Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.808
Filtrar
1.
Molecules ; 26(15)2021 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-34361832

RESUMO

In recent times, researchers have aimed for new strategies to combat cancer by the implementation of nanotechnologies in biomedical applications. This work focuses on developing protein-based nanoparticles loaded with a newly synthesized NIR emitting and absorbing phthalocyanine dye, with photodynamic and photothermal properties. More precisely, we synthesized highly reproducible bovine serum albumin-based nanoparticles (75% particle yield) through a two-step protocol and successfully encapsulated the NIR active photosensitizer agent, achieving a good loading efficiency of 91%. Making use of molecular docking simulations, we confirm that the NIR photosensitizer is well protected within the nanoparticles, docked in site I of the albumin molecule. Encouraging results were obtained for our nanoparticles towards biomedical use, thanks to their negatively charged surface (-13.6 ± 0.5 mV) and hydrodynamic diameter (25.06 ± 0.62 nm), favorable for benefitting from the enhanced permeability and retention effect; moreover, the MTT viability assay upholds the good biocompatibility of our NIR active nanoparticles. Finally, upon irradiation with an NIR 785 nm laser, the dual phototherapeutic effect of our NIR fluorescent nanoparticles was highlighted by their excellent light-to-heat conversion performance (photothermal conversion efficiency 20%) and good photothermal and size stability, supporting their further implementation as fluorescent therapeutic agents in biomedical applications.


Assuntos
Indóis/administração & dosagem , Nanopartículas/administração & dosagem , Neoplasias Ovarianas/tratamento farmacológico , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/administração & dosagem , Soroalbumina Bovina/química , Proliferação de Células , Feminino , Humanos , Indóis/química , Luz , Simulação de Acoplamento Molecular , Nanopartículas/química , Neoplasias Ovarianas/patologia , Fármacos Fotossensibilizantes/química , Espectroscopia de Luz Próxima ao Infravermelho , Células Tumorais Cultivadas
2.
ACS Appl Mater Interfaces ; 13(33): 39854-39867, 2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34387478

RESUMO

Despite the growing research on biomolecule-inorganic nanoflowers for multiple applications, it remains challenging to control their development on stationary platforms for potential portable and wearable devices. In this work, the self-assembly of Cu3(PO4)2-bovine serum albumin hybrid nanoflowers is facilitated by an alumina platform whose surface is tailored by wet plasma electrolysis. This allows an interlocking of hybrid nanoflowers with the surface motifs of the solid platform, resulting in a hierarchy similar to nanocarnation (NC) petals on an inorganic bed. Density functional theory calculations are performed to reveal the primary bonding mode between the organic and inorganic components and to identify the active sites of the protein structure in order to provide mechanistic insights that can explain self-assembly of NCs overall. The hybrid architecture displays an adaptive microstructure in different aqueous environment, giving rise to a dual-function based on its electrochemical stability and catalytic activity toward radical degradation of organic pollutant.


Assuntos
Corantes/química , Cobre/química , Nanopartículas/química , Fosfatos/química , Soroalbumina Bovina/química , Poluentes Químicos da Água/química , Catálise , Teoria da Densidade Funcional , Técnicas Eletroquímicas , Peróxido de Hidrogênio/química , Modelos Moleculares , Oxirredução , Agregados Proteicos , Propriedades de Superfície
3.
Int J Mol Sci ; 22(12)2021 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-34207769

RESUMO

Colloidal stability of magnetic iron oxide nanoparticles (MNP) in physiological environments is crucial for their (bio)medical application. MNP are potential contrast agents for different imaging modalities such as magnetic resonance imaging (MRI) and magnetic particle imaging (MPI). Applied as a hybrid method (MRI/MPI), these are valuable tools for molecular imaging. Continuously synthesized and in-situ stabilized single-core MNP were further modified by albumin coating. Synthesizing and coating of MNP were carried out in aqueous media without using any organic solvent in a simple procedure. The additional steric stabilization with the biocompatible protein, namely bovine serum albumin (BSA), led to potential contrast agents suitable for multimodal (MRI/MPI) imaging. The colloidal stability of BSA-coated MNP was investigated in different sodium chloride concentrations (50 to 150 mM) in short- and long-term incubation (from two hours to one week) using physiochemical characterization techniques such as transmission electron microscopy (TEM) for core size and differential centrifugal sedimentation (DCS) for hydrodynamic size. Magnetic characterization such as magnetic particle spectroscopy (MPS) and nuclear magnetic resonance (NMR) measurements confirmed the successful surface modification as well as exceptional colloidal stability of the relatively large single-core MNP. For comparison, two commercially available MNP systems were investigated, MNP-clusters, the former liver contrast agent (Resovist), and single-core MNP (SHP-30) manufactured by thermal decomposition. The tailored core size, colloidal stability in a physiological environment, and magnetic performance of our MNP indicate their ability to be used as molecular magnetic contrast agents for MPI and MRI.


Assuntos
Materiais Revestidos Biocompatíveis/química , Meios de Contraste/química , Nanopartículas Magnéticas de Óxido de Ferro/química , Imageamento por Ressonância Magnética , Soroalbumina Bovina/química , Animais , Bovinos
4.
Comput Biol Chem ; 93: 107543, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34252797

RESUMO

Graphene quantum dot possesses advantageous characteristics like tunable fluorescence, nanometer size, low cytotoxicity, high biocompatibility enabling them as an ideal material for fluorescence bio-imaging. It exhibits a unique characteristic of DNA cleavage activity enhancer, gene/drug carrier, and anticancer targeting applications. In this article, we discussed the preparation of graphene quantum dot through the bottom-up method. Carbodiimide-activated amidation reactions were used for the functionalization of graphene quantum dot with Bovine Serum Albumin. Fluorescence spectroscopy data showed that the graphene quantum dot has size-dependent fluorescence emission. TEM and AFM studies showed that the size of graphene quantum dot was around 20 nm with narrow size distribution. Carbodiimide-activated amidation conjugation was successful in binding the protein onto graphene quantum dot and these conjugates were characterized by DLS, FTIR, fluorescence spectroscopy, and agarose gel electrophoresis. We also studied the structural-based in-silico molecular dynamic simulation by AutoDock, PyRx, and Discovery Studio Visualizer. Based on the virtual screening analysis and higher negative energy incorporation, it is observed that graphene quantum dot conjugated with bovine serum albumin quickly and formed is highly stable complex, which makes them a potential candidate for future applications in the field of bio-imaging, bio-sensing, gene/drug delivery, and tumor theragnostic.


Assuntos
Amidas/síntese química , Imidas/química , Simulação de Dinâmica Molecular , Imagem Óptica , Soroalbumina Bovina/química , Amidas/química , Animais , Bovinos , Fluorescência , Grafite/química , Pontos Quânticos/química
5.
Int J Biol Macromol ; 185: 935-948, 2021 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-34237365

RESUMO

A protein precipitation technique was optimized to produce biophysically stable 'protein microbeads', applicable to highly concentrated protein formulation. Initially, production of BSA microbeads was performed using rapid dehydration by vortexing in organic solvents followed by cold ethanol treatment and a vacuum drying. Out of four solvents, n-octanol produced the most reversible microbeads upon reconstitution. A Shirasu porous glass (SPG) membrane emulsification technique was utilized to enhance the size distribution and manufacturing process of the protein microbeads with a marketized human IgG solution. Process variants such as dehydration time, temperature, excipients, drying conditions, and initial protein concentration were evaluated in terms of the quality of IgG microbeads and their reversibility. The hydrophobized SPG membrane produced a narrow size distribution of the microbeads, which were further enhanced by shorter dehydration time, low temperature, minimized the residual solvents, lower initial protein concentration, and addition of trehalose to the IgG solution. Final reversibility of the IgG microbeads with trehalose was over 99% at both low and high protein concentrations. Moreover, the formulation was highly stable under repeated mechanical shocks and at an elevated temperature compared to its liquid state. Its in vivo pharmacokinetic profiles in rats were consistent before and after the 'microbeadification'.


Assuntos
1-Octanol/química , Imunoglobulina G/administração & dosagem , Imunoglobulina G/química , Soroalbumina Bovina/farmacocinética , Animais , Precipitação Química , Dessecação , Composição de Medicamentos , Estabilidade de Medicamentos , Humanos , Imunoglobulina G/farmacologia , Masculino , Microesferas , Tamanho da Partícula , Ratos , Soroalbumina Bovina/química , Tempo , Vácuo
6.
Molecules ; 26(13)2021 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-34202801

RESUMO

In this research, the selected drugs commonly used in diabetes and its comorbidities (gliclazide, cilazapril, atorvastatin, and acetylsalicylic acid) were studied for their interactions with bovine serum albumin-native and glycated. Two different spectroscopic methods, fluorescence quenching and circular dichroism, were utilized to elucidate the binding interactions of the investigational drugs. The glycation process was induced in BSA by glucose and was confirmed by the presence of advanced glycosylation end products (AGEs). The interaction between albumin and gliclazide, with the presence of another drug, was confirmed by calculation of association constants (0.11-1.07 × 104 M-1). The nature of changes in the secondary structure of a protein depends on the drug used and the degree of glycation. Therefore, these interactions may have an influence on pharmacokinetic parameters.


Assuntos
Diabetes Mellitus/tratamento farmacológico , Hipoglicemiantes/química , Soroalbumina Bovina/química , Animais , Bovinos , Humanos , Hipoglicemiantes/uso terapêutico , Ligação Proteica , Estrutura Secundária de Proteína
7.
Int J Nanomedicine ; 16: 4321-4332, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34211273

RESUMO

Background: As commonly bone defect is a disease of jaw that can seriously affect implant restoration, the bioactive scaffold can be used as potential systems to provide effective repair for bone defect. Purpose: A osteoinductive bone tissue engineering scaffold has been prepared in order to explore the effect of bioactive materials on bone tissue engineering. Methods: In this study, NELL-1 nanoparticles (Chi/NNP) and nano hydroxyapatite were incorporated in composite scaffolds by electrospinning and characterized using TEM, SEM, contact angle, tensile tests and in vitro drug release. In vitro biological activities such as MC3T3-E1 cell attachment, proliferation and osteogenic activity were studied. Results: With the addition of nHA and nanoparticles, the fiber diameter of PCL/BNPs group, PCL/NNPs group and PCL/nHA/NNPs group was significantly increased. Moreover, the hydrophilic hydroxyl group and amino group presented in nHA and nanoparticles had improved the hydrophilicity of the composite fibers. The composite electrospun containing Chi/NNPs can form a double protective barrier which can effectively prolong the release time of NELL-1 growth factor. In addition, the hydroxyapatite/NELL-1 nanoparticles electrospun fibers can promote attachment, proliferation, differentiation of MC3T3-E1 cells and good cytocompatibility, indicating better ability of inducing osteogenic differentiation. Conclusion: A multi-functional PCL/nHA/NNPs composite fiber with long-term bioactivity and osteoinductivity was successfully prepared by electrospinning. This potential composite could be used as scaffolds in bone tissue engineering application after in vivo studies.


Assuntos
Proteínas de Ligação ao Cálcio/farmacologia , Durapatita/química , Nanofibras/química , Osteogênese/efeitos dos fármacos , Engenharia Tecidual/métodos , Osso e Ossos , Proteínas de Ligação ao Cálcio/química , Proteínas de Ligação ao Cálcio/farmacocinética , Diferenciação Celular/efeitos dos fármacos , Quitosana/química , Liberação Controlada de Fármacos , Humanos , Microscopia Eletrônica de Varredura , Nanopartículas/química , Poliésteres/química , Soroalbumina Bovina/química , Tecidos Suporte
8.
Molecules ; 26(13)2021 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-34206735

RESUMO

The impact of key classes of compounds found in wine on protein removal by the ion-exchange resin, Macro-Prep® High S, was examined by adsorption isotherm experiments. A model wine system, which contained a prototypical protein Bovine Serum Albumin (BSA), was used. We systematically changed concentrations of individual chemical components to generate and compare adsorption isotherm plots and to quantify adsorption affinity or capacity parameters of Macro-Prep® High S ion-exchange resin. The pH (hydronium ion concentration), ethanol concentration, and prototypical phenolics and polysaccharide compounds are known to impact interactions with proteins and thus could alter the adsorption affinity and capacity of Macro-Prep® High S ion-exchange resin. At low equilibrium protein concentrations (< ~0.3 (g BSA)/L) and at high equilibrium protein concentrations in model wines at various pH, the adsorption behavior followed the Langmuir isotherm, most likely due to the resin acting as a monolayer adsorbent. The resulting range of BSA capacity was between 0.15-0.18 (g BSA)/(g Macro-Prep® High S resin). With the addition of ethanol, catechin, caffeic acid, and polysaccharides, the protein adsorption behavior was observed to differ at higher equilibrium protein concentrations (> ~0.3 (g BSA)/L), likely as a result of Macro-Prep® acting as an unrestricted multilayer adsorbent at these conditions. These data can be used to inform the design and scale-up of ion-exchange columns for removing proteins from wines.


Assuntos
Etanol/química , Resinas de Troca Iônica/química , Proteínas/química , Soroalbumina Bovina/química , Vinho/análise , Adsorção , Ácidos Cafeicos/química , Catequina/química , Concentração de Íons de Hidrogênio , Cinética , Modelos Químicos , Fenóis/análise , Polissacarídeos/química , Soluções/análise , Soluções/química , Espectrofotometria , Água/química
9.
Int J Nanomedicine ; 16: 4481-4494, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34239300

RESUMO

Purpose: Apatinib (Apa) is a novel anti-vascular endothelial growth factor with the potential to treat diabetic retinopathy (DR); a serious condition leading to visual impairment and blindness. DR treatment relies on invasive techniques associated with various complications. Investigating topical routes for Apa delivery to the posterior eye segment is thus promising but also challenging due to ocular barriers. Hence, the study objective was to develop Apa-loaded bovine serum albumin nanoparticles (Apa-BSA-NPs) coated with hyaluronic acid (HA); a natural polymer possessing unique mucoadhesive and viscoelastic features with the capacity to actively target CD44 positive retinal cells, for topical administration in DR. Methods: Apa-BSA-NPs were prepared by desolvation using glutaraldehyde for cross-linking. HA-coated BSA-NPs were also prepared and HA: NPs ratio optimized. Nanoparticles were characterized for colloidal properties, entrapment efficiency (EE%), in vitro drug release and mucoadhesive potential. In vitro cytotoxicity on rabbit corneal epithelial cells (RCE) was assessed using MTT assay, while efficacy was evaluated in vivo in a diabetic rat model by histopathological examination of the retina by light and transmission electron microscopy. Retinal accumulation of fluorescently labeled BSA-NP and HA-BSA-NP was assessed using confocal microscope scanning. Results: Apa-HA-BSA-NPs prepared under optimal conditions showed size, PdI and zeta potential: 222.2±3.56 nm, 0.221±0.02 and -37.3±1.8 mV, respectively. High EE% (69±1%), biphasic sustained release profile with an initial burst effect and mucoadhesion was attained. No evidence of cytotoxicity was observed on RCE cells. In vivo histopathological studies on DR rat model revealed alleviated retinal micro- and ultrastructural changes in the topical HA-Apa-BSA-NP treated eyes with normal basement membrane and retinal thickness comparable to normal control and intravitreally injected nanoparticles. Improved retinal accumulation for HA-BSA-NP was also observed by confocal microscopy. Conclusion: Findings present HA-Apa-BSA-NPs as a platform for enhanced topical therapy of DR overcoming the devastating ocular complications of the intravitreal route.


Assuntos
Retinopatia Diabética/metabolismo , Portadores de Fármacos/química , Ácido Hialurônico/química , Nanopartículas/química , Piridinas/administração & dosagem , Piridinas/química , Soroalbumina Bovina/química , Animais , Retinopatia Diabética/tratamento farmacológico , Liberação Controlada de Fármacos , Tamanho da Partícula , Piridinas/metabolismo , Piridinas/uso terapêutico , Coelhos , Ratos , Retina/metabolismo
10.
J Phys Chem Lett ; 12(30): 7085-7090, 2021 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-34292744

RESUMO

Microscopic dynamics of complex fluids in the early stage of spinodal decomposition (SD) is strongly intertwined with the kinetics of structural evolution, which makes a quantitative characterization challenging. In this work, we use X-ray photon correlation spectroscopy to study the dynamics and kinetics of a protein solution undergoing liquid-liquid phase separation (LLPS). We demonstrate that in the early stage of SD, the kinetics relaxation is up to 40 times slower than the dynamics and thus can be decoupled. The microscopic dynamics can be well described by hyper-diffusive ballistic motions with a relaxation time exponentially growing with time in the early stage followed by a power-law increase with fluctuations. These experimental results are further supported by simulations based on the Cahn-Hilliard equation. The established framework is applicable to other condensed matter and biological systems undergoing phase transitions and may also inspire further theoretical work.


Assuntos
Soroalbumina Bovina/química , Animais , Bovinos , Cinética , Transição de Fase , Soluções/química , Análise Espectral/métodos
11.
ACS Appl Mater Interfaces ; 13(26): 30383-30396, 2021 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-34162207

RESUMO

Although nitric oxide (NO) has been emerging as a novel local anticancer agent because of its potent cytotoxic effects and lack of off-target side effects, its clinical applications remain a challenge because of the short effective diffusion distance of NO that limits its anticancer activity. In this study, we synthesized albumin-coated poly(lactic-co-glycolic acid) (PLGA)-conjugated linear polyethylenimine diazeniumdiolate (LP/NO) nanoparticles (Alb-PLP/NO NPs) that possess tumor-penetrating and NO-releasing properties for an effective local treatment of melanoma. Sufficient NO-loading and prolonged NO-releasing characteristics of Alb-PLP/NO NPs were acquired through PLGA-conjugated LP/NO copolymer (PLP/NO) synthesis, followed by nanoparticle fabrication. In addition, tumor penetration ability was rendered by the electrostatic adsorption of the albumin on the surface of the nanoparticles. The Alb-PLP/NO NPs showed enhanced intracellular NO delivery efficiency and cytotoxicity to B16F10 murine melanoma cells. In B16F10-tumor-bearing mice, the Alb-PLP/NO NPs showed improved extracellular matrix penetration and spatial distribution in the tumor tissue after intratumoral injection, resulting in enhanced antitumor activity. Taken together, the results suggest that Alb-PLP/NO NPs represent a promising new modality for the local treatment of melanoma.


Assuntos
Antineoplásicos/uso terapêutico , Melanoma/tratamento farmacológico , Nanopartículas/uso terapêutico , Doadores de Óxido Nítrico/uso terapêutico , Animais , Antineoplásicos/síntese química , Antineoplásicos/toxicidade , Apoptose/efeitos dos fármacos , Compostos Azo/síntese química , Compostos Azo/uso terapêutico , Compostos Azo/toxicidade , Bovinos , Linhagem Celular Tumoral , Liberação Controlada de Fármacos , Melanoma/patologia , Camundongos Endogâmicos C57BL , Nanopartículas/química , Nanopartículas/toxicidade , Óxido Nítrico/metabolismo , Doadores de Óxido Nítrico/síntese química , Doadores de Óxido Nítrico/toxicidade , Polietilenoimina/análogos & derivados , Polietilenoimina/toxicidade , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/síntese química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/toxicidade , Soroalbumina Bovina/química , Soroalbumina Bovina/toxicidade
12.
ACS Appl Mater Interfaces ; 13(24): 27880-27894, 2021 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-34106676

RESUMO

Nanocomposite hydrogels containing two-dimensional nanosilicates (NS) have emerged as a new technology for the prolonged delivery of biopharmaceuticals. However, little is known about the physical-chemical properties governing the interaction between NS and proteins and the release profiles of NS-protein complexes in comparison to traditional poly(ethylene glycol) (PEG) hydrogel technologies. To fill this gap in knowledge, we fabricated a nanocomposite hydrogel composed of PEG and laponite and identified simple but effective experimental conditions to obtain sustained protein release, up to 23 times slower as compared to traditional PEG hydrogels, as determined by bulk release experiments and fluorescence correlation spectroscopy. Slowed protein release was attributed to the formation of NS-protein complexes, as NS-protein complex size was inversely correlated with protein diffusivity and release rates. While protein electrostatics, protein concentration, and incubation time were important variables to control protein-NS complex formation, we found that one of the most significant and less appreciated variable to obtain a sustained release of bioactive proteins was the buffer chosen for preparing the initial suspension of NS particles. The buffer was found to control the size of nanoparticles, the absorption potential, morphology, and stiffness of hydrogels. From these studies, we conclude that the PEG-laponite composite fabricated is a promising new platform for sustained delivery of positively charged protein therapeutics.


Assuntos
Portadores de Fármacos/química , Hidrogéis/química , Nanocompostos/química , Silicatos/química , Animais , Bovinos , Liberação Controlada de Fármacos , Muramidase/química , Polietilenoglicóis/química , Ribonuclease Pancreático/química , Soroalbumina Bovina/química
13.
ACS Appl Mater Interfaces ; 13(24): 29070-29082, 2021 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-34101411

RESUMO

Two novel stimuli-responsive drug delivery systems (DDSs) were successfully created from bovine serum albumin- or myoglobin-gated upconversion nanoparticle-embedded mesoporous silica nanovehicles (UCNP@mSiO2) via diselenide (Se-Se)-containing linkages. More importantly, multiple roles of each scaffold of the nanovehicles were achieved. The controlled release of the encapsulated drug doxorubicin (DOX) within the mesopores was activated by triple stimuli (acidic pH, glutathione, or H2O2) of tumor microenvironments, owing to the conformation/surface charge changes in proteins or the reductive/oxidative cleavages of the Se-Se bonds. Upon release of DOX, the Förster resonance energy transfer between the UCNP cores and encapsulated DOX was eliminated, resulting in an increase in ratiometric upconversion luminescence for DOX release tracking in real time. The two protein-gated DDSs showed some differences in the drug release performances, relevant to structures and properties of the protein nanogates. The introduction of the Se-Se linkages not only increased the versatility of reductive/oxidative cleavages but also showed less cytotoxicity to all cell lines. The DOX-loaded protein-gated nanovehicles showed the inhibitory effect on tumor growth in tumor-bearing mice and negligible damage/toxicity to the normal tissues. The constructed nanovehicles in a spatiotemporally controlled manner have fascinating prospects in targeted drug delivery for cancer chemotherapy.


Assuntos
Antineoplásicos/uso terapêutico , Doxorrubicina/uso terapêutico , Portadores de Fármacos/química , Nanopartículas Metálicas/química , Neoplasias/tratamento farmacológico , Animais , Antineoplásicos/química , Bovinos , Doxorrubicina/química , Portadores de Fármacos/metabolismo , Liberação Controlada de Fármacos , Érbio/química , Feminino , Fluoretos/química , Glutationa/metabolismo , Células HeLa , Humanos , Peróxido de Hidrogênio/metabolismo , Concentração de Íons de Hidrogênio , Camundongos Endogâmicos C57BL , Mioglobina/química , Mioglobina/metabolismo , Porosidade , Soroalbumina Bovina/química , Soroalbumina Bovina/metabolismo , Dióxido de Silício/química , Ensaios Antitumorais Modelo de Xenoenxerto , Itérbio/química , Ítrio/química
14.
ACS Appl Mater Interfaces ; 13(23): 27533-27547, 2021 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-34082528

RESUMO

Exposure of nanomaterials (NMs) to biological medium results in their direct interaction with biomolecules and the formation of a dynamic biomolecular layer known as the biomolecular corona. Despite numerous published data on nano-biointeractions, the role of protein glycosylation in the formation, characteristics, and fate of such nano-biocomplexes has been almost completely neglected, although most serum proteins are glycosylated. This study aimed to systematically investigate the differences in interaction of metallic NPs with glycosylated vs nonglycosylated transferrin. To reach this aim, we compared interaction mechanisms between differently sized, shaped, and surface-functionalized silver NMs and gold NMs to commercially available human transferrin (TRF), a glycosylated protein, and to its nonglycosylated recombinant form (ngTRF). Bovine serum albumin (BSA) was also included in the study for comparative purposes. Characterization of NMs was performed using transmission electron microscopy and dynamic and electrophoretic light scattering techniques. Fluorescence quenching and circular dichroism methods were used to evaluate protein binding constants on the nanosurface and conformational changes after the protein-NM interactions, respectively. Competitive binding of TRF, ngTRF, and BSA to the surface of different NMs was evaluated by separating them after extraction from protein corona by gel electrophoresis following quantification with a commercial protein assay. The results showed that the binding strength between NMs and transferrin and the changes in the secondary protein structure largely depend not only on NM physicochemical properties but also on the protein glycosylation status. Data gained by this study highlight the relevance of protein glycosylation for all future design, development, and efficacy and safety assessment of NMs.


Assuntos
Ouro/química , Nanopartículas Metálicas/química , Prata/química , Transferrina/metabolismo , Glicosilação , Humanos , Nanoestruturas , Ligação Proteica , Soroalbumina Bovina/química , Soroalbumina Bovina/metabolismo , Transferrina/química
15.
Int J Biol Macromol ; 183: 1987-2000, 2021 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-34087302

RESUMO

The aim of the present study was to obtain a better and safer galactomannan-based material for drug release applications. A novel epoxy-crosslinked galactomannan hydrogel (EGH) was prepared from guar gum using 1,4-butanediol diglycidyl ether as a crosslinking agent. The diffusion rate constant of water molecules in freeze-dried EGH positively correlated with water uptake/equilibrium swelling rate (WU/ESR), and the water molecules participated in Fickian diffusion. The ESR, WU/ESR, and bovine serum albumin (BSA) loading capacity of a customized EGH with a crosslinking density of 48.9% were 48.7 ± 0.15 g/g, 95.3%, and 56.4 mg/g, respectively. The release of BSA from freeze-dried EGH was affected by the WU/ESR and the pH; the release equilibrium time was ~40 h at pH 1.2, decreasing to ~24 h at pH 7.4. Furthermore, the cumulative release rate increased from 63.5% to 80.7% and the t50 decreased from 59 to 41 min upon changing from the acidic to basic pH. The release process conformed to the Ritger-Peppas and Hixson-Crowell models, and represented Fickian diffusion and chain relaxation. The EGH showed no cytotoxicity toward HeLa cells. Together, these results demonstrate the properties of a novel galactomannan-based hydrogel that can potentially be employed as a vehicle for drug delivery.


Assuntos
Butileno Glicóis/química , Hidrogéis/química , Mananas/química , Soroalbumina Bovina/química , Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Liofilização , Galactanos/química , Células HeLa , Humanos , Concentração de Íons de Hidrogênio , Gomas Vegetais/química , Água
16.
Food Chem ; 362: 130169, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34102509

RESUMO

Advanced glycation end-products (AGEs) are produced during protein glycation and associated with diabetic complications. Peanut skin is rich in procyanidins, which may be used as an inhibitor of glycation. This study evaluated the potential anti-glycation effect of peanut skin extract (PSE) and dissected the underlying mechanism. PSE could effectively inhibit the formation of AGEs in BSA-Glc and BSA-MGO/GO models, with 44%, 37% and 82% lower IC50 values than the positive control (AG), respectively. The inhibitory effect of PSE on BSA glycation might be ascribed to its binding interaction with BSA, attenuated formation of early glycation products and trapping of reactive dicarbonyl compounds. Notably, PSE showed a remarkably stronger inhibitory effect on Amadori products than AG. Furthermore, three new types of PSE-MGO adducts were formed as identified by UPLC-Q-TOF-MS. These findings suggest that PSE may serve as an inhibitor of glycation and provide new insights into its application.


Assuntos
Arachis/química , Produtos Finais de Glicação Avançada/química , Extratos Vegetais/química , Frutosamina/química , Glucose/química , Produtos Finais de Glicação Avançada/antagonistas & inibidores , Extratos Vegetais/análise , Proantocianidinas/análise , Proantocianidinas/química , Aldeído Pirúvico/química , Soroalbumina Bovina/química
17.
Int J Biol Macromol ; 184: 713-720, 2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-34181997

RESUMO

Hyaluronic acid (HA) was covalently linked to the surface of bovine serum albumin/silver (BSA/Ag) porous films to fabricate a possible contact lens. The BSA/Ag/HA films showed favorable properties as contact lenses, including acceptable transparency, high water content, good hemocompatibility, non-cytotoxicity and antibacterial properties. The therapeutic potential of the BSA/Ag/HA films was evaluated on an alkali burn-induced corneal injury model on mice. The corneal healing rate was enhanced, the corneal opacification and neovascularization were lessened, and the inflammation response was reduced. The chemical cross-linking of HA on the films prolonged the retention time of HA on the corneal surface, thus enhanced the drug efficacy and improved the patient compliance, proving the high potential of BSA/Ag/HA films as contact lenses.


Assuntos
Álcalis/efeitos adversos , Antibacterianos/administração & dosagem , Lesões da Córnea/tratamento farmacológico , Ácido Hialurônico/administração & dosagem , Soroalbumina Bovina/química , Prata/química , Animais , Antibacterianos/química , Antibacterianos/uso terapêutico , Bandagens , Lentes de Contato Hidrofílicas , Lesões da Córnea/induzido quimicamente , Modelos Animais de Doenças , Composição de Medicamentos , Ácido Hialurônico/química , Ácido Hialurônico/farmacologia , Camundongos , Estrutura Molecular , Porosidade , Resultado do Tratamento , Cicatrização/efeitos dos fármacos
18.
Int J Biol Macromol ; 184: 79-91, 2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-34097969

RESUMO

Herein, we report the use of ß-lactoglobulin (ß-LG) combined with bovine serum albumin (BSA) for the preparation of amyloid-based hydrogels with aim of delivering riboflavin. The incorporation of BSA enhanced ß-LG fibrillogenesis and protected ß-LG fibrils from losing fibrillar structure due to the pH shift. The mechanical properties of hydrogels were observed to be positively correlated with the number of amyloid fibrils. While the addition of BSA induced amyloid fibril formation, its presence between the fibril chains interfered with the entanglement of fibril chains, thus adversely affecting the hydrogels' mechanical properties. Hydrogels' surface microstructure became more compact as the number of amyloid fibrils rose and the presence of BSA could improve hydrogels' surface homogeneity. In vitro riboflavin (RF) release rate was found to be correlated with the number of fibrils and BSA-RF binding affinity. However, when the digestive enzymes were present, the influence of BSA-RF affinity was alleviated due to enzymes' destructive and/or degradative effects on BSA and/or hydrogels, thus the release rate relied on the number of fibrils, which could be adjusted by the amount of BSA. Results indicate that the additional component, BSA, plays an important role in modulating the properties and functions of ß-LG fibril-based hydrogels.


Assuntos
Amiloide/química , Lactoglobulinas/química , Riboflavina/química , Soroalbumina Bovina/química , Liberação Controlada de Fármacos , Hidrogéis , Concentração de Íons de Hidrogênio , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Espectroscopia de Infravermelho com Transformada de Fourier
19.
Int J Mol Sci ; 22(9)2021 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-34066402

RESUMO

Newly designed and synthesized diarylethene (DAE) derivatives with aliphatic amine sidearms and one with two pyrenes, revealed excellent photo-switching property of central DAE core in MeOH and water. The only exception was bis-pyrene analogue, its DAE core very readily photochemically closed, but reversible opening completely hampered by aromatic stacking interaction of pyrene(s) with cyclic DAE. In this process, pyrene fluorescence showed to be a reliable monitoring method, an open form characterized by strong emission at 480 nm (typical for pyrene-aggregate), while closed form emitted weakly at 400 nm (typical for pyrene-DAE quenching). Only open DAE-bis-pyrene form interacted measurably with ds-DNA/RNA by flexible insertion in polynucleotide grooves, while self-stacked closed form did not bind to DNA/RNA. For the same steric reasons, flexible open DAE-bis-pyrene form was bound to at least three different binding sites at bovine serum albumin (BSA), while rigid, self-stacked closed form interacted dominantly with only one BSA site. Preliminary screening of antiproliferative activity against human lung carcinoma cell line A549 revealed that all DAE-derivatives are non-toxic. However, bis-pyrene analogue efficiently entered cells and located in the cytoplasm, whereby irradiation by light (315-400 nm) resulted in a strong, photo-induced cytotoxic effect, typical for pyrene-related singlet oxygen species production.


Assuntos
DNA/química , Luz , Conformação Molecular , Pirenos/química , Soroalbumina Bovina/química , Células A549 , Animais , Bovinos , Sobrevivência Celular , Elétrons , Humanos , Desnaturação de Ácido Nucleico/efeitos da radiação , Processos Fotoquímicos , RNA/química , Espectrometria de Fluorescência , Espectrofotometria Ultravioleta , Temperatura
20.
Int J Biol Macromol ; 182: 1362-1370, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-33965493

RESUMO

This study attempted to prepare ternary conjugate emulsion from bovine serum albumin (BSA), dextran (DEX) and gallic acid (GA) to improve the stability of conjugate emulsion and the bioaccessibility of capsorubin. The release of capsorubin was further delayed by sodium alginate capsules in the intestinal phase. First, protein formed new functional groups and covalent bonds was analyzed by Fourier transform infrared (FTIR) and sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE). Next, the stability of the ternary conjugate showed distinct pH correlation and the higher stability near the isoelectric point. Finally, the bioaccessibility of capsorubin embedded in sodium alginate emulsion was higher than that of ternary conjugate emulsion (65% and 34%).


Assuntos
Alginatos/química , Dextranos/química , Ácido Gálico/química , Soroalbumina Bovina/química , Xantofilas/metabolismo , Animais , Antioxidantes/farmacologia , Disponibilidade Biológica , Digestão/efeitos dos fármacos , Emulsões/química , Trato Gastrointestinal/fisiologia , Concentração de Íons de Hidrogênio , Luz , Suínos , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...