaluated for yield performance in the dry lowland sorghum (Sorghum bicolor (L.) Moench) breeding program of Ethiopia was used. For validating our models, we followed a leave-one-location-out cross-validation strategy. A total of 65 environmental covariates (ECs) obtained from the sorghum test locations were considered. The SCs were extracted from the ECs using multivariate partial least squares analysis and subsequently fitted in the linear mixed model. Then, the model was extended accounting for pedigree information. According to the MSEPD, models accounting for SC improve predictive accuracy of genotype performances in the three of the variance-covariance structures compared to others without SC. The rank correlation was also higher for the model with the SC. When the SC was fitted, the rank correlation was 0.58 for the factor analytic, 0.51 for the diagonal and 0.46 for the identity variance-covariance structures. Our approach indicates improvement in predictive accuracy with SC in the context of genotype-by-location interactions of a sorghum breeding in Ethiopia.


Assuntos
Genótipo , Modelos Genéticos , Linhagem , Melhoramento Vegetal , Sorghum , Sorghum/genética , Melhoramento Vegetal/métodos , Etiópia , Meio Ambiente , Modelos Lineares , Fenótipo
6.
BMC Plant Biol ; 24(1): 690, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39030485

RESUMO

BACKGROUND: Sorghum (Sorghum bicolor) is a promising opportunity crop for arid regions of Africa due to its high tolerance to drought and heat stresses. Screening for genetic variability in photosynthetic regulation under salt stress can help to identify target trait combinations essential for sorghum genetic improvement. The primary objective of this study was to identify reliable indicators of photosynthetic performance under salt stress for forage yield within a panel of 18 sorghum varieties from stage 1 (leaf 3) to stage 7 (late flowering to early silage maturity). We dissected the genetic diversity and variability in five stress-sensitive photosynthetic parameters: nonphotochemical chlorophyll fluorescence quenching (NPQ), the electron transport rate (ETR), the maximum potential quantum efficiency of photosystem II (FV/FM), the CO2 assimilation rate (A), and the photosynthetic performance based on absorption (PIABS). Further, we investigated potential genes for target phenotypes using a combined approach of bioinformatics, transcriptional analysis, and homologous overexpression. RESULTS: The panel revealed polymorphism, two admixed subpopulations, and significant molecular variability between and within population. During the investigated development stages, the PIABS varied dramatically and consistently amongst varieties. Under higher saline conditions, PIABS also showed a significant positive connection with A and dry matter gain. Because PIABS is a measure of plants' overall photosynthetic performance, it was applied to predict the salinity performance index (SPI). The SPI correlated positively with dry matter gain, demonstrating that PIABS could be used as a reliable salt stress performance marker for forage sorghum. Eight rubisco large subunit genes were identified in-silico and validated using qPCR with variable expression across the varieties under saline conditions. Overexpression of Rubisco Large Subunit 8 increased PIABS, altered the OJIP, and growth with an insignificant effect on A. CONCLUSIONS: These findings provide insights into strategies for enhancing the photosynthetic performance of sorghum under saline conditions for improved photosynthetic performance and potential dry matter yield. The integration of molecular approaches, guided by the identified genetic variability, holds promise for genetically breeding sorghum tailored to thrive in arid and saline environments, contributing to sustainable agricultural practices.


Assuntos
Variação Genética , Fotossíntese , Estresse Salino , Sorghum , Sorghum/genética , Sorghum/fisiologia , Sorghum/metabolismo , Estresse Salino/genética , Clorofila/metabolismo
7.
Planta ; 260(2): 43, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38958760

RESUMO

MAIN CONCLUSION: Millets' protein studies are lagging behind those of major cereals. Current status and future insights into the investigation of millet proteins are discussed. Millets are important small-seeded cereals majorly grown and consumed by people in Asia and Africa and are considered crops of future food security. Although millets possess excellent climate resilience and nutrient supplementation properties, their research advancements have been lagging behind major cereals. Although considerable genomic resources have been developed in recent years, research on millet proteins and proteomes is currently limited, highlighting a need for further investigation in this area. This review provides the current status of protein research in millets and provides insights to understand protein responses for climate resilience and nutrient supplementation in millets. The reference proteome data is available for sorghum, foxtail millet, and proso millet to date; other millets, such as pearl millet, finger millet, barnyard millet, kodo millet, tef, and browntop millet, do not have any reference proteome data. Many studies were reported on stress-responsive protein identification in foxtail millet, with most studies on the identification of proteins under drought-stress conditions. Pearl millet has a few reports on protein identification under drought and saline stress. Finger millet is the only other millet to have a report on stress-responsive (drought) protein identification in the leaf. For protein localization studies, foxtail millet has a few reports. Sorghum has the highest number of 40 experimentally proven crystal structures, and other millets have fewer or no experimentally proven structures. Further proteomics studies will help dissect the specific proteins involved in climate resilience and nutrient supplementation and aid in breeding better crops to conserve food security.


Assuntos
Milhetes , Proteínas de Plantas , Milhetes/genética , Milhetes/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Proteoma/metabolismo , Proteômica/métodos , Secas , Estresse Fisiológico , Produtos Agrícolas/genética , Produtos Agrícolas/metabolismo , Sorghum/metabolismo , Sorghum/genética
8.
BMC Genomics ; 25(1): 677, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38977981

RESUMO

BACKGROUND: Sorghum anthracnose is a major disease that hampers the productivity of the crop globally. The disease is caused by the hemibiotrophic fungal pathogen Colletotrichum sublineola. The identification of anthracnose-resistant sorghum genotypes, defining resistance loci and the underlying genes, and their introgression into adapted cultivars are crucial for enhancing productivity. In this study, we conducted field experiments on 358 diverse accessions of Ethiopian sorghum. Quantitative resistance to anthracnose was evaluated at locations characterized by a heavy natural infestation that is suitable for disease resistance screening. RESULTS: The field-based screening identified 53 accessions that were resistant across locations, while 213 accessions exhibited variable resistance against local pathotypes. Genome-wide association analysis (GWAS) was performed using disease response scores on 329 accessions and 83,861 single nucleotide polymorphisms (SNPs) generated through genotyping-by-sequencing (GBS). We identified 38 loci significantly associated with anthracnose resistance. Interestingly, a subset of these loci harbor genes encoding receptor-like kinases (RLK), nucleotide-binding leucine-rich repeats (NLRs), stress-induced antifungal tyrosine kinase that have been previously implicated in disease resistance. A SNP on chromosome 4 (S04_66140995) and two SNPs on chromosome 2 (S02_75784037, S02_2031925), localized with-in the coding region of genes that encode a putative stress-induced antifungal kinase, an F-Box protein, and Xa21-binding RLK that were strongly associated with anthracnose resistance. We also identified highly significant associations between anthracnose resistance and three SNPs linked to genes (Sobic.002G058400, Sobic.008G156600, Sobic.005G033400) encoding an orthologue of the widely known NLR protein (RPM1), Leucine Rich Repeat family protein, and Heavy Metal Associated domain-containing protein, respectively. Other SNPs linked to predicted immune response genes were also significantly associated with anthracnose resistance. CONCLUSIONS: The sorghum germplasm collections used in the present study are genetically diverse. They harbor potentially useful, yet undiscovered, alleles for anthracnose resistance. This is supported by the identification of novel loci that are enriched for disease resistance regulators such as NLRs, LRKs, Xa21-binding LRK, and antifungal proteins. The genotypic data available for these accessions offer a valuable resource for sorghum breeders to effectively improve the crop. The genomic regions and candidate genes identified can be used to design markers for molecular breeding of sorghum diseases resistance.


Assuntos
Colletotrichum , Resistência à Doença , Estudo de Associação Genômica Ampla , Doenças das Plantas , Polimorfismo de Nucleotídeo Único , Sorghum , Sorghum/genética , Sorghum/microbiologia , Resistência à Doença/genética , Doenças das Plantas/microbiologia , Doenças das Plantas/genética , Colletotrichum/patogenicidade , Colletotrichum/fisiologia , Genótipo , Etiópia , Locos de Características Quantitativas
9.
BMC Plant Biol ; 24(1): 514, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38849739

RESUMO

BACKGROUND: Drought is a major determinant for growth and productivity of all crops, including cereals, and the drought-induced detrimental effects are anticipated to jeopardize world food security under the ongoing global warming scenario. Biostimulants such as humic acid (HA) can improve drought tolerance in many cereals, including maize and sorghum. These two plant species are genetically related; however, maize is more susceptible to drought than sorghum. The physiological and biochemical mechanisms underlying such differential responses to water shortage in the absence and presence of HA, particularly under field conditions, are not fully understood. RESULTS: Herein, the effects of priming maize and sorghum seeds in 100 mg L-1 HA on their vegetative growth and physiological responses under increased levels of drought (100%, 80%, and 60% field capacity) were simultaneously monitored in the field. In the absence of HA, drought caused 37.0 and 58.7% reductions in biomass accumulation in maize compared to 21.2 and 32.3% in sorghum under low and high drought levels, respectively. These responses were associated with differential retardation in overall growth, relative water content (RWC), photosynthetic pigments and CO2 assimilation in both plants. In contrast, drought increased root traits as well as H2O2, malondialdehyde, and electrolyte leakage in both species. HA treatment significantly improved the growth of both plant species under well-watered and drought conditions, with maize being more responsive than sorghum. HA induced a 29.2% increase in the photosynthetic assimilation rate in maize compared to 15.0% in sorghum under high drought level. The HA-promotive effects were also associated with higher total chlorophyll, stomatal conductance, RWC, sucrose, total soluble sugars, total carbohydrates, proline, and total soluble proteins. HA also reduced the drought-induced oxidative stress via induction of non-enzymic and enzymic antioxidants at significantly different extents in maize and sorghum. CONCLUSION: The current results identify significant quantitative differences in a set of critical physiological biomarkers underlying the differential responses of field-grown maize and sorghum plants against drought. They also reveal the potential of HA priming as a drought-alleviating biostimulant and as an effective approach for sustainable maize and sorghum production and possibly other crops in drought-affected lands.


Assuntos
Secas , Substâncias Húmicas , Sorghum , Zea mays , Sorghum/fisiologia , Sorghum/crescimento & desenvolvimento , Zea mays/fisiologia , Zea mays/crescimento & desenvolvimento , Estresse Fisiológico , Fotossíntese
10.
Sci Rep ; 14(1): 12729, 2024 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-38830906

RESUMO

Sorghum germplasm showed grain Fe and Zn genetic variability, but a few varieties were biofortified with these minerals. This work contributes to narrowing this gap. Fe and Zn concentrations along with 55,068 high-quality GBS SNP data from 140 sorghum accessions were used in this study. Both micronutrients exhibited good variability with respective ranges of 22.09-52.55 ppm and 17.92-43.16 ppm. Significant marker-trait associations were identified on chromosomes 1, 3, and 5. Two major effect SNPs (S01_72265728 and S05_58213541) explained 35% and 32% of Fe and Zn phenotypic variance, respectively. The SNP S01_72265728 was identified in the cytochrome P450 gene and showed a positive effect on Fe accumulation in the kernel, while S05_58213541 was intergenic near Sobic.005G134800 (zinc-binding ribosomal protein) and showed negative effect on Zn. Tissue-specific in silico expression analysis resulted in higher levels of Sobic.003G350800 gene product in several tissues such as leaf, root, flower, panicle, and stem. Sobic.005G188300 and Sobic.001G463800 were expressed moderately at grain maturity and anthesis in leaf, root, panicle, and seed tissues. The candidate genes expressed in leaves, stems, and grains will be targeted to improve grain and stover quality. The haplotypes identified will be useful in forward genetics breeding.


Assuntos
Estudo de Associação Genômica Ampla , Ferro , Polimorfismo de Nucleotídeo Único , Sorghum , Zinco , Sorghum/genética , Sorghum/metabolismo , Zinco/metabolismo , Ferro/metabolismo , Grão Comestível/genética , Grão Comestível/metabolismo , Regulação da Expressão Gênica de Plantas , Fenótipo , Locos de Características Quantitativas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Sementes/genética , Sementes/metabolismo , Genes de Plantas
11.
Food Res Int ; 190: 114588, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38945607

RESUMO

Sorghum is a promising ingredient for new food products due to its high fiber content, slow digestibility, drought resistance, and gluten-free nature. One of the main challenges in sorghum-based products is the unpleasant aroma compounds found in grain sorghum. Therefore, in this study, sorghum flour was treated via supercritical carbon dioxide (SC-CO2) to remove undesired aroma compounds. The resulting SC-CO2-treated flours were used to generate dough for 3D food printing. At the optimized conditions, sorghum cookies were 3D-printed using 60 % water and a nozzle diameter of 1.5 mm. All dough samples produced with untreated and SC-CO2-treated sorghum flours exhibited shear-thinning behavior. Changing the treatment pressure (8-15 MPa) or temperature (40-60 °C) did not significantly affect the viscosity of the dough samples. Moreover, the sorghum cookie doughs had higher G' and G″ values after the SC-CO2 treatments (G' > G″). Doughs generated from flours treated at 15 MPa - 40 °C and 8 MPa - 60 °C showed lower adhesiveness compared to the ones produced from untreated flour, whereas 15 MPa - 60 °C treatment did not affect the adhesiveness. After baking, the 3D-printed cookies from SC-CO2-treated flour exhibited significantly lower redness (a*), but the hardness of the cookies was not affected by SC-CO2 treatment. Overall, the SC-CO2 treatment of sorghum flour did not negatively affect the quality parameters of the 3D-printed cookies while enhancing the aroma of the flour.


Assuntos
Dióxido de Carbono , Farinha , Odorantes , Impressão Tridimensional , Sorghum , Sorghum/química , Farinha/análise , Dióxido de Carbono/análise , Odorantes/análise , Viscosidade , Manipulação de Alimentos/métodos , Culinária/métodos , Temperatura , Reologia , Adesividade
12.
Front Biosci (Elite Ed) ; 16(2): 18, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38939908

RESUMO

INTRODUCTION: Millets, owing to their rich nutritional and low-to-moderate glycemic index values, are termed superfoods; however, some anti-nutritional factors, such as tannins, limit the absorption of micro and macronutrients. Non-thermal processing technologies, such as fermentation, can improve nutrient content and reduce these anti-nutritional factors. METHODS: The effect of a controlled submerged fermentation of whole grain sorghum, pearl millet, and dehusked Kodo millet using mixed lactic acid bacteria (LAB) culture in tofu whey-based media on the proximate, antioxidant, tannin content, vitamin B, amino acids profile and estimated glycemic index (eGI) of different millets were evaluated. RESULTS: The protein content (2-12.5%), carbohydrate content (2-13.6%), antioxidant activity (3-49%), vitamin B complex, amino acid profile (89-90%), and eGI of whole grain sorghum, pearl millet, and dehusked Kodo millet improved due to LAB-assisted submerged fermentation. In contrast, fat (4-15%), ash (56-67%), crude fiber (5-34%), minerals, tannin and resistant starch content decreased due to LAB fermentation. CONCLUSION: Controlled LAB fermentation can improve the nutritional quality of sorghum and millets while reducing anti-nutritional factors. This non-thermal process can be adopted industrially to produce more palatable and nutritionally superior millet products.


Assuntos
Aminoácidos , Fermentação , Índice Glicêmico , Milhetes , Pennisetum , Sorghum , Sorghum/química , Sorghum/metabolismo , Aminoácidos/análise , Aminoácidos/metabolismo , Pennisetum/metabolismo , Milhetes/química , Nutrientes/análise , Lactobacillales/metabolismo
13.
Nutrients ; 16(12)2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38931207

RESUMO

BACKGROUND: Chronic kidney disease increases uremic toxins concentrations, which have been associated with intestinal dysbiosis. Sorghum bicolor L. Moench has dietary fiber and bioactive compounds, while Bifidobacterium longum can promote beneficial health effects. METHODS: It is a controlled, randomized, and single-blind clinical trial. Thirty-nine subjects were randomly separated into two groups: symbiotic group (SG), which received 100 mL of unfermented probiotic milk with Bifidobacterium longum strain and 40 g of extruded sorghum flakes; and the control group (CG), which received 100 mL of pasteurized milk and 40 g of extruded corn flakes for seven weeks. RESULTS: The uremic toxins decreased, and gastrointestinal symptoms improved intragroup in the SG group. The acetic, propionic, and butyric acid production increased intragroup in the SG group. Regarding α-diversity, the Chao1 index was enhanced in the SG intragroup. The KEGG analysis revealed that symbiotic meal increased the intragroup energy and amino sugar metabolism, in addition to enabling essential amino acid production and metabolism, sucrose degradation, and the biosynthesis of ribonucleotide metabolic pathways. CONCLUSIONS: The consumption of symbiotic meal reduced BMI, improved short-chain fatty acid (SCFA) synthesis and gastrointestinal symptoms, increased diversity according to the Chao1 index, and reduced uremic toxins in chronic kidney disease patients.


Assuntos
Bifidobacterium longum , Microbioma Gastrointestinal , Probióticos , Insuficiência Renal Crônica , Sorghum , Humanos , Insuficiência Renal Crônica/terapia , Probióticos/administração & dosagem , Masculino , Feminino , Microbioma Gastrointestinal/efeitos dos fármacos , Pessoa de Meia-Idade , Método Simples-Cego , Ácidos Graxos Voláteis/metabolismo , Ácidos Graxos Voláteis/análise , Biomarcadores/sangue , Idoso , Disbiose , Adulto , Intestinos/microbiologia
14.
BMC Plant Biol ; 24(1): 529, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38862926

RESUMO

BACKGROUND: The sorghum aphid Melanaphis sacchari (Zehntner) (Homoptera: Aphididae) is an important insect in the late growth phase of sorghum (Sorghum bicolor L.). However, the mechanisms of sorghum response to aphid infestation are unclear. RESULTS: In this paper, the mechanisms of aphid resistance in different types of sorghum varieties were revealed by studying the epidermal cell structure and performing a transcriptome and metabolome association analysis of aphid-resistant and aphid-susceptible varieties. The epidermal cell results showed that the resistance of sorghum to aphids was positively correlated with epidermal cell regularity and negatively correlated with the intercellular space and leaf thickness. Transcriptome and metabolomic analyses showed that differentially expressed genes in the resistant variety HN16 and susceptible variety BTX623 were mainly enriched in the flavonoid biosynthesis pathway and differentially expressed metabolites were mainly related to isoflavonoid biosynthesis and flavonoid biosynthesis. The q-PCR results of key genes were consistent with the transcriptome expression results. Meanwhile, the metabolome test results showed that after aphidinfestation, naringenin and genistein were significantly upregulated in the aphid-resistant variety HN16 and aphid-susceptible variety BTX623 while luteolin was only significantly upregulated in BTX623. These results show that naringenin, genistein, and luteolin play important roles in plant resistance to aphid infestation. The results of exogenous spraying tests showed that a 1‰ concentration of naringenin and genistein is optimal for improving sorghum resistance to aphid feeding. CONCLUSIONS: In summary, the physical properties of the sorghum leaf structure related to aphid resistance were studied to provide a reference for the breeding of aphid-resistant varieties. The flavonoid biosynthesis pathway plays an important role in the response of sorghum aphids and represents an important basis for the biological control of these pests. The results of the spraying experiment provide insights for developing anti-aphid substances in the future.


Assuntos
Afídeos , Metaboloma , Sorghum , Transcriptoma , Sorghum/genética , Sorghum/parasitologia , Sorghum/metabolismo , Afídeos/fisiologia , Animais , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Folhas de Planta/metabolismo , Folhas de Planta/genética
15.
Funct Plant Biol ; 512024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38902905

RESUMO

The aim of this study was to investigate whether silicon (Si) supply was able to alleviate the harmful effects caused by salinity stress on sorghum-sudangrass (Sorghum bicolor ×Sorghum sudanense ), a species of grass raised for forage and grain. Plants were grown in the presence or absence of 150mM NaCl, supplemented or not with Si (0.5mM Si). Biomass production, water and mineral status, photosynthetic pigment contents, and gas exchange parameters were investigated. Special focus was accorded to evaluating the PSI and PSII. Salinity stress significantly reduced plant growth and tissue hydration, and led to a significant decrease in all other studied parameters. Si supply enhanced whole plant biomass production by 50%, improved water status, decreased Na+ and Cl- accumulation, and even restored chlorophyll a , chlorophyll b , and carotenoid contents. Interestingly, both photosystem activities (PSI and PSII) were enhanced with Si addition. However, a more pronounced enhancement was noted in PSI compared with PSII, with a greater oxidation state upon Si supply. Our findings confirm that Si mitigated the adverse effects of salinity on sorghum-sudangrass throughout adverse approaches. Application of Si in sorghum appears to be an efficient key solution for managing salt-damaging effects on plants.


Assuntos
Clorofila , Fotossíntese , Salinidade , Silício , Sorghum , Sorghum/crescimento & desenvolvimento , Sorghum/efeitos dos fármacos , Sorghum/metabolismo , Silício/farmacologia , Fotossíntese/efeitos dos fármacos , Clorofila/metabolismo , Biomassa , Complexo de Proteína do Fotossistema II/metabolismo , Estresse Salino/efeitos dos fármacos , Clorofila A/metabolismo
16.
Sci Rep ; 14(1): 14053, 2024 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-38890375

RESUMO

Sorghum aphid, Melanaphis sorghi (Theobald) have become a major economic pest in sorghum causing 70% yield loss without timely insecticide applications. The overarching goal is to develop a monitoring system for sorghum aphids using remote sensing technologies to detect changes in plant-aphid density interactions, thereby reducing scouting time. We studied the effect of aphid density on sorghum spectral responses near the feeding site and on distal leaves from infestation and quantified potential systemic effects to determine if aphid feeding can be detected. A leaf spectrometer at 400-1000 nm range was used to measure reflectance changes by varying levels of sorghum aphid density on lower leaves and those distant to the caged infestation. Our study results demonstrate that sorghum aphid infestation can be determined by changes in reflected light, especially between the green-red range (550-650 nm), and sorghum plants respond systemically. This study serves as an essential first step in developing more effective pest monitoring systems for sorghum aphids, as leaf reflection sensors can be used to identify aphid feeding regardless of infestation location on the plant. Future research should address whether such reflectance signatures can be detected autonomously using small unmanned aircraft systems or sUAS equipped with comparable sensor technologies.


Assuntos
Afídeos , Folhas de Planta , Sorghum , Afídeos/fisiologia , Sorghum/parasitologia , Animais , Folhas de Planta/parasitologia , Tecnologia de Sensoriamento Remoto/métodos , Análise Espectral/métodos
17.
Sci Rep ; 14(1): 12649, 2024 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-38825611

RESUMO

Economic losses from insect herbivory in agroecosystems has driven the development of integrated pest management strategies that reduce pest incidence and damage; however, traditional chemicals-based control is either being complemented or substituted with sustainable and integrated methods. Major sustainable pest management strategies revolve around improving host plant resistance, and one of these traits of interest is Brown midrib (BMR). Originally developed to increase nutritional value and ease of digestion for animal agriculture, BMR is a recessive plant gene usually found in annual grasses, including sorghum and sorghum-sudangrass hybrids. In sorghum-sudangrass, BMR expressed plants have lower amounts of lignin, which produces a less fibrous, more digestible crop, with possible implications for plant defense against herbivores- an area currently unexplored. Fall Armyworm (FAW; Spodoptera frugiperda) is a ruinous pest posing immense threat for sorghum producers by severely defoliating crops and being present in every plant stage. Using FAW, we tested the effect of seed treatment, BMR, and plant age on FAW growth, development, and plant defense responses in sorghum-sudangrass. Our results show that seed treatment did not affect growth or development, or herbivory. However, presence of BMR significantly reduced pupal mass relative to its non-BMR counterpart, alongside a significant reduction in adult mass. We also found that plant age was a major factor as FAW gained significantly less mass, had longer pupation times, and had lower pupal mass on the oldest plant stage explored, 60-days, compared to younger plants. These findings collectively show that pest management strategies should consider plant age, and that the effects of BMR on plant defenses should also be studied.


Assuntos
Herbivoria , Sorghum , Spodoptera , Animais , Spodoptera/fisiologia , Spodoptera/crescimento & desenvolvimento , Sorghum/parasitologia , Sorghum/crescimento & desenvolvimento , Larva
18.
Sci Rep ; 14(1): 12819, 2024 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-38834589

RESUMO

Tef [Eragrostis tef (Zucc.) Trotter], an ancient cereal primarily grown in Ethiopia, is becoming increasingly popular worldwide due to its high iron content and gluten-free nature. However, it has been reported that injera produced only with tef flour lack certain vital nutrients. Therefore, this specific study was conducted to supplement tef injera with other food materials of better nutritional value and compensate its expensive market price with sorghum cereal flour. The effect of fermentation conditions, and the sorghum and carrot pulp blending ratio on the nutritional value and sensory quality of tef injera was investigated. The factorial approach of the experimental design was conducted considering the nutritional value and sensory quality of the injera made of three main blending ratios of tef, sorghum, and carrot (60% tef: 30% sorghum: 10% carrot pulp, 45% tef: 45% sorghum: 10% carrot pulp and 30% tef: 60% sorghum: 10% carrot pulp) as experiential variables. The raw materials and injera were characterised for their proximate composition, physicochemical property, mineral composition, microbial analysis, and sensory attributes, using standard methods. The results of the study show that fermentation conditions and blending ratios have a significant effect on the nutritional, anti-nutritional, mineral content, microbial quality, and sensory properties of blended injera products, where higher values of ash, crude protein, crude fat, Total titratable acidity (TTA), Fe, Zn, and Ca (2.30%, 11.34%, 2.62%, 3.53, 32.97 mg/100 g, 2.98 mg/100 g and 176.85 mg/100 g, respectively) were analyzed for the co-fermented injera sample. In addition, a lower microbial count was observed in co-fermented injera samples, whereas microbial counts in injera samples prepared from carrot pulp-supplemented dough after the co-fermentation of tef and sorghum flours were observed to be higher. The injera product made using blending ratio of 60% tef: 30%sorghum: 10% carrot co-fermented was found to be the optimum result due to its very good nutritional improvement (i.e., reduction of some anti-nutritional factors, microbial contents, pH and increased contents of some minerals, crude protein, crude fat, TTA and improved most of the sensory quality of the supplemented injera product). According to this study, sorghum and carrot supplementation on tef could improve the nutritional value of injera while also providing an instant remedy for the growing price of tef.


Assuntos
Daucus carota , Fermentação , Valor Nutritivo , Sorghum , Sorghum/química , Daucus carota/química , Daucus carota/microbiologia , Farinha/análise , Humanos , Eragrostis , Paladar , Grão Comestível/química
19.
Plant Physiol Biochem ; 212: 108780, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38850726

RESUMO

The study evaluated the effects of treating irrigation water with a coaxial flow variator (CFV) on the morpho-physiology of pot-cultivated test species, including cucumber (Cucumis sativus, CU), lettuce (Lactuca sativa, LE), and sorghum (Sorghum vulgare, SO), in early stages of growth. CFV caused a lower oxidation reduction potential (ORP), increased pH and flow resistance and inductance. It induced changes in the absorbance characteristics of water in specific spectral regions, likely associated with greater stretching and reduced bending vibrations compared to untreated water. While assimilation rate and photosynthetic efficiency were not significantly affected at 60 days after sowing, treated water increased the stomatal conductance to water vapour gsw (+79%) and the electron transport rate ETR (+10%) in CU, as well as the non-photochemical quenching NPQ (+33%) in SO. Treated water also reduced leaf temperature in all species (-0.86 °C on average). This translated into improved plant biomass (leaves: +34%; roots: +140%) and reduced leaf-to-root biomass ratio (-42%) in SO, allowing both faster aerial growth and soil colonization, which can be exploited to improve plant tolerance against abiotic stresses. In the C3 species CU and LE, plant biomass was instead reduced, although significantly in LE only, while the leaf-to-root biomass ratio was generally enhanced, a result likely profitable in the cultivation of leafy vegetables. This is a preliminary trial on the effects of functionalized water and much remains to be investigated in other physiological processes, plant species, and growth stages for the full exploitation of this water treatment in agronomy.


Assuntos
Cucumis sativus , Lactuca , Fotossíntese , Água , Água/metabolismo , Cucumis sativus/crescimento & desenvolvimento , Cucumis sativus/metabolismo , Cucumis sativus/fisiologia , Lactuca/crescimento & desenvolvimento , Lactuca/metabolismo , Sorghum/crescimento & desenvolvimento , Sorghum/metabolismo , Irrigação Agrícola/métodos , Folhas de Planta/metabolismo , Folhas de Planta/crescimento & desenvolvimento
20.
BMC Plant Biol ; 24(1): 547, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38872092

RESUMO

BACKGROUND: Plant growth and development are severely threatened by drought and salt stresses. Compared with structural genes, transcription factors (TFs) play more pivotal roles in plant growth and stress adaptation. However, the underlying mechanisms of sorghum adapting to drought and salt are insufficient, and systematic analysis of TFs in response to the above stresses is lacking. RESULTS: In this study, TFs were identified in sorghum and model plants (Arabidopsis thaliana and rice), and gene number and conserved domain were compared between sorghum and model plants. According to syntenic analysis, the expansion of sorghum and rice TFs may be due to whole-genome duplications. Between sorghum and model plants TFs, specific conserved domains were identified and they may be related to functional diversification of TFs. Forty-five key genes in sorghum, including four TFs, were likely responsible for drought adaption based on differently expression analysis. MiR5072 and its target gene (Sobic.001G449600) may refer to the determination of sorghum drought resistance according to small RNA and degradome analysis. Six genes were associated with drought adaptation of sorghum based on weighted gene co-expression network analysis (WGCNA). Similarly, the core genes in response to salt were also characterized using the above methods. Finally, 15 candidate genes, particularly two TFs (Sobic.004G300300, HD-ZIP; Sobic.003G244100, bZIP), involved in combined drought and salt resistance of sorghum were identified. CONCLUSIONS: In summary, the findings in this study help clarify the molecular mechanisms of sorghum responding to drought and salt. We identified candidate genes and provide important genetic resource for potential development of drought-tolerant and salt-tolerant sorghum plants.


Assuntos
Secas , RNA Mensageiro , Sorghum , Fatores de Transcrição , Sorghum/genética , Sorghum/fisiologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Regulação da Expressão Gênica de Plantas , Oryza/genética , Oryza/fisiologia , Estresse Salino/genética , RNA de Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Genes de Plantas , Análise de Sequência de RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA