Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 18.652
Filtrar
1.
Int J Syst Evol Microbiol ; 71(11)2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34787542

RESUMO

The genus Streptomyces includes, at the time of writing, eight subspecies with validly published names. Streptomyces thermoviolaceus subsp. apingens NBRC 15459T and Streptomyces lavendulae subsp. grasserius NBRC 13045T show 16S rRNA gene sequence similarities of >99.7% to their parent species Streptomyces thermoviolaceus subsp. thermoviolaceus NBRC 13905T and Streptomyces lavendulae subsp. lavendulae NRRL B-2774T, respectively. In contrast, the type strains of the remaining six subspecies, Streptomyces achromogenes subsp. rubradiris, Streptomyces albosporeus subsp. labilomyceticus , Streptomyces cacaoi subsp. asoensis , Streptomyces chrysomallus subsp. fumigatus , Streptomyces cinereoruber subsp. fructofermentans and Streptomyces hygroscopicus subsp. ossamyceticus, do not show >99.0% 16S rRNA gene sequence similarity to that of each parent species. Although S. chrysomallus subsp. fumigatus and S. hygroscopicus subsp. ossamyceticus were respectively reclassified to 'Kitasatospora fumigata' and 'Streptomyces ossamyceticus', these names have not been validly published yet. In this study, we investigated the taxonomic positions of S. achromogenes subsp. rubradiris, S. cacaoi subsp. asoensis, S. cinereoruber subsp. fructofermentans, S. hygroscopicus subsp. ossamyceticus and S. thermoviolaceus subsp. apingens given that their whole genome sequences are available. Except for S. thermoviolaceus subsp. apingens, these subspecies were discriminated from the parent and closely related species based on phylogenetic, genomic and phenotypic differences. Thus, we reclassify S. achromogenes subsp. rubradiris, S. cacaoi subsp. asoensis , S. cinereoruber subsp. fructofermentans and S. hygroscopicus subsp. ossamyceticus as Streptomyces rubradiris sp. nov., Streptomyces asoensis sp. nov., Streptomyces fructofermentans sp. nov. and Streptomyces ossamyceticus sp. nov., respectively. Multilocus sequence and 16S rRNA gene sequence analyses suggested that S. albosporeus subsp. labilomyceticus and S. lavendulae subsp. grasserius may also be reclassified as independent species.


Assuntos
Ácidos Graxos , Streptomyces , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Streptomyces/genética
2.
Int J Syst Evol Microbiol ; 71(11)2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34752211

RESUMO

A novel actinobacterium, designated strain DW4-2T, was isolated from duckweed (Spirodela sp.) collected from an agricultural pond in Kasetsart University, Bangkok, Thailand. The morphological, chemotaxonomic and phylogenetic characteristics were consistent with its classification in the genus Streptomyces. Strain DW4-2T showed the highest 16S rRNA gene sequence similarity values to Streptomyces qinglanensis DSM 42035T (98.5 %), Streptomyces smyrnaeus DSM 42105T (98.4 %) and Streptomyces oryzae S16-07T (98.4 %). Digital DNA-DNA hydridization and average nucleotide identity values between the genome sequences of strain DW4-2T with S. qinglanensis DSM 42035T (29.8 and 87.8 %), S. smyrnaeus DSM 42105T (33.1 and 89.0 %) and S. oryzae S16-07T (33.0 and 88.9 %) were below the thresholds of 70 and 95-96 % for prokaryotic conspecific assignation. Chemotaxonomic data revealed that strain DW4-2T possessed MK-9(H6) and MK-9(H8) as the predominant menaquinones. It contained ll -diaminopimelic acid as the diagnostic diamino acid and glucose, ribose and trace amount of madurose in whole-cell sugars. The polar lipids consisted of diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylinositol, phosphatidylinositol mannoside, an unidentified aminolipid, an unidentified lipid and an unidentified phospholipid. The predominant cellular fatty acids were anteiso-C17 : 0, anteiso-C15 : 0 and iso-C16 : 0. The genomic DNA size of the strain DW4-2T was 7 310 765 bp with DNA G+C content 71.0 mol%. Genomic analysis of the genome indicated that the strain DW4-2T had the potential to produce bioactive compounds. On the basis of these genotypic and phenotypic data, it is supported that strain DW4-2T represents a novel species of the genus Streptomyces, for which the name Streptomyces spirodelae sp. nov. is proposed. The type strain is strain DW4-2T (=TBRC 13095T=NBRC 114803T).


Assuntos
Araceae , Streptomyces , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácido Diaminopimélico , Ácidos Graxos/química , Humanos , Fosfolipídeos , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Streptomyces/genética , Tailândia
4.
Int J Mol Sci ; 22(19)2021 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-34638918

RESUMO

Mining of phospholipase D (PLD) with altered acyl group recognition except its head group specificity is also useful in terms of specific acyl size phospholipid production and as diagnostic reagents for quantifying specific phospholipid species. Microbial PLDs from Actinomycetes, especially Streptomyces, best fit this process requirements. In the present studies, a new PLD from marine Streptomyces klenkii (SkPLD) was purified and biochemically characterized. The optimal reaction temperature and pH of SkPLD were determined to be 60 °C and 8.0, respectively. Kinetic analysis showed that SkPLD had the relatively high catalytic efficiency toward phosphatidylcholines (PCs) with medium acyl chain length, especially 12:0/12:0-PC (67.13 S-1 mM-1), but lower catalytic efficiency toward PCs with long acyl chain (>16 fatty acids). Molecular docking results indicated that the different catalytic efficiency was related to the increased steric hindrance of long acyl-chains in the substrate-binding pockets and differences in hydrogen-bond interactions between the acyl chains and substrate-binding pockets. The enzyme displayed suitable transphosphatidylation activity and the reaction process showed 26.18% yield with L-serine and soybean PC as substrates. Present study not only enriched the PLD enzyme library but also provide guidance for the further mining of PLDs with special phospholipids recognition properties.


Assuntos
Proteínas de Bactérias/metabolismo , Fosfatidilserinas/metabolismo , Fosfolipase D/metabolismo , Streptomyces/enzimologia , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Biocatálise , Concentração de Íons de Hidrogênio , Cinética , Simulação de Acoplamento Molecular , Fosfatidilcolinas/metabolismo , Fosfolipase D/química , Fosfolipase D/genética , Fosfolipídeos/metabolismo , Conformação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Água do Mar/microbiologia , Homologia de Sequência de Aminoácidos , Streptomyces/genética , Especificidade por Substrato , Temperatura
5.
Ying Yong Sheng Tai Xue Bao ; 32(9): 3321-3326, 2021 Sep.
Artigo em Chinês | MEDLINE | ID: mdl-34658218

RESUMO

We applied different concentrations of spore suspension of Streptomyces exfoliatus FT05W and S. cyaneus ZEA17I to inoculate Gerbera jamesonii to screen for the most effective application concentration. We aimed to explore the effects of two Streptomyces strains on growth and physiological properties of G. jamesonii, and to provide scientific evidence for the application of Streptomyces in G. jamesonii production. The results showed that different concentrations of S. exfoliatus FT05W and S. cyaneus ZEA17I spore suspension could effectively promote the growth of G. jamesonii. In general, S. exfoliatus FT05W performed better than S. cyaneus ZEA17I. S. exfoliatus FT05W (1×109 CFU·mL-1) could significantly increase the height and crown width of G. jamesonii respectively by 30.2% and 41.5%. Meanwhile, it increased the length and width of the stem. When treated by S. exfoliatus FT05W (1×109 CFU·mL-1), the content of chlorophyll in G. jamesonii was significantly increased by 65.2%, root activity was significantly increased by 103.3%, and the superoxide dismutase activity was increased by 84.4%. The malondialdehyde content in G. jamesonii was maintained at a low level when treated with the two Streptomyces strains. In summary, S. exfoliatus FT05W and S. cyaneus ZEA17I could effectively promote the growth and physiological properties of G. jamesonii, which could further contribute to its resistance to stress. Therefore, S. exfoliatus FT05W had the potential as a bio-fertilizer for G. jamesonii to solve cultivation obstacles.


Assuntos
Asteraceae , Streptomyces
6.
Arch Microbiol ; 203(10): 6163-6171, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34708258

RESUMO

Seed-borne Streptomyces can transmit vertically from generation to generation and be a mutualism between the endosymbionts and hosts. The aim of this study was to isolate and characterize endophytic Streptomyces strains from wheat sprouts, and to investigate their protection against wheat seed pathogenic fungi Penicillium. Endophytic Streptomyces sp. F6 and Streptomyces sp. F39 were isolated from wheat sprouts germinated under sterile conditions. Both Streptomyces strains could produce siderophores, and showed antagonistic activities against the seed pathogenic fungi Penicillium sp. Z17. The inoculation of Streptomyces sp. F39 and F6 could protect wheat seed germination and promote seedling growth under Penicillium sp. Z17 infection. However, the protection efficiency was impacted by the Streptomyces spore concentrations, the concentration ratios of Streptomyces spores to pathogen spores, and inoculation methods. The results suggested that wheat sprouts harbored diverse endophytic Streptomyces species which derived from wheat seeds, these strains should be more likely transmitted to the next generation, and confer competitive ability to pathogens on the offspring. Owing to the more intimate correlation between sprout endophytic flora with host plants, these strains are more suitable for mature plant interiors compared with those from rhizosphere soils and root interiors.


Assuntos
Endófitos , Streptomyces , Fungos , Doenças das Plantas , Sementes , Triticum
7.
Appl Microbiol Biotechnol ; 105(23): 8805-8822, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34716462

RESUMO

Actinobacteria embroil Gram-positive microbes with high guanine and cytosine contents in their DNA. They are the source of most antimicrobials of bacterial origin utilized in medicine today. Their genomes are among the richest in novel secondary metabolites with high biotechnological potential. Actinobacteria reveal complex patterns of evolution, responses, and adaptations to their environment, which are not yet well understood. We analyzed three novel plant isolates and explored their habitat adaptation, evolutionary patterns, and potential secondary metabolite production. The phylogenomically characterized isolates belonged to Actinoplanes sp. TFC3, Streptomyces sp. L06, and Embleya sp. NF3. Positively selected genes, relevant in strain evolution, encoded enzymes for stress resistance in all strains, including porphyrin, chlorophyll, and ubiquinone biosynthesis in Embleya sp. NF3. Streptomyces sp. L06 encoded for pantothenate and proteins for CoA biosynthesis with evidence of positive selection; furthermore, Actinoplanes sp. TFC3 encoded for a c-di-GMP synthetase, with adaptive mutations. Notably, the genomes harbored many genes involved in the biosynthesis of at least ten novel secondary metabolites, with many avenues for future new bioactive compound characterization-specifically, Streptomyces sp. L06 could make new ribosomally synthesized and post-translationally modified peptides, while Embleya sp. NF3 could produce new non-ribosomal peptide synthetases and ribosomally synthesized and post-translationally modified peptides. At the same time, TFC3 has particularly enriched in terpene and polyketide synthases. All the strains harbored conserved genes in response to diverse environmental stresses, plant growth promotion factors, and degradation of various carbohydrates, which supported their endophytic lifestyle and showed their capacity to colonize other niches. This study aims to provide a comprehensive estimation of the genomic features of novel Actinobacteria. It sets the groundwork for future research into experimental tests with new bioactive metabolites with potential application in medicine, biofertilizers, and plant biomass residue utilization, with potential application in medicine, as biofertilizers and in plant biomass residues utilization. KEY POINTS: • Potential of novel environmental bacteria for secondary metabolites production • Exploring the genomes of three novel endophytes isolated from a medicinal tree • Pan-genome analysis of Actinobacteria genera.


Assuntos
Actinobacteria , Streptomyces , Actinobacteria/genética , Genômica , Filogenia , Policetídeo Sintases/genética , Streptomyces/genética
8.
Molecules ; 26(19)2021 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-34641466

RESUMO

Peptide natural products displaying a wide range of biological activities have become important drug candidates over the years. Microorganisms have been a powerful source of such bioactive peptides, and Streptomyces have yielded many novel natural products thus far. In an effort to uncover such new, meaningful compounds, the metabolome of Streptomyces acidiscabies was analyzed thoroughly. Three new compounds, scabimycins A-C (1-3), were discovered, and their chemical structures were elucidated by NMR spectroscopy. The relative and absolute configurations were determined using ROESY NMR experiments and advanced Marfey's method.


Assuntos
Produtos Biológicos/farmacologia , Metaboloma/efeitos dos fármacos , Fragmentos de Peptídeos/farmacologia , Streptomyces/metabolismo , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Streptomyces/efeitos dos fármacos
9.
Molecules ; 26(19)2021 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-34641580

RESUMO

In the present study, Streptomyces rimosus was confronted with Streptomyces noursei, Penicillium rubens, Aspergillus niger, Chaetomium globosum, or Mucor racemosus in two-species submerged co-cultures in shake flasks with the goal of evaluating the oxytetracycline production and morphological development. The co-culture of S. rimosus with S. noursei exhibited stimulation in oxytetracycline biosynthesis compared with the S. rimosus monoculture, whereas the presence of M. racemosus resulted in a delay in antibiotic production. Different strategies of initiating the "S. rimosus + S. noursei" co-cultures were tested. The improvement in terms of oxytetracycline titers was recorded in the cases where S. noursei was co-inoculated with S. rimosus in the form of spores. As the observed morphological changes were not unique to the co-culture involving S. noursei, there was no evidence that the improvement of oxytetracycline levels could be attributed mainly to morphology-related characteristics.


Assuntos
Oxitetraciclina/biossíntese , Streptomyces rimosus/metabolismo , Streptomyces/metabolismo , Antibacterianos/biossíntese , Técnicas de Cocultura , Esporos Bacterianos , Streptomyces/citologia , Streptomyces rimosus/citologia
10.
J Infect Public Health ; 14(11): 1671-1678, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34627064

RESUMO

BACKGROUND: The constant development of microbial resistance to the traditional antimicrobial agents and the emergence of new infectious diseases justify the urgent need for new effective antimicrobial molecules. However, the irrational use of antibiotics increases microbial resistance dramatically and along with that the frequency of mortality associated with infections is higher. Therefore, to combat the antimicrobial resistance, the screening of compounds with novel chemical structures is essential. This study intended to determine the antimicrobial potential of Streptomyces GLD22 strain isolated from Algeria. METHODS: The characterization of Streptomyces strain GLD22 was performed by physiological, biochemical and molecular tests. The antimicrobial activity was tested by the well diffusion method and the minimum inhibitory concentration value calculation were performed using broth micro dilution technique. The extracellular metabolites profiling was done using GC-MS. RESULTS: Physiological, biochemical and phylogenetic analysis confirmed that the strain GLD22 showed maximum identity towards Streptomyces species. The extra cellular metabolites revealed their antimicrobial activity at 1 mg/ml for Klebsiella pneumoniae, Pseudomonas aeruginosa and Escherichia coli, whereas Staphylococcus aureus, Bacillus cereus and Bacillus subtilis documented 0.5, 1 and 1 mg/ml respectively. GC-MS analysis confirmed that 2-tert-butyl-4,6-bis(3,5-di-tert-butyl-4-hydroxybenzyl) phenol, Dibutyl phthalate and Cyclo(leucyloprolyl) were the major drug molecules present in the extract. CONCLUSION: The novel Streptomyces strain GLD22 recovered from the Gueldaman cave of Algeria showed better antimicrobial activity towards both Gram positive and Gram negative pathogens. Interestingly, the MIC values were comparable with the standard drug molecules. In addition, the identification of active metabolites present in the crude extracts was an advantage.


Assuntos
Anti-Infecciosos , Streptomyces , Argélia , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Humanos , Testes de Sensibilidade Microbiana , Filogenia
11.
Chem Pharm Bull (Tokyo) ; 69(10): 1034-1038, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34602572

RESUMO

Spiroviolene is a spirocyclic triquinane diterpene produced by Streptomyces violens. Recently, a biosynthetic pathway that includes secondary carbocation intermediates and a complicated concerted skeletal rearrangement was proposed for spiroviolene, based upon careful labeling experiments. On the basis of density functional theory (DFT) calculations, we propose a revised pathway for spiroviolene biosynthesis, involving a multistep carbocation cascade that bypasses the formation of unstable secondary carbocations by breaking the adjacent C-C bond to form a more stable tertiary carbocation (IM3) and by Wagner-Meerwein 1,2-methyl rearrangement (IM7).


Assuntos
Compostos de Espiro/metabolismo , Streptomyces/química , Teoria da Densidade Funcional , Conformação Molecular , Compostos de Espiro/química , Streptomyces/metabolismo
12.
Chem Biodivers ; 18(11): e2100674, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34609053

RESUMO

Chemical investigation on a Streptomyces sp. strain MS180069 isolated from a sediment sample collected from the South China Sea, yielded the new benzo[f]isoindole-dione alkaloid, bhimamycin J (1). The structure was determined by extensive spectroscopic analysis, including HRMS, 1D, 2D NMR, and X-ray diffraction techniques. A molecular docking study revealed 1 as a new molecular motif that binds with human angiotensin converting enzyme2 (ACE2), recently described as the cell surface receptor responsible for uptake of 2019-CoV-2. Using enzyme assays we confirm that 1 inhibits human ACE2 79.7 % at 25 µg/mL.


Assuntos
Alcaloides/química , Sedimentos Geológicos/microbiologia , Isoindóis/química , Streptomyces/química , Alcaloides/metabolismo , Alcaloides/farmacologia , Alcaloides/uso terapêutico , Enzima de Conversão de Angiotensina 2/antagonistas & inibidores , Enzima de Conversão de Angiotensina 2/metabolismo , Sítios de Ligação , COVID-19/tratamento farmacológico , COVID-19/virologia , Fungos/efeitos dos fármacos , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Humanos , Isoindóis/isolamento & purificação , Isoindóis/metabolismo , Isoindóis/farmacologia , Espectroscopia de Ressonância Magnética , Conformação Molecular , Simulação de Acoplamento Molecular , SARS-CoV-2/isolamento & purificação , Streptomyces/isolamento & purificação , Streptomyces/metabolismo
13.
Artigo em Inglês | MEDLINE | ID: mdl-34550061

RESUMO

Endophytic actinobacterial strain 3R004T was isolated from a root of Justicia subcoriacea collected in Thailand. In this report, the taxonomic position of this strain is described using a polyphasic approach. Based on the morphological characteristics and chemical composition of its cells, strain 3R004T was identified as a member of the genus Streptomyces. It produced a long chain of cylindrical spores on aerial mycelia. ll-Diaminopimelic acid was detected in the cell wall peptidoglycan. The menaquinones were MK-9(H4), MK-9(H6) and MK-9(H8). C16 : 0, iso-C16 : 0, anteiso-C15 : 0 and iso-C15 : 0 were detected as the major cellular fatty acids. Polar lipids were diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, phosphatidylinositol and one unidentified lipid. Strain 3R004T showed the highest 16S rRNA gene similarity of 99.45 % to Streptomyces cyaneochromogenes MK-45T. The phylogenomic results indicated that strain 3R004T was close to Streptomyces aquilus GGCR-6T and Streptomyces antibioticus DSM 40234T. The DNA-DNA hybridization and average nucleotide identity values among strain 3R004T and closely related Streptomyces species were 35.5-63.1 % and 82.7-94.3 %, respectively. The type strain produced actinomycin D antibiotic as the major secondary metabolite. The maximum productivity of the actinomycin D (378 mg l-1) was observed when the strain was grown in 301 broth at 30 °C, 180 r.p.m. for 12 days. On the basis of phenotypic and genotypic evidence, strain 3R004T represents a novel species of the genus Streptomyces, for which the name Streptomyces justiciae is proposed. The type strain is 3R004T (=LMG 32138T=TBRC 13128T=NBRC 115065T).


Assuntos
Justicia, Planta , Streptomyces , Antibacterianos , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Fosfolipídeos , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Streptomyces/genética , Vitamina K 2
14.
Appl Microbiol Biotechnol ; 105(20): 7695-7708, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34586458

RESUMO

Fipronil is a broad-spectrum phenyl-pyrazole insecticide that is widely used in agriculture. However, in the environment, its residues are toxic to aquatic animals, crustaceans, bees, termites, rabbits, lizards, and humans, and it has been classified as a C carcinogen. Due to its residual environmental hazards, various effective approaches, such as adsorption, ozone oxidation, catalyst coupling, inorganic plasma degradation, and microbial degradation, have been developed. Biodegradation is deemed to be the most effective and environmentally friendly method, and several pure cultures of bacteria and fungi capable of degrading fipronil have been isolated and identified, including Streptomyces rochei, Paracoccus sp., Bacillus firmus, Bacillus thuringiensis, Bacillus spp., Stenotrophomonas acidaminiphila, and Aspergillus glaucus. The metabolic reactions of fipronil degradation appear to be the same in different bacteria and are mainly oxidation, reduction, photolysis, and hydrolysis. However, the enzymes and genes responsible for the degradation are somewhat different. The ligninolytic enzyme MnP, the cytochrome P450 enzyme, and esterase play key roles in different strains of bacteria and fungal. Many unanswered questions exist regarding the environmental fate and degradation mechanisms of this pesticide. The genes and enzymes responsible for biodegradation remain largely unexplained, and biomolecular techniques need to be applied in order to gain a comprehensive understanding of these issues. In this review, we summarize the literature on the degradation of fipronil, focusing on biodegradation pathways and identifying the main knowledge gaps that currently exist in order to inform future research. KEY POINTS: • Biodegradation is a powerful tool for the removal of fipronil. • Oxidation, reduction, photolysis, and hydrolysis play key roles in the degradation of fipronil. • Possible biochemical pathways of fipronil in the environment are described.


Assuntos
Inseticidas , Poluentes do Solo , Streptomyces , Animais , Aspergillus , Biodegradação Ambiental , Pirazóis/análise , Coelhos , Poluentes do Solo/análise , Stenotrophomonas
15.
Nat Commun ; 12(1): 5672, 2021 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-34584078

RESUMO

Nature forms S-S bonds by oxidizing two sulfhydryl groups, and no enzyme installing an intact hydropersulfide (-SSH) group into a natural product has been identified to date. The leinamycin (LNM) family of natural products features intact S-S bonds, and previously we reported an SH domain (LnmJ-SH) within the LNM hybrid nonribosomal peptide synthetase (NRPS)-polyketide synthase (PKS) assembly line as a cysteine lyase that plays a role in sulfur incorporation. Here we report the characterization of an S-adenosyl methionine (SAM)-dependent hydropersulfide methyltransferase (GnmP) for guangnanmycin (GNM) biosynthesis, discovery of hydropersulfides as the nascent products of the GNM and LNM hybrid NRPS-PKS assembly lines, and revelation of three SH domains (GnmT-SH, LnmJ-SH, and WsmR-SH) within the GNM, LNM, and weishanmycin (WSM) hybrid NRPS-PKS assembly lines as thiocysteine lyases. Based on these findings, we propose a biosynthetic model for the LNM family of natural products, featuring thiocysteine lyases as PKS domains that directly install a -SSH group into the GNM, LNM, or WSM polyketide scaffold. Genome mining reveals that SH domains are widespread in Nature, extending beyond the LNM family of natural products. The SH domains could also be leveraged as biocatalysts to install an -SSH group into other biologically relevant scaffolds.


Assuntos
Produtos Biológicos/metabolismo , Liases de Carbono-Enxofre/metabolismo , Cisteína/análogos & derivados , Metiltransferases/metabolismo , Policetídeo Sintases/metabolismo , Sulfetos/metabolismo , Animais , Produtos Biológicos/química , Cisteína/metabolismo , Cistina/química , Cistina/metabolismo , Humanos , Lactamas/síntese química , Lactamas/química , Lactamas/metabolismo , Macrolídeos/síntese química , Macrolídeos/química , Macrolídeos/metabolismo , Modelos Químicos , Estrutura Molecular , Peptídeo Sintases/metabolismo , Streptomyces/genética , Streptomyces/metabolismo , Especificidade por Substrato , Sulfetos/química , Tiazóis/síntese química , Tiazóis/química , Tiazóis/metabolismo , Tionas/síntese química , Tionas/química , Tionas/metabolismo , Domínios de Homologia de src
16.
Int J Mol Sci ; 22(17)2021 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-34502269

RESUMO

Biofilms formed by methicillin-resistant S. aureus (MRSA) are among the most frequent causes of biomedical device-related infection, which are difficult to treat and are often persistent and recurrent. Thus, new and effective antibiofilm agents are urgently needed. In this article, we review the most relevant literature of the recent years reporting on promising anti-MRSA biofilm agents derived from the genus Streptomyces bacteria, and discuss the potential contribution of these newly reported antibiofilm compounds to the current strategies in preventing biofilm formation and eradicating pre-existing biofilms of the clinically important pathogen MRSA. Many efforts are evidenced to address biofilm-related infections, and some novel strategies have been developed and demonstrated encouraging results in preclinical studies. Nevertheless, more in vivo studies with appropriate biofilm models and well-designed multicenter clinical trials are needed to assess the prospects of these strategies.


Assuntos
Biofilmes/efeitos dos fármacos , Equipamentos e Provisões/efeitos adversos , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Infecções Relacionadas à Prótese/tratamento farmacológico , Infecções Estafilocócicas/tratamento farmacológico , Streptomyces/química , Streptomyces/metabolismo , Antibacterianos/química , Antibacterianos/isolamento & purificação , Antibacterianos/uso terapêutico , Biofilmes/crescimento & desenvolvimento , Equipamentos e Provisões/microbiologia , Humanos , Staphylococcus aureus Resistente à Meticilina/fisiologia , Streptomyces/isolamento & purificação
17.
Mol Genet Genomics ; 296(6): 1299-1311, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34564766

RESUMO

A phylogenomic study conducted with different bioinformatic tools such as TYGS, REALPHY and AAI comparisons revealed a high rate of misidentified Streptomyces albus genomes in GenBank. Only 9 of the 18 annotated genomes available in the public database were correctly identified as S. albus species. The pangenome of the nine in silico confirmed S. albus genomes was almost closed. Lignocellulosic agroresidues were a common niche among strains of the S. albus clade while carbohydrate active enzymes (CAZymes) were highly conserved. Relevant enzymes for cellulose degradation such as beta glucosidases belonging to the GH1 family, a GH6 cellulase and a monooxygenase AA10-CBM2 were encoded by all S. albus genomes. Among them, one GH1 glycosidase would be regulated by CebR. However, this regulatory mechanism was not confirmed for other genes related to cellulose degradation. Based on AntiSMASH predictions, the core secondary metabolome of S. albus encompassed a total of 23 biosynthetic gene clusters (BGCs), where 4 were related to common metabolites within Streptomyces genus. Species specific BGCs included those related to pseudouridimycin and xantholipin. Additionally, four BGCs encoded putative derivatives of ibomycin, the lasso peptide SSV-2086, the lanthipeptide SapB and the terpene isorenieratene. Known metabolites could not be assigned to ten BGCs and three clusters did not match with any previously described BGC. The core genome of S. albus retrieved from nine closely related genomes revealed a high potential for the discovery of novel bioactive metabolites and underexplored regulatory genomic elements related to lignocellulose deconstruction.


Assuntos
Celulases/genética , Genoma Bacteriano/genética , Lignina/metabolismo , Streptomyces/genética , Streptomyces/metabolismo , Bases de Dados Genéticas , Glicosídeo Hidrolases/genética , Metaboloma/genética , Oxigenases de Função Mista/genética , Família Multigênica/genética , Filogenia , Metabolismo Secundário/genética
18.
Res Vet Sci ; 140: 198-202, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34525439

RESUMO

Marine Streptomyces S073 was previously shown to have strong anti-Vibrio activity, and its antibacterial mechanism was proposed to be associated with siderophore-mediated iron competition and other antagonistic agents. In this study, anti-Vibrio compounds produced by S073 were isolated by bioassay-guided fractionation using column chromatography and HPLC, and the target compound in the most active fraction was identified as dibutyl phthalate (DBP) by various spectroscopic analyses, including EI-MS, 1H NMR and 13C NMR. The DBP-producing capacity of S073 was 2.39 mg/L in ISP1 culture media. Pure DBP was demonstrated to have strong inhibitory activity on Vibiro parahaemolyticus growth with an MIC of 31.25 mg/L. When standard DBP was supplemented into the S073 fermentation broth in a gradient method, an additive inhibitory effect on V. parahaemolyticus was observed, indicating the important role of DBP in driving anti-Vibrio activity in S073 metabolites pool. A synergistic additive effect between DBP and florfenicol was observed in the Vibrio inhibition. These results indicate that, to achieve Vibrio-inhibition, S073 exerted multifaceted strategies, which included DBP-mediated antagonism and siderophore-governed iron competition. The application potential of S073 as an aquaculture probiotic was evaluated, and the safety risks associated with the endocrine disruptor attributes of DBP were discussed.


Assuntos
Probióticos , Streptomyces , Vibrio , Animais , Aquicultura , Dibutilftalato
19.
J Vis Exp ; (175)2021 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-34570109

RESUMO

Streptomyces spp. are a major source of clinical antibiotics and industrial chemicals. Streptomyces venezuelae ATCC 10712 is a fast-growing strain and a natural producer of chloramphenicol, jadomycin, and pikromycin, which makes it an attractive candidate as a next-generation synthetic biology chassis. Therefore, genetic tools that accelerate the development of S. venezuelae ATCC 10712, as well as other Streptomyces spp. models, are highly desirable for natural product engineering and discovery. To this end, a dedicated S. venezuelae ATCC 10712 cell-free system is provided in this protocol to enable high-yield heterologous expression of high G+C (%) genes. This protocol is suitable for small-scale (10-100 µL) batch reactions in either 96-well or 384-well plate format, while reactions are potentially scalable. The cell-free system is robust and can achieve high yields (~5-10 µM) for a range of recombinant proteins in a minimal setup. This work also incorporates a broad plasmid toolset for real-time measurement of mRNA and protein synthesis, as well as in-gel fluorescence staining of tagged proteins. This protocol can also be integrated with high-throughput gene expression characterization workflows or the study of enzyme pathways from high G+C (%) genes present in Actinomycetes genomes.


Assuntos
Produtos Biológicos , Streptomyces , Plasmídeos , Streptomyces/genética , Biologia Sintética
20.
Artigo em Inglês | MEDLINE | ID: mdl-34520340

RESUMO

The fungal pathogen Botrytis cinerea is the causal agent of devastating gray mold diseases in many economically important fruits, vegetables, and flowers, leading to serious economic losses worldwide. In this study, a novel actinomycete NEAU-LD23T exhibiting antifungal activity against B. cinerea was isolated, and its taxonomic position was evaluated using a polyphasic approach. Based on the genotypic, phenotypic and chemotaxonomic data, it is concluded that the strain represents a novel species within the genus Streptomyces, for which the name Streptomyces botrytidirepellens sp. nov. is proposed. The type strain is NEAU-LD23T (=CCTCC AA 2019029T=DSM 109824T). In addition, strain NEAU-LD23T showed a strong antagonistic effect against B. cinerea (82.6±2.5%) and varying degrees of inhibition on nine other phytopathogenic fungi. Both cell-free filtrate and methanol extract of mycelia of strain NEAU-LD23T significantly inhibited mycelial growth of B. cinerea. To preliminarily explore the antifungal mechanisms, the genome of strain NEAU-LD23T was sequenced and analyzed. AntiSMASH analysis led to the identification of several gene clusters responsible for the biosynthesis of bioactive secondary metabolites with antifungal activity, including 9-methylstreptimidone, echosides, anisomycin, coelichelin and desferrioxamine B. Overall, this research provided us an excellent strain with considerable potential to use for biological control of tomato gray mold.


Assuntos
Actinobacteria , Streptomyces , Antifúngicos/farmacologia , Técnicas de Tipagem Bacteriana , Composição de Bases , Botrytis , DNA Bacteriano/genética , Ácidos Graxos/química , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Streptomyces/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...