Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 378
Filtrar
1.
BMC Infect Dis ; 20(1): 154, 2020 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-32075579

RESUMO

BACKGROUND: The emergence of human infection with avian influenza A(H7N9) virus was reported in Wenshan City, southwestern China in 2017. The study describes the epidemiological and virological features of the outbreak and discusses the origin of the infection. METHODS: Poultry exposure and timelines of key events for each patient were collected. Samples derived from the patients, their close contacts, and environments were tested for influenza A(H7N9) virus by real-time reverse transcription polymerase chain reaction. Genetic sequencing and phylogenetic analysis were also conducted. RESULTS: Five patients were reported in the outbreak. An epidemiological investigation showed that all patients had been exposed at live poultry markets. The A(H7N9) isolates from these patients had low pathogenicity in avian species. Both epidemiological investigations of chicken sources and phylogenetic analysis of viral gene sequences indicated that the source of infection was from Guangxi Province, which lies 100 km to the east of Wenshan City. CONCLUSIONS: In the study, a sudden emergence of human cases of H7N9 was documented in urban area of Wenshan City. Chickens were an important carrier in the H7N9 virus spreading from Guangxi to Wenshan. Hygienic management of live poultry markets and virological screening of chickens transported across regions should be reinforced to limit the spread of H7N9 virus.


Assuntos
Subtipo H7N9 do Vírus da Influenza A/genética , Influenza Aviária/virologia , Influenza Humana/epidemiologia , Filogenia , Adulto , Substituição de Aminoácidos , Animais , Pré-Escolar , China/epidemiologia , Surtos de Doenças , Feminino , Humanos , Subtipo H7N9 do Vírus da Influenza A/isolamento & purificação , Subtipo H7N9 do Vírus da Influenza A/patogenicidade , Influenza Humana/tratamento farmacológico , Influenza Humana/virologia , Masculino , Aves Domésticas/virologia , Reação em Cadeia da Polimerase em Tempo Real
2.
Emerg Microbes Infect ; 8(1): 1465-1478, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31608791

RESUMO

The ANP32A is responsible for mammalian-restricted influenza virus polymerase activity. However, the mechanism of ANP32A modulation of polymerase activity remains poorly understood. Here, we report that chicken ANP32A (chANP32A) -X1 and -X2 stimulated mammalian-restricted PB2 627E polymerase activity in a dose-dependent manner. Distinct effects of ANP32A constructs suggested that the 180VK181 residues within chANP32A-X1 are necessary but not sufficient to stimulate PB2 627E polymerase activity. The PB2 N567D, T598V, A613V or F636L mutations promoted PB2 627E polymerase activity and chANP32A-X1 showed additive effects, providing further support that species-specific regulation of ANP32A might be only relevant with the PB2 E627K mutation. Rescue of cycloheximide-mediated inhibition showed that ANP32A is species-specific for modulation of vRNA but not mRNA and cRNA, demonstrating chANP32A-X1 compensated for defective cRNPs produced by PB2 627E virus in mammalian cells. The promoter mutations of cRNA enhanced the restriction of PB2 627E polymerase in mammalian cells, which could be restored by chANP32A-X1, indicating that ANP32A is likely to regulate the interaction of viral polymerase with RNA promoter. Coimmunoprecipitation showed that ANP32A did not affect the primary cRNPs assembly. We propose a model that chANP32A-X1 regulates PB2 627E polymerase for suitable interaction with cRNA promoter for vRNA replication.


Assuntos
Vírus da Influenza A Subtipo H1N1/enzimologia , Subtipo H7N9 do Vírus da Influenza A/enzimologia , Vírus da Influenza A Subtipo H9N2/enzimologia , Influenza Aviária/metabolismo , Influenza Humana/metabolismo , Doenças das Aves Domésticas/metabolismo , RNA Replicase/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas Virais/metabolismo , Sequência de Aminoácidos , Animais , Galinhas , Humanos , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A Subtipo H1N1/fisiologia , Subtipo H7N9 do Vírus da Influenza A/genética , Subtipo H7N9 do Vírus da Influenza A/fisiologia , Vírus da Influenza A Subtipo H9N2/genética , Vírus da Influenza A Subtipo H9N2/fisiologia , Influenza Aviária/genética , Influenza Aviária/virologia , Influenza Humana/genética , Influenza Humana/virologia , Mutação , Doenças das Aves Domésticas/genética , Doenças das Aves Domésticas/virologia , Ligação Proteica , RNA Replicase/genética , RNA Viral/genética , RNA Viral/metabolismo , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/genética , Alinhamento de Sequência , Especificidade da Espécie , Proteínas Virais/genética , Replicação Viral
3.
Int J Infect Dis ; 88: 80-87, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31499209

RESUMO

OBJECTIVES: Eight additional provinces in western China reported human infections for the first time during the fifth wave of human H7N9 infections. The aim of this study was to analyze the epidemiological and virological characteristics of this outbreak. METHODS: The epidemiological data of H7N9 cases from the newly affected western Chinese provinces were collected and analyzed. Full-length genome sequences of H7N9 virus were downloaded from the GenBank and GISAID databases, and phylogenetic, genotyping, and genetic analyses were conducted. RESULTS: The peak of human infections in the newly affected western Chinese provinces was delayed by 4 months compared to the eastern Chinese provinces, and both low pathogenic (LP) and highly pathogenic (HP) H7N9-infected cases were found. The LP- and HP-H7N9 virus belonged to 10 different genotypes (including four new genotypes), of which G11 and G3 were the dominant genotypes, respectively. Almost all of these viruses originated from eastern and southern China and were most probably imported from neighboring provinces. Genetic characteristics of the circulating viruses were similar to those of the viruses from previously affected provinces during Wave Five. CONCLUSIONS: A delayed peak of human infections was observed in the newly affected western Chinese provinces, and reassortment has been ongoing since the introduction of H7N9 viruses. This study highlights the importance of continued surveillance of the circulation and evolution of H7N9 virus in western China.


Assuntos
Subtipo H7N9 do Vírus da Influenza A/isolamento & purificação , Influenza Humana/virologia , China/epidemiologia , Surtos de Doenças , Genoma Viral , Genótipo , Humanos , Subtipo H7N9 do Vírus da Influenza A/classificação , Subtipo H7N9 do Vírus da Influenza A/genética , Influenza Humana/epidemiologia , Filogenia
4.
Virus Genes ; 55(6): 739-768, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31428925

RESUMO

Avian influenza viruses (AIVs) circulate globally, spilling over into domestic poultry and causing zoonotic infections in humans. Fortunately, AIVs are not yet capable of causing sustained human-to-human infection; however, AIVs are still a high risk as future pandemic strains, especially if they acquire further mutations that facilitate human infection and/or increase pathogenesis. Molecular characterization of sequencing data for known genetic markers associated with AIV adaptation, transmission, and antiviral resistance allows for fast, efficient assessment of AIV risk. Here we summarize and update the current knowledge on experimentally verified molecular markers involved in AIV pathogenicity, receptor binding, replicative capacity, and transmission in both poultry and mammals with a broad focus to include data available on other AIV subtypes outside of A/H5N1 and A/H7N9.


Assuntos
Marcadores Genéticos/genética , Influenza Aviária/genética , Influenza Humana/genética , Zoonoses/genética , Animais , Aves/genética , Aves/virologia , Farmacorresistência Viral/genética , Humanos , Virus da Influenza A Subtipo H5N1/genética , Virus da Influenza A Subtipo H5N1/patogenicidade , Subtipo H7N9 do Vírus da Influenza A/genética , Subtipo H7N9 do Vírus da Influenza A/patogenicidade , Influenza Aviária/epidemiologia , Influenza Aviária/virologia , Influenza Humana/virologia , Pandemias , Aves Domésticas/genética , Aves Domésticas/virologia , Zoonoses/virologia
5.
Talanta ; 205: 120137, 2019 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-31450475

RESUMO

The avian influenza A H7N9 virus is known as one of the newly discovered highly pathogenic avian influenzas with serious threat to public health and the poultry industry. In this work, an ultrasensitive surface-enhanced Raman scattering (SERS) determination of H7N9 virus via exonuclease III-assisted cycling amplification was proposed to meet the needs of rapid, sensitive and accurate detection of H7N9-related genes. The SERS strategy aims to simultaneously determine the characteristic gene fragments of H7 and N9 by specially designing Capture, Replace, and Probe single-strand DNAs to realize exonuclease III-assisted cycling amplifications, and then integrating the cyclic amplification with SERS-active Ag nanorods array substrate to achieve an ultrasensitive SERS determination of H7N9. After characterizing the effectiveness of the sensing mechanism and further investigating the surface blocking and the dosage of exonuclease III, the optimal surface blocking was achieved by using 10 µM and 100 µM mercaptohexanol for H7 and N9 detection respectively, and the optimal Exo III concentrations for sensing H7 and N9 were 0.10 U µL-1 and 0.30 U µL-1 respectively. Under the optimal conditions, dual and specific detections of H7 and N9 gene fragments were obtained with detection linear interval from 1 fM to 100 pM and limit of detections low to 31 aM of H7 and 44 aM of N9, as well as recovery in the range of 93.8-106.2% with relative standard deviation less than 6.12%. The proposed ultrasensitive SERS strategy can provide a powerful tool for determining H7N9 virus and other avian influenza viruses.


Assuntos
Exodesoxirribonucleases/metabolismo , Subtipo H7N9 do Vírus da Influenza A/genética , Subtipo H7N9 do Vírus da Influenza A/isolamento & purificação , Limite de Detecção , Técnicas de Amplificação de Ácido Nucleico , Análise Espectral Raman , Biocatálise , Calibragem , Hexanóis/química
6.
BMC Infect Dis ; 19(1): 676, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31370782

RESUMO

BACKGROUND: In addition to seasonal influenza viruses recently circulating in humans, avian influenza viruses (AIVs) of H5N1, H5N6 and H7N9 subtypes have also emerged and demonstrated human infection abilities with high mortality rates. Although influenza viral infections are usually diagnosed using viral isolation and serological/molecular analyses, the cost, accessibility, and availability of these methods may limit their utility in various settings. The objective of this study was to develop and optimized a multiplex detection system for most influenza viruses currently infecting humans. METHODS: We developed and optimized a multiplex detection system for most influenza viruses currently infecting humans including two type B (both Victoria lineages and Yamagata lineages), H1N1, H3N2, H5N1, H5N6, and H7N9 using Reverse Transcriptional Loop-mediated Isothermal Amplification (RT-LAMP) technology coupled with a one-pot colorimetric visualization system to facilitate direct determination of results without additional steps. We also evaluated this multiplex RT-LAMP for clinical use using a total of 135 clinical and spiked samples (91 influenza viruses and 44 other human infectious viruses). RESULTS: We achieved rapid detection of seasonal influenza viruses (H1N1, H3N2, and Type B) and avian influenza viruses (H5N1, H5N6, H5N8 and H7N9) within an hour. The assay could detect influenza viruses with high sensitivity (i.e., from 100 to 0.1 viral genome copies), comparable to conventional RT-PCR-based approaches which would typically take several hours and require expensive equipment. This assay was capable of specifically detecting each influenza virus (Type B, H1N1, H3N2, H5N1, H5N6, H5N8 and H7N9) without cross-reactivity with other subtypes of AIVs or other human infectious viruses. Furthermore, 91 clinical and spiked samples confirmed by qRT-PCR were also detected by this multiplex RT-LAMP with 98.9% agreement. It was more sensitive than one-step RT-PCR approach (92.3%). CONCLUSIONS: Results of this study suggest that our multiplex RT-LAMP assay may provide a rapid, sensitive, cost-effective, and reliable diagnostic method for identifying recent influenza viruses infecting humans, especially in locations without access to large platforms or sophisticated equipment.


Assuntos
Colorimetria/métodos , Vírus da Influenza A/genética , Influenza Humana/virologia , Técnicas de Amplificação de Ácido Nucleico/métodos , Reações Cruzadas , Humanos , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A Subtipo H1N1/isolamento & purificação , Vírus da Influenza A Subtipo H3N2/genética , Vírus da Influenza A Subtipo H3N2/isolamento & purificação , Virus da Influenza A Subtipo H5N1/genética , Subtipo H7N9 do Vírus da Influenza A/genética , Subtipo H7N9 do Vírus da Influenza A/isolamento & purificação , Vírus da Influenza A/isolamento & purificação , Vírus da Influenza A/patogenicidade , Transcrição Reversa
7.
Virol J ; 16(1): 87, 2019 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-31266524

RESUMO

BACKGROUND: Human infection with avian influenza H7N9 virus was first reported in 2013. Since the fifth epidemic, a highly pathogenic avian influenza (HPAI) H7N9 virus has emerged and caused 33 human infections. Several potential NAI resistance sites have been found in human cases. However, the drug susceptibility and replication ability of HPAI H7N9 virus with such substitutions have not yet been studied. METHODS: Thirty-three HPAI H7N9 virus strains were isolated from human cases in China, and then sequences were analyzed to identify potential NAI resistance sites. Recombinant influenza viruses were generated to evaluate the effect of NA amino acid substitutions on NAI (oseltamivir or zanamivir) susceptibility and viral replication efficiency in MDCK cells. RESULTS: Four potential NAI resistance sites, R292 K, E119V, A246T or H274Y, were screened. All four substitutions conferred either reduced or highly reduced susceptibility to oseltamivir or zanamivir. 292 K not only highly reduced the susceptibility of HPAI H7N9 to oseltamivir but also induced an increase in the IC50 of zanamivir. 119 V or 274Y conferred reduced susceptibility of HPAI H7N9 to oseltamivir. Additionally, 246 T conferred reduced susceptibility to zanamivir. All tested NAI-resistant viruses were capable of replication in MDCK cells. The virus yields of rg006-NA292K were lower than those of rg006-NA292R at 24, 48, 72 and 96 h postinfection (P<0.05). Rg006-NA119V, rg006-NA246T or rg006-NA274Y showed comparable replication capacity to wild-type virus (except for rg006-NA274Y at 96 h, P<0.05). CONCLUSIONS: All 4 amino acid substitutions (R292 K, E119V, A246T or H274Y) in NA reduced the susceptibility of HPAI H7N9 to NAIs. The NAI-resistant mutations in HPAI H7N9, in most cases, did not reduce the replication ability of the virus in mammalian cells. Special attention needs to be paid to these mutations, and the development of new anti-H7N9 drugs is of great importance.


Assuntos
Antivirais/farmacologia , Inibidores Enzimáticos/farmacologia , Subtipo H7N9 do Vírus da Influenza A/efeitos dos fármacos , Subtipo H7N9 do Vírus da Influenza A/genética , Influenza Humana/virologia , Replicação Viral/efeitos dos fármacos , Substituição de Aminoácidos , Animais , Galinhas , Cães , Farmacorresistência Viral/genética , Humanos , Subtipo H7N9 do Vírus da Influenza A/fisiologia , Influenza Aviária , Células Madin Darby de Rim Canino , Neuraminidase/antagonistas & inibidores , Oseltamivir/farmacologia , Zanamivir/farmacologia
8.
Virus Genes ; 55(5): 592-599, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31302878

RESUMO

Since February 2013, human infections with the novel influenza A H7N9 virus have occurred in eastern China. It is important to detect mutations in viral genes and analyze the clinical features of patients and viral shedding duration related to neuraminidase inhibitor (NAI) resistance. We collected clinical specimens from 31 hospitalized H7N9 patients and sequenced NA, PB2, HA, and M gene fragments. Of the 31 identified patients, 7 (22.6%) carried the R292K substitution in NA, 30 (96.8%), 3 (9.7%), and 5 (16.1%) carried E627K, Q591K, and D701N mutations in PB2, respectively, and 2 (6.5%) carried both E627K and D701N mutations in PB2. All 26 identified patients harbored Q226L mutations and possessed only a single arginine (R) at cleavage sites in the HA and a S31N mutation in M2. Among 7 NA-R292K mutated patients, 3 died and 4 were discharged. There was no significant difference in the days that patients started oseltamivir treatment after symptom onset between NA-R292K mutant and NA-R292 wild-type patients (median days, 7 vs 6, P = 0.374). NA-R292K mutant patients had a significantly longer duration of viral shedding than NA-R292 wild-type patients after oseltamivir treatment (median days, 10 vs 5, P = 0.022). The mutation of R292K in NA conferring the potential ability of oseltamivir resistance resulted in prolonged viral duration and poor outcome and should be taken into consideration in the clinical management of infected patients.


Assuntos
Antivirais/farmacologia , Farmacorresistência Viral , Subtipo H7N9 do Vírus da Influenza A/genética , Influenza Humana/virologia , Mutação de Sentido Incorreto , Oseltamivir/farmacologia , Eliminação de Partículas Virais , Adulto , Idoso , Idoso de 80 Anos ou mais , China , Feminino , Genoma Viral , Humanos , Subtipo H7N9 do Vírus da Influenza A/isolamento & purificação , Influenza Humana/patologia , Masculino , Pessoa de Meia-Idade , RNA Viral/genética , Análise de Sequência de DNA
9.
Influenza Other Respir Viruses ; 13(5): 496-503, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31187583

RESUMO

BACKGROUND: Highly pathogenic avian influenza (HPAI) A(H7N9) virus emerged and caused human infections during the 2016-2017 epidemic wave of influenza A(H7N9) viruses in China. We report a human infection with HPAI H7N9 virus and six environmental isolates in Fujian Province, China. METHODS: Environmental surveillance was conducted in live poultry markets and poultry farms in Fujian, China. Clinical and epidemiologic data and samples were collected. Real-time RT-PCRs were conducted for each sample, and H7-positive samples were isolated using embryonated chicken eggs. Full genomes of the isolates were obtained by next-generation sequencing. Phylogenetic analysis and antigenic analysis were conducted. RESULTS: A 59-year-old man who raised about 1000 ducks was identified as HPAI H7N9 infection. Six HPAI H7 viruses were isolated from environmental samples, including five H7N9 viruses and one H7N6 virus. Phylogenetic results showed the human and environmental viruses are highly genetically diverse and containing significantly different gene constellation from that of other HPAI H7N9 previously reported. The internal genes derived from H7N9/H9N2, H5N6, and the Eurasian wild-bird gene pool, indicating waterfowl-originated genotypes, have emerged in HPAI H7N9/N6 viruses and caused human infection. CONCLUSION: The new genotypes raise the concern that these HPAI H7 viruses might transmit back into migratory birds and spread to other countries as the HPAI H5Nx viruses. Considering their capability of causing severe infections in both human and poultry, the HPAI H7 viruses in this study pose a risk to public health and the poultry industry and highlight the importance of sustained surveillance of these viruses.


Assuntos
Patos/virologia , Genoma Viral , Subtipo H7N9 do Vírus da Influenza A/genética , Influenza Aviária/transmissão , Influenza Humana/epidemiologia , Animais , China/epidemiologia , Epidemias , Monitoramento Epidemiológico , Humanos , Subtipo H7N9 do Vírus da Influenza A/patogenicidade , Influenza Aviária/virologia , Masculino , Pessoa de Meia-Idade , Filogenia , Aves Domésticas/virologia , Doenças das Aves Domésticas/virologia , Saúde Pública
10.
mBio ; 10(3)2019 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-31213560

RESUMO

Avian influenza viruses (AIVs) must acquire mammalian-adaptive mutations before they can efficiently replicate in and transmit among humans. The PB2 E627K mutation is known to play a prominent role in the mammalian adaptation of AIVs. The H7N9 AIVs that emerged in 2013 in China easily acquired the PB2 E627K mutation upon replication in humans. Here, we generate a series of reassortant or mutant H7N9 AIVs and test them in mice. We show that the low polymerase activity attributed to the viral PA protein is the intrinsic driving force behind the emergence of PB2 E627K during H7N9 AIV replication in mice. Four residues in the N-terminal region of PA are critical in mediating the PB2 E627K acquisition. Notably, due to the identity of viral PA protein, the polymerase activity and growth of H7N9 AIV are highly sensitive to changes in expression levels of human ANP32A protein. Furthermore, the impaired viral polymerase activity of H7N9 AIV caused by the depletion of ANP32A led to reduced virus replication in Anp32a-/- mice, abolishing the acquisition of the PB2 E627K mutation and instead driving the virus to acquire the alternative PB2 D701N mutation. Taken together, our findings show that the emergence of the PB2 E627K mutation of H7N9 AIV is driven by the intrinsic low polymerase activity conferred by the viral PA protein, which also involves the engagement of mammalian ANP32A.IMPORTANCE The emergence of the PB2 E627K substitution is critical in the mammalian adaptation and pathogenesis of AIV. H7N9 AIVs that emerged in 2013 possess a prominent ability in gaining the PB2 E627K mutation in humans. Here, we demonstrate that the acquisition of the H7N9 PB2 E627K mutation is driven by the low polymerase activity conferred by the viral PA protein in human cells, and four PA residues are collectively involved in this process. Notably, the H7N9 PA protein leads to significant dependence of viral polymerase function on human ANP32A protein, and Anp32a knockout abolishes PB2 E627K acquisition in mice. These findings reveal that viral PA and host ANP32A are crucial for the emergence of PB2 E627K during adaptation of H7N9 AIVs to humans.


Assuntos
DNA Polimerase Dirigida por DNA/metabolismo , Subtipo H7N9 do Vírus da Influenza A/genética , RNA Replicase/genética , Vírus Reordenados/genética , Proteínas Virais/genética , Animais , Galinhas , China , Feminino , Células HEK293 , Interações entre Hospedeiro e Microrganismos , Humanos , Subtipo H7N9 do Vírus da Influenza A/enzimologia , Influenza Aviária/virologia , Influenza Humana/virologia , Camundongos , Mutação , Proteínas Nucleares/metabolismo , Infecções por Orthomyxoviridae/virologia , Proteínas de Ligação a RNA/metabolismo , Replicação Viral
11.
BMC Infect Dis ; 19(1): 458, 2019 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-31117981

RESUMO

BACKGROUND: Since 2008, avian influenza surveillance in poultry-related environments has been conducted annually in China. Samples have been collected from environments including live poultry markets, wild bird habitats, slaughterhouses, and poultry farms. Multiple subtypes of avian influenza virus have been identified based on environmental surveillance, and an H1N8 virus was isolated from the drinking water of a live poultry market. METHODS: Virus isolation was performed by inoculating influenza A-positive specimens into embryonated chicken eggs. Next-generation sequencing was used for whole-genome sequencing. A solid-phase binding assay was performed to test the virus receptor binding specificity. Trypsin dependence plaque formation assays and intravenous pathogenicity index tests were used to evaluate virus pathogenicity in vitro and in vivo, respectively. Different cell lines were chosen for comparison of virus replication capacity. RESULTS: According to the phylogenetic trees, the whole gene segments of the virus named A/Environment/Fujian/85144/2014(H1N8) were of Eurasian lineage. The HA, NA, PB1, and M genes showed the highest homology with those of H1N8 or H1N2 subtype viruses isolated from local domestic ducks, while the PB2, PA, NP and NS genes showed high similarity with the genes of H7N9 viruses detected in 2017 and 2018 in the same province. This virus presented an avian receptor binding preference. The plaque formation assay showed that it was a trypsin-dependent virus. The intravenous pathogenicity index (IVPI) in chickens was 0.02. The growth kinetics of the A/Environment/Fujian/85144/2014(H1N8) virus in different cell lines were similar to those of a human-origin virus, A/Brisbane/59/2007(H1N1), but lower than those of the control avian-origin and swine-origin viruses. CONCLUSIONS: The H1N8 virus was identified in avian influenza-related environments in China for the first time and may have served as a gene carrier involved in the evolution of the H7N9 virus in poultry. This work further emphasizes the importance of avian influenza virus surveillance, especially in live poultry markets (LPMs). Active surveillance of avian influenza in LPMs is a major pillar supporting avian influenza control and response.


Assuntos
Vírus da Influenza A/genética , Vírus da Influenza A/patogenicidade , Influenza Aviária/virologia , Doenças das Aves Domésticas/virologia , Animais , Linhagem Celular , Embrião de Galinha , Galinhas , China , Patos , Humanos , Vírus da Influenza A Subtipo H1N1/genética , Subtipo H7N9 do Vírus da Influenza A/genética , Subtipo H7N9 do Vírus da Influenza A/isolamento & purificação , Vírus da Influenza A/isolamento & purificação , Influenza Aviária/epidemiologia , Filogenia , Aves Domésticas/virologia , Tripsina/genética , Tripsina/metabolismo , Sequenciamento Completo do Genoma
12.
Viruses ; 11(2)2019 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-30813415

RESUMO

Highly pathogenic avian influenza (HPAI) H5N1 and low pathogenic avian influenza (LPAI) H7N9 viruses pose a severe threat to public health through zoonotic infection, causing severe respiratory disease in humans. While HPAI H5N1 human infections have typically been reported in Asian countries, avian H7N9 human infections have been reported mainly in China. However, Canada reported a case of fatal human infection by the HPAI H5N1 virus in 2014, and two cases of human illness associated with avian H7N9 virus infection in 2015. While the genomes of the causative viruses A/Alberta/01/2014 (H5N1) (AB14 (H5N1)) and A/British Columbia/1/2015 (H7N9) (BC15 (H7N9)) are reported, the isolates had not been evaluated for their pathogenicity in animal models. In this study, we characterized the pathogenicity of AB14 (H5N1) and BC15 (H7N9) and found that both strain isolates are highly lethal in mice. AB14 (H5N1) caused systemic viral infection and erratic proinflammatory cytokine gene expression in different organs. In contrast, BC15 (H7N9) replicated efficiently only in the respiratory tract, and was a potent inducer for proinflammatory cytokine genes in the lungs. Our study provides experimental evidence to complement the specific human case reports and animal models for evaluating vaccine and antiviral candidates against potential influenza pandemics.


Assuntos
Virus da Influenza A Subtipo H5N1/patogenicidade , Subtipo H7N9 do Vírus da Influenza A/patogenicidade , Influenza Humana/virologia , Doença Relacionada a Viagens , Animais , Aves/virologia , Canadá/epidemiologia , Citocinas/genética , Citocinas/imunologia , Modelos Animais de Doenças , Feminino , Humanos , Virus da Influenza A Subtipo H5N1/genética , Virus da Influenza A Subtipo H5N1/isolamento & purificação , Subtipo H7N9 do Vírus da Influenza A/genética , Subtipo H7N9 do Vírus da Influenza A/isolamento & purificação , Pulmão/virologia , Camundongos , Camundongos Endogâmicos BALB C , Infecções por Orthomyxoviridae/patologia , Reação em Cadeia da Polimerase , Replicação Viral
13.
Emerg Microbes Infect ; 8(1): 94-102, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30866763

RESUMO

There was a substantial increase with infections of H7N9 avian influenza virus (AIV) in humans during Wave 5 (2016-2017). To investigate whether H7N9 had become more infectious/transmissible and pathogenic overall, we characterized the receptor binding and experimentally infected ferrets with highly pathogenic (HP)- and low pathogenic (LP)-H7N9 isolates selected from Wave 5, and compared their pathogenicity and transmissibility with a Wave 1 isolate from 2013. Studies show that A/Anhui/1/2013 (LP) and A/Chicken/Heyuan/16876/2016 (HP) were highly virulent in ferrets, A/Guangdong/Th008/2017 (HP) and A/Chicken/Huizhou/HZ-3/2017 (HP) had moderate virulence and A/Shenzhen/Th001/2016 (LP) was of low virulence in ferrets. Transmission was observed only in ferrets infected with A/Anhui/1/2013 and A/Chicken/Heyuan/16876/2016, consistent with the idea that sicker ferrets had a higher probability to transmit virus to naive animals. Given the Varied virulence and transmissibility observed in circulating H7N9 viruses from Wave 5, we conclude that the current public health risk of H7N9 has not substantially increased compared to 2013 and the circulating viruses are quite diverse.


Assuntos
Furões/virologia , Subtipo H7N9 do Vírus da Influenza A/patogenicidade , Infecções por Orthomyxoviridae/transmissão , Receptores de Superfície Celular/metabolismo , Proteínas Virais/metabolismo , Animais , Genótipo , Humanos , Subtipo H7N9 do Vírus da Influenza A/genética , Subtipo H7N9 do Vírus da Influenza A/isolamento & purificação , Subtipo H7N9 do Vírus da Influenza A/metabolismo , Influenza Humana/virologia , Nariz/virologia , Infecções por Orthomyxoviridae/virologia , Faringe/virologia , Virulência
14.
Influenza Other Respir Viruses ; 13(3): 288-291, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30761746

RESUMO

In 2017, outbreaks of low and highly pathogenic avian H7N9 viruses were reported in four States in the United States. In total, over 270 000 birds died or were culled, causing significant economic loss. The potential for avian-to-swine transmission of the U.S. avian H7N9 was unknown. In an experimental challenge in swine using a representative low pathogenic H7N9 (A/chicken/Tennessee/17-007431-3/2017; LPAI TN/17) isolated from these events, no infectious virus in the upper and minimal virus in the lower respiratory tract was detected, nor was lung pathology or evidence of transmission in pigs observed, indicating that the virus cannot efficiently infect swine.


Assuntos
Transmissão de Doença Infecciosa , Especificidade de Hospedeiro , Subtipo H7N9 do Vírus da Influenza A/isolamento & purificação , Influenza Aviária/transmissão , Infecções por Orthomyxoviridae/veterinária , Vírus Reordenados/isolamento & purificação , Doenças dos Suínos/virologia , Experimentação Animal , Animais , Galinhas , Subtipo H7N9 do Vírus da Influenza A/genética , Subtipo H7N9 do Vírus da Influenza A/crescimento & desenvolvimento , Influenza Aviária/epidemiologia , Influenza Aviária/virologia , Infecções por Orthomyxoviridae/patologia , Infecções por Orthomyxoviridae/virologia , Vírus Reordenados/genética , Vírus Reordenados/crescimento & desenvolvimento , Suínos , Estados Unidos/epidemiologia
15.
Zhonghua Yu Fang Yi Xue Za Zhi ; 53(2): 229-232, 2019 Feb 06.
Artigo em Chinês | MEDLINE | ID: mdl-30744302

RESUMO

The number of H7N9 bird flu cases was high and the situation was grim in guizhou province in 2017. To understand the molecular characteristics of the hemagglutinin gene (HA) and the risk of human infection with avian influenza virus A(H7N9) in Guizhou Province, 2017. Homology, genetic evolution and pivotal sites related to receptor binding regions, pathogenicity and potential glycosylation of 14 avian influenza viruses A(H7N9) were analyzed by a series of bioinformation softwares. It was cleared that there was 95.9%-100% similarity among 14 strains in nucleotide of the HA gene, and there were 96.8%-97.8% and 96.8%-97.9% similarities with vaccine strains A/Shanghai/2/2013 and A/Anhui/1/2013 recommended by WHO, respectively. Phylogenetic analysis showed that 14 HA genes were directly evolved in the Yangtze River Delta evolution branch, but they could be derived from five diffenrent strains. Then 13 of 14 strains cleavage site sequences of HA protein revealed they were low pathogenic avian influenza viruses, while A/Guizhou-Weining/CSY01/2017 was high pathogenic avian influenza virus. Mutation G186V at the receptor binding sites in the HA was found in all 14 strains, and mutation Q226L in 13 strains besides A/Guizhou-Weining/CSY01/2017. All five potential glycosylation motifs in the HA were conservative.


Assuntos
Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Subtipo H7N9 do Vírus da Influenza A/genética , Influenza Aviária/virologia , Influenza Humana/virologia , Animais , Aves , China/epidemiologia , Humanos , Influenza Aviária/epidemiologia , Influenza Humana/epidemiologia , Filogenia
16.
Int J Infect Dis ; 81: 244-250, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30797966

RESUMO

OBJECTIVES: Influenza A(H7N9) virus has emerged and resulted in human infections in Chongqing, southwestern China since 2017. This study aimed to describe the epidemiological characteristics of the first epidemic in this region. METHODS: The epidemiological data of patients were collected. Live poultry markets (LPMs), commercial poultry farms (CPFs) and backyard poultry farms (BPFs) were monitored, and poultry sources were registered. Samples derived from the patients, their close contacts, and the environments were tested for influenza A(H7N9) virus by real-time reverse transcriptase polymerase chain reaction. Genetic sequencing and phylogenetic analysis were also conducted. RESULTS: Since the confirmation of the first patient infected with influenza A(H7N9) virus on March 5, 2017, nine patients had been identified within four months in Chongqing. Their mean age was 45 years, 77.8% were male, 66.7% were urban residents and 55.6% were of poultry related occupation. All patients became infected after exposure to live chickens. The median time interval from initial detection of influenza A(H7N9) virus in Chongqing to the patients' onset was 75 days. Since initial detection in February 2017, influenza A(H7N9) virus was detected in 21 (53.8%) counties within four months. The proportion of positive samples was 2.94% (337/11,451) from February 2017 to May 2018, and was higher (χ2=75.78, P<0.001) in LPMs (3.66%, 329/8979) than that in CPFs (0.41%, 5/1229) and BPFs (0.24%, 3/1243). The proportion of positive samples (34.4%, 22/64) at the premises to which the patients were exposed was significantly higher than that (5.7%, 257/4474) in premises with no patients. Phylogenetic analysis indicated that the viruses isolated in Chongqing belonged to the Yangtze River Delta lineage and resembled those circulated in Jiangsu and Anhui provinces between late 2016 and early 2017. CONCLUSION: Influenza A(H7N9) virus was newly introduced into Chongqing most likely between late 2016 and early 2017, which swept across half of Chongqing territory and resulted in human infections within months. The most impacted premises and population were LPMs and poultry related workers respectively in the epidemic.


Assuntos
Subtipo H7N9 do Vírus da Influenza A/isolamento & purificação , Influenza Aviária/virologia , Influenza Humana/virologia , Adulto , Idoso , Animais , Galinhas , China/epidemiologia , Fazendas , Feminino , Humanos , Subtipo H7N9 do Vírus da Influenza A/classificação , Subtipo H7N9 do Vírus da Influenza A/genética , Influenza Aviária/epidemiologia , Influenza Humana/epidemiologia , Influenza Humana/transmissão , Masculino , Pessoa de Meia-Idade , Filogenia , Doenças das Aves Domésticas/epidemiologia , Doenças das Aves Domésticas/virologia , Reação em Cadeia da Polimerase em Tempo Real
17.
Virol J ; 16(1): 3, 2019 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-30621708

RESUMO

BACKGROUND: Avian influenza A H7N9 virus has caused five outbreak waves of human infections in China since 2013 and posed a dual challenge to public health and poultry industry. The number of reported H7N9 virus human cases confirmed by laboratory has surpassed that of H5N1 virus. However, the mechanism for how H7N9 influenza virus overcomes host range barrier has not been clearly understood. METHODS: To generate mouse-adapted H7N9 influenza viruses, we passaged three avian-origin H7N9 viruses in mice by lung-to-lung passages independently. Then, the characteristics between the parental and mouse-adapted H7N9 viruses was compared in the following aspects, including virulence in mice, tropism of different tissues, replication in MDCK cells and molecular mutations. RESULTS: After ten passages in mice, MLD50 of the H7N9 viruses reduced >750-3,160,000 folds, and virus titers in MDCK cells increased 10-200 folds at 48 hours post-inoculation. Moreover, the mouse-adapted H7N9 viruses showed more expanded tissue tropism and more serious lung pathological lesions in mice. Further analysis of the amino acids changes revealed 10 amino acid substitutions located in PB2 (E627K), PB1 (W215R and D638G), PA (T97I), HA (H3 numbering: R220G, L226S, G279R and G493R) and NA (P3Q and R134I) proteins. Moreover, PB2 E627K substitution was shared by the three mouse-adapted viruses (two viruses belong to YRD lineage and one virus belongs to PRD lineage), and PA T97A substitution was shared by two mouse-adapted viruses (belong to YRD lineage). CONCLUSIONS: Our result indicated that the virulence in mice and virus titer in MDCK cells of H7N9 viruses significantly increased after adapted in mouse model. PB2 E627K and PA T97A substitutions are vital in mouse adaption and should be monitored during epidemiological study of H7N9 virus.


Assuntos
Adaptação Biológica/genética , Substituição de Aminoácidos , Subtipo H7N9 do Vírus da Influenza A/genética , Mutação , Infecções por Orthomyxoviridae/patologia , Animais , Galinhas , Cães , Feminino , Subtipo H7N9 do Vírus da Influenza A/fisiologia , Células Madin Darby de Rim Canino , Camundongos , Camundongos Endogâmicos BALB C , Carga Viral , Tropismo Viral , Virulência/genética , Cultura de Vírus , Replicação Viral
18.
Arch Virol ; 164(3): 807-817, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30671655

RESUMO

The emergent highly pathogenic avian influenza A (H7N9) (HPAI) virus is a major public concern in China. Therefore, it is crucially important to develop an effective vaccine against this virus. In this study, we constructed a baculovirus vaccine expressing the hemagglutinin (HA) of H7N9 strain A/Chicken/Jiaxing/148/2014 (JX148). The recombinant baculovirus (rBac-JX148HA) generated in this study showed good growth in insect cells and good safety, and it stably expressed the HA protein. We compared the immunogenicity and efficacy of the inactivated whole-virus vaccine JX148 and rBac-JX148HA. One chicken in the JX148-treated group died on day 4 post-challenge, and three chickens had typical clinical symptoms (survival rate, 90%; morbidity, 40%). However, no chickens immunized with rBac-JX148HA showed clinical signs during the 14-day observation period. An analysis of viral shedding and viral replication demonstrated that rBac-JX148HA more efficiently inhibited viral shedding and viral replication than the inactivated whole-virus vaccine. Taken together, these results indicate that the inactivated recombinant baculovirus vaccine induces a high hemagglutination inhibition antibody titer, provides complete protection against challenge with the highly pathogenic H7N9 virus, and effectively inhibits viral shedding. Therefore, the candidate vaccine has potential utility in the prevention and control of H7N9 avian influenza and is also appropriate for veterinary vaccines using cell suspension culture technology.


Assuntos
Glicoproteínas de Hemaglutininação de Vírus da Influenza/administração & dosagem , Subtipo H7N9 do Vírus da Influenza A/imunologia , Influenza Aviária/prevenção & controle , Doenças das Aves Domésticas/prevenção & controle , Animais , Anticorpos Antivirais/imunologia , Baculoviridae/genética , Baculoviridae/metabolismo , Galinhas , China , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Subtipo H7N9 do Vírus da Influenza A/genética , Subtipo H7N9 do Vírus da Influenza A/patogenicidade , Subtipo H7N9 do Vírus da Influenza A/fisiologia , Vacinas contra Influenza/administração & dosagem , Vacinas contra Influenza/genética , Vacinas contra Influenza/imunologia , Influenza Aviária/imunologia , Influenza Aviária/virologia , Doenças das Aves Domésticas/imunologia , Doenças das Aves Domésticas/virologia , Vacinação , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia , Virulência , Eliminação de Partículas Virais
19.
J Virol ; 93(1)2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30305359

RESUMO

The fifth wave of the H7N9 influenza epidemic in China was distinguished by a sudden increase in human infections, an extended geographic distribution, and the emergence of highly pathogenic avian influenza (HPAI) viruses. Genetically, some H7N9 viruses from the fifth wave have acquired novel amino acid changes at positions involved in mammalian adaptation, antigenicity, and hemagglutinin cleavability. Here, several human low-pathogenic avian influenza (LPAI) and HPAI H7N9 virus isolates from the fifth epidemic wave were assessed for their pathogenicity and transmissibility in mammalian models, as well as their ability to replicate in human airway epithelial cells. We found that an LPAI virus exhibited a similar capacity to replicate and cause disease in two animal species as viruses from previous waves. In contrast, HPAI H7N9 viruses possessed enhanced virulence, causing greater lethargy and mortality, with an extended tropism for brain tissues in both ferret and mouse models. These HPAI viruses also showed signs of adaptation to mammalian hosts by acquiring the ability to fuse at a lower pH threshold than other H7N9 viruses. All of the fifth-wave H7N9 viruses were able to transmit among cohoused ferrets but exhibited a limited capacity to transmit by respiratory droplets, and deep sequencing analysis revealed that the H7N9 viruses sampled after transmission showed a reduced amount of minor variants. Taken together, we conclude that the fifth-wave HPAI H7N9 viruses have gained the ability to cause enhanced disease in mammalian models and with further adaptation may acquire the ability to cause an H7N9 pandemic.IMPORTANCE The potential pandemic risk posed by avian influenza H7N9 viruses was heightened during the fifth epidemic wave in China due to the sudden increase in the number of human infections and the emergence of antigenically distinct LPAI and HPAI H7N9 viruses. In this study, a group of fifth-wave HPAI and LPAI viruses was evaluated for its ability to infect, cause disease, and transmit in small-animal models. The ability of HPAI H7N9 viruses to cause more severe disease and to replicate in brain tissues in animal models as well as their ability to fuse at a lower pH threshold than LPAI H7N9 viruses suggests that the fifth-wave H7N9 viruses have evolved to acquire novel traits with the potential to pose a higher risk to humans. Although the fifth-wave H7N9 viruses have not yet gained the ability to transmit efficiently by air, continuous surveillance and risk assessment remain essential parts of our pandemic preparedness efforts.


Assuntos
Subtipo H7N9 do Vírus da Influenza A/patogenicidade , Influenza Humana/virologia , Infecções por Orthomyxoviridae/epidemiologia , RNA Viral/genética , Análise de Sequência de RNA/métodos , Animais , Linhagem Celular , China/epidemiologia , Epidemias , Evolução Molecular , Furões , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Subtipo H7N9 do Vírus da Influenza A/genética , Influenza Humana/epidemiologia , Influenza Humana/transmissão , Camundongos , Infecções por Orthomyxoviridae/transmissão , Infecções por Orthomyxoviridae/virologia , Medição de Risco , Células Vero , Tropismo Viral , Virulência
20.
Vector Borne Zoonotic Dis ; 19(1): 22-25, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30222520

RESUMO

The low pathogenic avian influenza A(H7N9) viruses (LPAI) were first identified in 2013 and have continued to infect humans since then. It was reported in February 2017 that the LPAI H7N9 virus has evolved into highly pathogenic avian influenza (HPAI) viruses, potentially increasing the risk for human and poultry. We in this study overviewed the emergence, epidemiology, and biological characterizations of the HPAI H7N9 viruses for the risk assessment.


Assuntos
Aves , Subtipo H7N9 do Vírus da Influenza A/patogenicidade , Influenza Aviária/virologia , Influenza Humana/virologia , Animais , Antivirais/farmacologia , China/epidemiologia , Farmacorresistência Viral , Humanos , Subtipo H7N9 do Vírus da Influenza A/efeitos dos fármacos , Subtipo H7N9 do Vírus da Influenza A/genética , Influenza Aviária/epidemiologia , Influenza Humana/epidemiologia , Fatores de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA