RESUMO
BACKGROUND: The effect of childhood pneumococcal conjugate vaccine implementation in Malawi is threatened by absence of herd effect. There is persistent vaccine-type pneumococcal carriage in both vaccinated children and the wider community. We aimed to use a human infection study to measure 13-valent pneumococcal conjugate vaccine (PCV13) efficacy against pneumococcal carriage. METHODS: We did a double-blind, parallel-arm, randomised controlled trial investigating the efficacy of PCV13 or placebo against experimental pneumococcal carriage of Streptococcus pneumoniae serotype 6B (strain BHN418) among healthy adults (aged 18-40 years) from Blantyre, Malawi. We randomly assigned participants (1:1) to receive PCV13 or placebo. PCV13 and placebo doses were prepared by an unmasked pharmacist to maintain research team and participant masking with identification only by a randomisation identification number and barcode. 4 weeks after receiving either PCV13 or placebo, participants were challenged with 20â000 colony forming units (CFUs) per naris, 80â000 CFUs per naris, or 160â000 CFUs per naris by intranasal inoculation. The primary endpoint was experimental pneumococcal carriage, established by culture of nasal wash at 2, 7, and 14 days. Vaccine efficacy was estimated per protocol by means of a log-binomial model adjusting for inoculation dose. The trial is registered with the Pan African Clinical Trials Registry, PACTR202008503507113, and is now closed. FINDINGS: Recruitment commenced on April 27, 2021 and the final visit was completed on Sept 12, 2022. 204 participants completed the study protocol (98 PCV13, 106 placebo). There were lower carriage rates in the vaccine group at all three inoculation doses (0 of 21 vs two [11%] of 19 at 20â000 CFUs per naris; six [18%] of 33 vs 12 [29%] of 41 at 80â000 CFUs per naris, and four [9%] of 44 vs 16 [35%] of 46 at 160â000 CFUs per naris). The overall carriage rate was lower in the vaccine group compared with the placebo group (ten [10%] of 98 vs 30 [28%] of 106; Fisher's p value=0·0013) and the vaccine efficacy against carriage was estimated at 62·4% (95% CI 27·7-80·4). There were no severe adverse events related to vaccination or inoculation of pneumococci. INTERPRETATION: This is, to our knowledge, the first human challenge study to test the efficacy of a pneumococcal vaccine against pneumococcal carriage in Africa, which can now be used to establish vaccine-induced correlates of protection and compare alternative strategies to prevent pneumococcal carriage. This powerful tool could lead to new means to enhance reduction in pneumococcal carriage after vaccination. FUNDING: Wellcome Trust.
Assuntos
Vacinas Pneumocócicas , Streptococcus pneumoniae , Adulto , Criança , Humanos , Malaui/epidemiologia , Vacinas Conjugadas , Sorogrupo , Vacinas Pneumocócicas/uso terapêuticoRESUMO
BACKGROUND: In Nigeria, there have been reports of widespread multiple antimicrobial resistance (AMR) amongst Salmonella isolated from poultry. To mitigate the impact of mortality associated with Salmonella on their farms, farmers resort to the use of antimicrobials without sound diagnostic advice. We conducted this study to describe the AMR patterns, mechanisms and genetic similarities within some Salmonella serovars isolated from different layer farms. METHOD: We determine the AMR profiles of two hundred Salmonella isolates, selected based on frequency, serovar, and geographical and sample type distribution. We also assessed the mechanisms of multi-drug resistance for specific genetic determinants by using PCR protocols and gene sequence analysis. Pulsed-field gel electrophoresis (PFGE) was conducted on seven selected serovars to determine their genetic relatedness. RESULTS: Of 200 isolates, 97 (48.5%) revealed various AMR profiles, with the multiple antibiotic resistance (MAR) index ranging from 0.07-0.5. Resistance to ciprofloxacin was common in all the multi-drug resistant isolates, while all the isolates were susceptible to cefotaxime, ceftazidime, and meropenem. Genotypic characterization showed the presence of resistance genes as well as mutations in the nucleotide genes with subsequent amino acid substitutions. Fifteen isolates (43%) of S. Kentucky were indistinguishable, but were isolated from four different states in Nigeria (Ogun, n = 9; Kaduna, n = 6; Plateau, n = 3, and: Bauchi, n = 2). PFGE revealed 40 pulsotype patterns (Kentucky, n = 12; Larochelle, n = 9; Virchow, n = 5; Saintpaul, n = 4; Poona, n = 3; Isangi, n = 2, and; Nigeria, n = 2). CONCLUSION: This study recorded strictly related but diversely distributed Salmonella serovars with high AMR rates in poultry. We recommend strict regulation on antimicrobial use and regular monitoring of AMR trends among bacteria isolated from animals and humans to inform public policy.
Assuntos
Galinhas , Fazendeiros , Animais , Humanos , Fazendas , Nigéria , SorogrupoRESUMO
Epizootic hemorrhagic disease virus (EHDV) is a Culicoides-transmitted virus circulating in multiple serotypes. It has become a concern in the European Union as a novel strain of the serotype 8 (EHDV-8) of clear Northern African origin, has been recently discovered in symptomatic cattle in Italy (islands of Sardinia and Sicily), Spain, and Portugal. Current molecular typing methods targeting the S2 nucleotide sequences -coding for the outermost protein of the virion VP2- are not able to detect the novel emerging EHDV-8 strain as they enrolled the S2 sequence of the unique EHDV-8 reference strain isolated in Australia in 1982. Thus, in this study, we developed and validated a novel typing assay for the detection and quantitation of the novel EHDV-8 RNA from field samples, including blood of ruminants and insects. This molecular tool will certainly support EHDV-8 surveillance and control.
Assuntos
Vírus da Doença Hemorrágica Epizoótica , Animais , Bovinos , Vírus da Doença Hemorrágica Epizoótica/genética , Sorogrupo , Austrália , Bioensaio , RNARESUMO
BACKGROUND: MicroRNAs (miRNAs) are known to exert significant influence on various physiological processes and diseases, including cancers. The primary objective of this present study was to examine the impact of eight single-nucleotide polymorphisms (SNPs) in miRNA on the susceptibility to lung cancer (LC) within the Chinese Southern population. METHODS: The genotypes of these eight polymorphisms were determined in 132 LC patients and 214 cancer-free controls. RESULTS: In overall analyses, GG genotype of miRNA-6811 rs2292879 polymorphism was significantly correlated with increased risk of LC (GG vs. AA, adjusted OR = 5.10, 95% CI = 1.02-25.43, P=0.047), yet the genotype frequencies of rs2292879 SNP in controls did not met the Hardy-Weinberg equilibrium (HWE) (P=0.001) in present study. Stratified analyses by smoking revealed that miRNA-423 rs6505162 variants significantly decreased the LC risk in heterozygous (CA vs. CC, adjusted OR = 0.14, 95% CI = 0.03-0.81, P=0.028) and recessive (AA vs. CA + CC, adjusted OR = 0.17, 95% CI = 0.03-0.90, P=0.038) genetic models in smoking population. However, miRNA-196A2 rs11614913, miRNA-196A2 rs12304647, miRNA-146A rs2910164, miRNA-16-1 rs1022960, miRNA-608 rs4919510, and miRNA-27a rs895819 polymorphisms were not significantly associated with LC. CONCLUSION: The findings of our study indicate a potential decrease in LC risk among smokers with the miRNA-423 rs6505162 variants, while an increase in risk is associated with miRNA-6811 rs2292879 polymorphisms in the population of Southern Chinese. However, further well-designed research is necessary to fully understand the precise impact of these two SNPs on the development of LC.
Assuntos
Neoplasias Pulmonares , MicroRNAs , Humanos , MicroRNAs/genética , Polimorfismo de Nucleotídeo Único , Neoplasias Pulmonares/epidemiologia , Neoplasias Pulmonares/genética , China/epidemiologia , SorogrupoRESUMO
We performed phylogenetic analysis on dengue virus serotype 2 Cosmopolitan genotype in Ho Chi Minh City, Vietnam. We document virus emergence, probable routes of introduction, and timeline of events. Our findings highlight the need for continuous, systematic genomic surveillance to manage outbreaks and forecast future epidemics.
Assuntos
Vírus da Dengue , Vírus da Dengue/genética , Filogenia , Sorogrupo , Vietnã/epidemiologia , GenótipoRESUMO
BACKGROUND: Haemorrhagic septicaemia (HS) is a highly fatal and predominant disease in livestock, particularly cattle and buffalo in the tropical regions of the world. Pasteurella multocida (P. multocida), serotypes B:2 and E:2, are reported to be the main causes of HS wherein serotype B:2 is more common in Asian countries including Pakistan and costs heavy financial losses every year. As yet, very little molecular and genomic information related to the HS-associated serotypes of P. multocida isolated from Pakistan is available. Therefore, this study aimed to explore the characteristics of novel bovine isolates of P. multocida serotype B:2 at the genomic level and perform comparative genomic analysis of various P. multocida strains from Pakistan to better understand the genetic basis of pathogenesis and virulence. RESULTS: To understand the genomic variability and pathogenomics, we characterized three HS-associated P. multocida serotype B:2 strains isolated from the Faisalabad (PM1), Peshawar (PM2) and Okara (PM3) districts of Punjab, Pakistan. Together with the other nine publicly available Pakistani-origin P. multocida strains and a reference strain Pm70, a comparative genomic analysis was performed. The sequenced strains were characterized as serotype B and belong to ST-122. The strains contain no plasmids; however, each strain contains at least two complete prophages. The pan-genome analysis revealed a higher number of core genes indicating a close resemblance to the studied genomes and very few genes (1%) of the core genome serve as a part of virulence, disease, and defense mechanisms. We further identified that studied P. multocida B:2 strains harbor common antibiotic resistance genes, specifically PBP3 and EF-Tu. Remarkably, the distribution of virulence factors revealed that OmpH and plpE were not present in any P. multocida B:2 strains while the presence of these antigens was reported uniformly in all serotypes of P. multocida. CONCLUSION: This study's findings indicate the absence of OmpH and PlpE in the analyzed P. multocida B:2 strains, which are known surface antigens and provide protective immunity against P. multocida infection. The availability of additional genomic data on P. multocida B:2 strains from Pakistan will facilitate the development of localized therapeutic agents and rapid diagnostic tools specifically targeting HS-associated P. multocida B:2 strains.
Assuntos
Septicemia Hemorrágica , Pasteurella multocida , Animais , Bovinos , Paquistão , Pasteurella multocida/genética , Sorogrupo , Septicemia Hemorrágica/veterinária , Genômica , BúfalosRESUMO
Leptospirosis is one of the most common zoonotic bacterial infections worldwide. It is an infection that usually affects people with low socioeconomic status, with morbidity and mortality risk. The clinical course of the disease may range from mild, featuring nonspecific clinical signs and symptoms, to severe, resulting in death. The respective studies conducted in Turkey indicate that leptospirosis seropositivity in animals and humans is higher in coastal and rural areas. Turkey's Eastern Black Sea Region has a humid climate with heavy rainfalls and a large population of mice and other rodents. However, a Leptospira interrogans serovar Bratislava case is yet to be reported in this region. This article reports the case of a 38-year-old patient who presented fever and acute renal failure and was diagnosed with Leptospira interrogans serovar Bratislava after hospitalization.
Assuntos
Leptospira interrogans , Leptospirose , Adulto , Humanos , Mar Negro , Leptospirose/diagnóstico , Sorogrupo , TurquiaRESUMO
Neonatal calf diarrhea (NCD) is one of the most important concerns in cattle production. Escherichia coli is the most important bacterial agent of NCD. Although vaccination and antibiotic treatment are common in NCD, the high antigenic diversity of E. coli and the increase in antibiotic resistance cause difficulties in the control. The study aimed to investigate the rate of E. coli in calf diarrhea, isolate an agent of the NCD E. coli strain, determine antimicrobial resistance, and find out about some surface antigens. Fecal samples (n=115) were analyzed to isolate pathogenic E. coli strains with nine mixed infections; sixty-one strains isolate from fifty diarrhoeic calves. Among the isolates from diseased animals, 22 K99+STa+F41, 3 K99+STa, 3 strains F41, 2 strains Stx1, one strain K99, one strain eae, and one strain Stx2+eae were detected. 27 strains of F17- associated fimbriae have been identified. 17 strains F17a, 6 strains F111, 3 strains F17c, one strain carrying the F17a and F17c gene regions, whereas subfamily typing of one strain could not be performed. Serotypes were determined by molecular and serological methods: 32/61 (52.5%) isolates were O101 and 2/61 (3.3%) isolates were O9 serotypes. But 27 strain serotypes could not be detected. The antibiotic resistance profiles of the isolates were determined by the disc diffusion method. The resistance rates to antibiotics were trimethoprim- sulphamethoxazole 91.7%, ampicillin 86.7%, enrofloxacin 86.7%, gentamicin 45%, tobramycin 41.7%, cefotaxime 3.3%, and ceftazidime 1.7%. Due to increasing antibiotic resistance, prophylaxis is gaining importance. In further research, E. coli surface antigenic structures should be examined in detail, and it should form the basis for vaccine and hyperimmunization studies to be developed.
Assuntos
Doenças dos Bovinos , Doenças não Transmissíveis , Animais , Bovinos , Prevalência , Fatores de Virulência/genética , Escherichia coli , Doenças não Transmissíveis/veterinária , Sorogrupo , Antibacterianos/farmacologia , Antígenos de Bactérias , Diarreia/epidemiologia , Diarreia/veterinária , Doenças dos Bovinos/epidemiologiaRESUMO
Streptococcus suis serotype 2 (SS2) is an important zoonotic pathogen with the characteristics of high mortality and morbidity, which brings great challenges to prevent and control epidemic disease in the swine industry. Cathelicidins (CATH) are antimicrobial peptides with antimicrobial and immunomodulatory activities. In this study, bactericidal and anti-inflammatory effects of chicken cathelicidin-1 (CATH-1) were investigated in vitro and in vivo against SS2 infection. The results show that CATH-1 exhibited a better bactericidal effect compared to other species' cathelicidins including chickens (CATH-2, -3, and -B1), mice (CRAMP) and pigs (PMAP-36 and PR-39), which rapidly killed bacteria in 20 min by a time-killing curve assay. Furthermore, CATH-1 destroyed the bacterial morphology and affected bacterial ultrastructure as observed under electron microscopy. Moreover, CATH-1 antibacterial activity in vivo shows that CATH-1 increased survival rate of SS2-infected mice by 60% and significantly reduced the bacterial load in the lungs, liver, spleen, blood, and peritoneal lavage as well as the release of SS2-induced inflammatory cytokines including IL-1α, IL-1ß, IL-12, and IL-18. Importantly, CATH-1 did not show severe histopathological changes in mice. Further studies on the mechanism of anti-inflammatory activity show that CATH-1 not only reduced the inflammatory response through direct neutralization, but also by regulating the TLR2/4/NF-κB/ERK pathway. This study provides a scientific basis for the research and development of antimicrobial peptides as new antimicrobial agents.
Assuntos
Streptococcus suis , Animais , Camundongos , Suínos , Catelicidinas/farmacologia , Galinhas , Sorogrupo , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Peptídeos AntimicrobianosRESUMO
BACKGROUND: Bacteria in nature live together in communities called biofilms, where they produce a matrix that protects them from hostile environments. The components of this matrix vary among species, with Salmonella enterica serovar Typhimurium (STm- WT) primarily producing curli and cellulose, which are regulated by the master regulator csgD. Interactions between bacteria can be competitive or cooperative, with cooperation more commonly observed among the kin population. This study refers to STm- WT as the generalist which produces all the matrix components and knockout strains that are defective in either curli or cellulose as the specialists, which produces one of the matrix components but not both. We have asked whether two different specialists will cooperate and share matrix components during biofilm formation to match the ability of the generalist which produces both components. RESULTS: In this study, the response of the specialists and generalist to physical, chemical, and biological stress during biofilm formation is also studied to assess their abilities to cooperate and produce biofilms like the generalist. STm WT colony biofilm which produces both the major biofilm matrix component were protected from stress whereas the non-matrix producer (∆csgD), the cellulose, and curli alone producers ∆csgA, ∆bcsA respectively were affected. During the exposure to various stresses, the majority of killing occurred in ∆csgD. Whereas the co-culture (∆csgA: ∆bcsA) was able to resist stress like that of the STm WT. Phenotypic and morphological characteristics of the colonies were typed using congo red assay and the Influence of matrix on the architecture of biofilms was confirmed by scanning electron microscopy. CONCLUSION: Our results show that matrix aids in survival during antibiotic, chlorine, and predatory stress. And possible sharing of the matrix is occurring in co-culture, with one counterbalancing the inability of the other when confronted with stress.
Assuntos
Antibacterianos , Biofilmes , Sorogrupo , Antibacterianos/farmacologia , Celulose , Salmonella typhimurium/genéticaRESUMO
BACKGROUND: Glaesserella parasuis is the causative agent of Glässer's disease in pigs. Serotyping is the most common method used to type G. parasuis isolates. However, the high number of non-typables (NT) and low discriminatory power make serotyping problematic. In this study, 218 field clinical isolates and 15 G. parasuis reference strains were whole-genome sequenced (WGS). Multilocus sequence types (MLST), serotypes, core-genome phylogeny, antimicrobial resistance (AMR) genes, and putative virulence gene information was extracted. RESULTS: In silico WGS serotyping identified 11 of 15 serotypes. The most frequently detected serotypes were 7, 13, 4, and 2. MLST identified 72 sequence types (STs), of which 66 were novel. The most predominant ST was ST454. Core-genome phylogeny depicted 3 primary lineages (LI, LII, and LIII), with LIIIA sublineage isolates lacking all vtaA genes, based on the structure of the phylogenetic tree and the number of virulence genes. At least one group 1 vtaA virulence genes were observed in most isolates (97.2%), except for serotype 8 (ST299 and ST406), 15 (ST408 and ST552) and NT (ST448). A few group 1 vtaA genes were significantly associated with certain serotypes or STs. The putative virulence gene lsgB, was detected in 8.3% of the isolates which were predominantly of serotype 5/12. While most isolates carried the bcr, ksgA, and bacA genes, the following antimicrobial resistant genes were detected in lower frequency; blaZ (6.9%), tetM (3.7%), spc (3.7%), tetB (2.8%), bla-ROB-1 (1.8%), ermA (1.8%), strA (1.4%), qnrB (0.5%), and aph3''Ia (0.5%). CONCLUSION: This study showed the use of WGS to type G. parasuis isolates and can be considered an alternative to the more labor-intensive and traditional serotyping and standard MLST. Core-genome phylogeny provided the best strain discrimination. These findings will lead to a better understanding of the molecular epidemiology and virulence in G. parasuis that can be applied to the future development of diagnostic tools, autogenous vaccines, evaluation of antibiotic use, prevention, and disease control.
Assuntos
Haemophilus parasuis , Animais , Suínos , Tipagem de Sequências Multilocus/veterinária , Filogenia , Sorogrupo , Sorotipagem/veterinária , Haemophilus parasuis/genética , América do NorteRESUMO
The four-component meningococcal serogroup B vaccine (4CMenB) is indicated for the prevention of invasive meningococcal disease (IMD) caused by Neisseria meningitidis serogroup B. Co-administering 4CMenB with other vaccines may improve vaccine uptake provided that the safety and immunogenicity of either are not affected. Published literature on the immunogenicity and reactogenicity of 4CMenB co-administered with other routine childhood and adulthood vaccines was reviewed. From 282 publications identified, data were collated from 10 clinical studies, 3 real-world studies, and 3 reviews. The evidence showed that 4CMenB co-administration is not associated with significant safety concerns or clinically relevant immunological interferences. The increased reactogenicity (e.g., fever) associated with 4CMenB co-administration can be adequately managed with prophylactic paracetamol in children. Thus, 4CMenB co-administration has the potential to maximize vaccine coverage and improve protection against IMD globally.
Assuntos
Infecções Meningocócicas , Vacinas Meningocócicas , Neisseria meningitidis Sorogrupo B , Criança , Humanos , Vacinas Meningocócicas/efeitos adversos , Infecções Meningocócicas/prevenção & controle , Sorogrupo , Acetaminofen , FebreRESUMO
BACKGROUND: Bacterial surface proteins play key roles in pathogenicity and often contribute to microbial adhesion and invasion. Pasteurella lipoprotein E (PlpE), a Pasteurella multocida (P. multocida) surface protein, has recently been identified as a potential vaccine candidate. Live attenuated Salmonella strains have a number of potential advantages as vaccine vectors, including immunization with live vector can mimic natural infections by organisms, lead to the induction of mucosal, humoral, and cellular immune responses. In this study, a previously constructed recombinant attenuated Salmonella Choleraesuis (S. Choleraesuis) vector rSC0016 was used to synthesize and secrete the surface protein PlpE of P. multocida to form the vaccine candidate rSC0016(pS-PlpE). Subsequently, the immunogenicity of S. Choleraesuis rSC0016(pS-PlpE) as an oral vaccine to induce protective immunity against P. multocida in mice was evaluated. RESULTS: After immunization, the recombinant attenuated S. Choleraesuis vector can efficiently delivered P. multocida PlpE protein in vivo and induced a specific immune response against this heterologous antigen in mice. In addition, compared with the inactivated vaccine, empty vector (rSC0016(pYA3493)) and PBS immunized groups, the rSC0016(pS-PlpE) vaccine candidate group induced higher antigen-specific mucosal, humoral and mixed Th1/Th2 cellular immune responses. After intraperitoneal challenge, the rSC0016(pS-PlpE) immunized group had a markedly enhanced survival rate (80%), a better protection efficiency than 60% of the inactivated vaccine group, and significantly reduced tissue damage. CONCLUSIONS: In conclusion, our study found that the rSC0016(pS-PlpE) vaccine candidate provided good protection against challenge with wild-type P. multocida serotype A in a mouse infection model, and may potentially be considered for use as a universal vaccine against multiple serotypes of P. multocida in livestock, including pigs.
Assuntos
Pasteurella multocida , Doenças dos Roedores , Salmonella enterica , Doenças dos Suínos , Animais , Camundongos , Suínos , Pasteurella , Sorogrupo , Proteínas de Bactérias/genética , Modelos Animais de Doenças , Lipoproteínas , Proteínas de Membrana , Fatores de Transcrição , Vacinas de Produtos InativadosRESUMO
OBJECTIVES: Salmonella enterica serovar Entritidis is an important pathogen in foodborne diseases and causes gastroenteritis. Several studies have investigated the genetic diversity of the strains of this bacterium. However, our knowledge of the discriminatory power of the molecular methods is limited. METHODS: In total, 34 strains of S. enteritidis were isolated from food related to animals. Antibiotic resistance of the strains, antibiotic resistance genes, and biofilm formation capacity of the strains were evaluated. For the genetic analysis of the strains, PFGE was performed using AvrII restriction enzyme. RESULTS: Among the tested antibiotics, cefuroxime, nalidixic acid, and ciprofloxacin showed the highest resistance rates (79.4%, 47%, and 44.2%, respectively). Only three antibiotic-resistance genes were identified in these strains (blaTEM: 67.6%, tetA: 9%, and sul2: 3%). In total, 91% of the strains were biofilm producers. Clustering of strains using AvrII for 26 samples with the same XbaI PFGE profile showed that these strains were in one clone and had high homogeneity. CONCLUSIONS: In conclusion, it is better to use a combination of several typing methods for typing strains that are genetically very close so that the results are reliable.
Assuntos
Anti-Infecciosos , Infecções por Salmonella , Salmonella enterica , Animais , Antibacterianos/farmacologia , Infecções por Salmonella/microbiologia , Sorogrupo , Irã (Geográfico) , Farmacorresistência Bacteriana , Salmonella enteritidis , Variação GenéticaRESUMO
BACKGROUND: Neither indirect protection through use of 13-valent and 10-valent pneumococcal conjugate vaccines (PCV13 and PCV10) in pediatric National Immunization Programs (NIPs) nor direct vaccination with the 23-valent polysaccharide vaccine have eliminated vaccine serotype invasive pneumococcal disease (IPD) in older adults. Vaccinating older adults with higher-valency PCV15 and PCV20 could address remaining IPD due to pediatric PCV serotypes plus additional IPD due to serotypes included in these vaccines. METHODS: We collected serotype-specific IPD data in older adults (≥65 years in most countries), from national or regional surveillance systems or hospital networks of 33 high-income countries. Data were from official government websites, online databases, surveillance system reports, published literature, and personal communication with in-country investigators. Average percentages of IPD serotypes were calculated. RESULTS: Among 52,905 cases of IPD with a serotype identified, PCV13 serotypes accounted for 33.7% of IPD (55.8% and 30.6% for countries with PCV10 and PCV13 in the pediatric NIP), most commonly serotypes 3 (14.9%) and 19A (7.0%). PCV15 and PCV20 would cover an additional 10.4% and 32.9% of older adult IPD beyond PCV13 serotypes (PCV10 countries: 7.7% and 23.3%; PCV13 countries: 10.6% and 34.6%). The most common of these additional serotypes were 8 (9.9%), 22F (7.9%), 12F (4.6%), and 11A (3.3%). PPSV23 policies for older adults were not correlated with lower IPD percentages due to PPSV23 serotypes. CONCLUSIONS: Vaccinating older adults with higher-valency PCVs, especially PCV20, could substantially reduce the remaining IPD burden in high-income countries, regardless of current PCV use in pediatric NIPs and adult PPSV23 policies.
Assuntos
Infecções Pneumocócicas , Streptococcus pneumoniae , Criança , Humanos , Lactente , Idoso , Sorogrupo , Países Desenvolvidos , Infecções Pneumocócicas/epidemiologia , Infecções Pneumocócicas/prevenção & controle , Vacinas Pneumocócicas , Vacinação , Vacinas ConjugadasRESUMO
AIMS: Disinfectants such as benzalkonium chloride (BC), extensively used in animal farms and food-processing industries, contribute to the development of adaptive and cross-resistance in foodborne pathogens, posing a serious threat to food safety and human health. The purpose of this study is to explore whether continuous exposure of Salmonella enterica serovar 1,4,[5],12:i:- (S. 1,4,[5],12:i:-) to sublethal concentrations of BC could result in acquired resistance to this agent and other environmental stresses (e.g. antibiotics, heat, and acid). METHODS AND RESULTS: BC tolerance increased in all tested strains after exposure to gradually increasing concentrations of BC, with increases in minimum inhibitory concentrations between two and sixfold. The survival rate of BC-adapted strains was significantly (P < 0.05) higher than that of their wild-type (non-adapted) counterparts in lethal concentrations of BC. In addition, significant reductions (P < 0.05) in zeta potential were observed in BC-adapted strains compared to wild-type ones, indicating that a reduction in cell surface charge was a cause of adaptative resistance. More importantly, two BC-adapted strains exhibited increased antibiotic resistance to levofloxacin, ceftazidime, and tigecycline, while gene mutations (gyrA, parC) and antibiotic efflux-related genes (acrB, mdsA, mdsB) were detected by genomic sequencing analysis. Moreover, the tolerance of BC-adapted strains to heat (50, 55, and 60°C) and acid (pH 2.0, 2.5) was strain-dependent and condition-dependent. CONCLUSIONS: Repeated exposure to sublethal concentrations of BC could result in the emergence of BC- and antibiotic-resistant S. 1,4,[5],12:i:- strains.
Assuntos
Antibacterianos , Desinfetantes , Animais , Humanos , Antibacterianos/farmacologia , Compostos de Benzalcônio/farmacologia , Desinfetantes/farmacologia , Sorogrupo , CeftazidimaRESUMO
Importance: Population-based data on the 4-component recombinant protein-based (4CMenB) vaccine effectiveness and reduction in incidence rate ratios (IRRs) are continuously needed to assess vaccine performance in the prevention of serogroup B invasive meningococcal disease (IMD). Objective: To assess the effectiveness and reduction in IRRs associated with the 4CMenB vaccine in the pediatric population in 6 regions in Italy. Design, Setting, and Participants: This retrospective cohort screening study and case-control study included data from children aged younger than 6 years in 6 highly populated Italian regions from January 1, 2006, to January 1, 2020. Participants included children younger than 6 years diagnosed with serogroup B IMD without predisposing factors. Data were collected from regional surveillance and vaccination registries and were analyzed from September 2021 to January 2022. Exposures: Routine 4CMenB vaccination, per regional vaccination programs. Main Outcomes and Measures: The main outcome was the effectiveness of the 4CMenB vaccine in the prevention of serogroup B IMD in the population of children aged younger than 6 years in 6 Italian regions. The percentages of vaccine effectiveness (VE) were obtained through the concomitant use of a screening method and a case-control study. Secondary outcomes were the comparison of effectiveness results obtained using the 2 different computational methods, the description of serogroup B IMD incidence rates, and reduction in IRRs before and after 4CMenB introduction, as a proxy for vaccine impact. Results: The cohort screening study included a resident population of 587â¯561 children younger than 6 years in 3 regions with similar surveillance protocols, and the matched-case controls study assessed a resident population of 1â¯080â¯620 children younger than 6 years in 6 regions. Analyses found that 4CMenB VE in fully immunized children was 94.9% (95% CI, 83.1%-98.4%) using the screening method and 91.7% (95% CI, 24.4%-98.6%) using the case-control method. Overall reduction in IRR was 50%, reaching 70% in regions with early-start vaccination schedules. The case-control method involving 6 highly-populated Italian regions included 26 cases and 52 controls and found an estimated VE of 92.4% (95% CI, 67.6%-97.9%) in children old enough for the first vaccine dose and 95.6% (95% CI, 71.7%-99.1%) in fully immunized children. VE was more than 90% for partially immunized children. Even in regions where the first dose was administered at age 2 months, almost 20% of unvaccinated cases were among infants too young to receive the first 4CMenB dose. Conclusions and Relevance: This screening cohort study and matched case-controls study found high effectiveness of 4CMenB vaccination and greater reduction in IRR for early-start vaccination schedules in preventing invasive serogroup B meningococcal disease. The high proportion of children too young to be vaccinated among unvaccinated cases suggests that starting the vaccination even earlier may prevent more cases. Screening and case-control methods provided similar estimates of VE: either method may be used in different study settings, but concomitant use can provide more robust estimates.
Assuntos
Infecções Meningocócicas , Vacinas Meningocócicas , Criança , Lactente , Humanos , Estudos de Casos e Controles , Estudos de Coortes , Infecções Meningocócicas/epidemiologia , Infecções Meningocócicas/prevenção & controle , Estudos Retrospectivos , Sorogrupo , Eficácia de Vacinas , Itália/epidemiologiaRESUMO
DENV-2 was the main responsible for a 70% increase in dengue incidence in Brazil during 2019. That year, our metagenomic study by Illumina NextSeq on serum samples from acute febrile patients (n = 92) with suspected arbovirus infection, sampled in 22 cities of the state of Mato Grosso (MT), in the middle west of Brazil, revealed eight complete genomes and two near-complete sequences of DENV-2 genotype III, one Human parvovirus B19 genotype I (5,391 nt) and one Coxsackievirus A6 lineage D (4,514 nt). These DENV-2 sequences share the aminoacidic identities of BR4 lineage on E protein domains I, II and III, and were included in a clade with sequences of the same lineage circulating in the southeast of Brazil in the same year. Nevertheless, 11/34 non-synonymous mutations are unique to three strains inthis study, distributed in the E (n = 6), NS3 (n = 2) and NS5 (n = 3) proteins. Other 14 aa changes on C (n = 1), E (n = 3), NS1 (n = 2), NS2A (n = 1) and NS5 (n = 7) were first reported in a genotype III lineage, having been already reported only in other DENV-2 genotypes. All 10 sequences have mutations in the NS5 protein (14 different aa changes). Nine E protein aa changes found in two sequences, six of which are unique, are in the ectodomain; where the E:M272T change is on the hinge of the E protein at domain II, in a region critical for the anchoring to the host cell receptor. The NS5:G81R mutation, in the methyltransferase domain, was found in one strain of this study. Altogether, these data points to an important evolution of DENV-2 genotype III lineage BR4 during this outbreak in 2019 in MT. Genomic surveillance is essential to detect virus etiology and evolution, possibly related to immune evasion and viral fitness changes leading to future novel outbreaks.
Assuntos
Vírus da Dengue , Dengue , Humanos , Vírus da Dengue/genética , Dengue/epidemiologia , Sorogrupo , Brasil/epidemiologia , Genótipo , Surtos de Doenças , FilogeniaRESUMO
Severe dengue occurrence has been attributed to increasing age and different dengue virus (DENV) serotypes that cause secondary infections and immune-enhancing phenomena. Therefore, we examined if the effect of age on dengue severity was mediated by infectivity status while controlling for sex and region. Further, we assessed the spatial clustering of dengue severity for individuals with primary and secondary infection across Mexican municipalities. Health data from 2012 to 2017 was retrieved from Mexico's Ministry of Health. A mediation analysis was performed using multiple logistic regression models based on a directed acyclic graph. The models were explored for the direct effect of age on dengue severity and its indirect impact through secondary infection. In addition, severe dengue clusters were determined in some Northeastern and Southeastern municipalities through spatial analysis. We observed a nonlinear trend between age and severe dengue. There was a downward trend of severe dengue for individuals between 0 and 10 years and an upward trend above 10 years. The effect of age on dengue severity was no longer significant for individuals between 10 and 60 years after introducing infectivity status into the model. The mediating role of infectivity status in the causal model was 17%. Clustering of severe dengue among individuals with primary infection in the Northeastern region may point to the high prevalence of DENV-3 in the region. Public health efforts may prevent secondary infection among infants and the aged. In addition, there should be a further investigation into the effect of DENV-3 in individuals with primary disease.